首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Distribution of plants and the expression of traits associated with environmental variation can be affected by both average conditions and the variance in conditions including extreme climatic events. We expect that these same factors should affect the distribution of plants in hybrid zones between ecologically distinct species where the hybrids should occupy ecotones or intermediate habitats. We evaluated water availability and leaf morphological differences among parental and hybrid populations of herbaceous perennial plants in the Piriqueta caroliniana complex along environmental gradients in Southeastern North America. We focus on two taxa in this group; the viridis morphotype, which occurs in southern Florida, and the caroliniana morphotype, which is distributed from northern Florida to southern Georgia. Advanced-generation hybrid derivatives of these morphotypes occupy a broad geographic region that extends across much of central Florida. Overall, we found that hybrid populations occurred in significantly drier locations, indicating that their habitat requirements are transgressive (i.e., exceeding parental values) rather than intermediate to the parental morphotypes. Water availability differed between the two sampling years, and plants displayed morphological changes in response to these changes in moisture. During the drier year, leaves were narrower and more hirsute, corroborating experimental results that these leaf traits are plastic, and confirming that plasticity occurs in natural habitats. Hybrids exhibited intermediate leaf traits (shape and size) across both years, and displayed transgressive (hair density) leaf traits during the drier year. The apparent canalization of the hybrids’ leaf morphological traits may contribute to their tolerance of variable environmental conditions and may partially explain why they have displaced the caroliniana morphotype in central Florida.  相似文献   

2.
The distribution of multilocus genotypes found within a natural hybrid zone is determined by the sample of genotypes present when the hybrid zone first formed, by subsequent patterns of genetic exchange between the hybridizing taxa, and by drift and selection within each of the hybrid zone populations. We have used anonymous nuclear DNA restriction fragment polymorphisms (RFLPs) to characterize the array of multilocus genotypes present within a well-studied hybrid zone between two eastern North American field crickets, Gryllus pennsylvanicus and Gryllus firmus. These crickets hybridize along a zone of contact that extends from New England to Virginia. Previous studies have shown that both premating and postmating barriers exist between the two cricket species, but the absence of diagnostic morphological and allozyme markers has made it difficult to assess the consequences of these barriers for genetic exchange. Analyses based on four diagnostic anonymous nuclear markers indicate that hybrid zone populations in Connecticut contain few F1 hybrids, and that nonrandom associations persist among nuclear gene markers, between nuclear and cytoplasmic markers, and between molecular markers and morphology. Field cricket populations within the hybrid zone are not “hybrid swarms” but consist primarily of crickets that are very much like one or the other of the parental species. Despite ample opportunity for genetic exchange and evidence for introgression at some loci, the two species remain quite distinct. Such a pattern appears to be characteristic of many natural hybrid zones.  相似文献   

3.
The cyprinid fishes, Notropis cornutus and N. chrysocephalus, hybridize in a long, narrow zone in the midwestern United States. To quantify the extent of introgression of genetic markers outside of this zone, samples were collected along transects starting near the region of contact (as defined by morphological characters), followed by samples progressively more distant. Diagnostic allozymic and mitochondrial DNA (mtDNA) restriction site markers were used to estimate the extent of introgression outside of the zone, while polymorphic allozyme and mtDNA markers were used to evaluate the potential for gene flow among populations within transects. Analysis of populations from the northern transect provided evidence for differentiation of populations for some of the markers; however, on average, enough gene flow has occurred to overcome substantial differentiation. Introgressed mtDNA and allozyme haplotypes were rare and found only in the population closest to the contact zone. The rarity of introgressed alleles in the more northern populations is consistent with the recent origin of these populations after the Wisconsin glaciation (less than 12,000 years bp) and/or selection maintaining the northern boundary of the contact zone. Analysis of populations from the southern transect revealed evidence for population subdivision but no evidence for introgression at the diagnostic allozyme loci; however, nearly all individuals from this transect possessed introgressed mtDNA haplotypes, with samples furthest from the contact zone exhibiting the highest frequencies of introgression. Patterns of variation for one of the polymorphic allozyme markers (Est-A) and introgressed mtDNAs were highly correlated, suggesting that allozymic heterogeneity at this locus is also the result of introgression. The most likely explanation for these data is that these introgressed haplotypes are indicators of a more southern position of the contact zone during the Pleistocene, with the contact zone shifting northward with the recession of the glacial front. Such movement implicates selection in the maintenance of distributional limits of these species, and hence, the width and position of the contact zone.  相似文献   

4.
Abstract A previous study of the hybrid zone in western Panama between white‐collared (Manacus candei) and golden‐collared manakins (M. vitellinus) documented the unidirectional introgression of vitellinus male secondary sexual traits across the zone. Here, we examine the hybrid zone in greater genetic and morphological detail. Statistical comparisons of clines are performed using maximum‐likelihood and nonparametric bootstrap methods. Our results demonstrate that an array of six molecular and two morphometric markers agree in cline position and width. Clines for male collar and belly color are similar in width to the first eight clines, but are shifted in position by at least five cline widths. The result is that birds in intervening populations are genetically and morphometrically very like parental candei, but males have the plumage color of parental vitellinus. Neither neutral diffusion nor nonlinearity of color scales appear to be viable explanations for the large cline shifts. Genetic dominance of vitellinus plumage traits is another potential explanation that will require breeding experiments to test. Sexual selection remains a plausible explanation for the observed introgression of vitellinus color traits in these highly dimorphic, polygynous, lek‐mating birds. Two other clines, including a nondiagnostic isozyme locus, are similar in position to the main cluster of clines, but are broader in width. Thus, introgression at some loci is greater than that detected with diagnostic markers. Assuming that narrow clines are maintained by selection, variation in cline width indicates that selection is not uniform throughout the genome and that diagnostic markers are under more intense selective pressure. The traditional focus on diagnostic markers in studies of hybrid zones may therefore lead to underestimates of average introgression. This effect may be more pronounced in organisms with low levels of genetic divergence between hybridizing taxa.  相似文献   

5.
Previous studies suggest that the hybrid zone between two taxa in the Piriqueta caroliniana complex in central Florida (south-eastern North America) has recently expanded with hybrids replacing parental genotypes across a broad region of the Florida peninsula. Here I use patterns of genetic disequilibria and levels of differentiation among populations to infer historical patterns of introgression across this broad hybrid zone. There were strong positive associations among taxon-specific alleles at the southern extent of hybridization, but disequilibria values were close to zero across the central and northern portions of the hybrid zone. Levels of among-population differentiation in the central portion of the hybrid zone were relatively low, and increased towards the northern extent of hybridization. The high levels of disequilibria are coincident with the sharp clines at the southern end of the hybrid zone, suggesting that there is a tension zone in this region that is maintained by selection against hybrids and dispersal from parental regions. The levels of disequilibria within populations and patterns of differentiation among populations are consistent with historical introgression and northward expansion of this hybrid zone, which may have slowed or ceased in recent generations.  相似文献   

6.
The pierid butterflies Pontia daplidice and P. edusa, parapatrically distributed in southern Europe, have very similar morphologies and life histories, but show fixed differences at four allozyme markers. We sampled these allozymes in a 28-population transect north of Genoa in Italy, through the hybrid zone where these taxa meet. We used the numerical techniques developed for hybrid zone analysis to study the patterns of genetic differentiation and their underlying evolutionary causes. The hybrid zone is characterized by a very short and steep central region, flanked by broad tails of introgression extended up to 100 km in either direction. From mean two-locus disequilibium of D = 0.148 (maximum-likelihood two-unit support limits 0.139-0.153), and after accounting for minor differences in the center locations of the single-locus clines, which act to bias the dispersal estimate, we estimated a dispersal rate of σ = 4.4 (3.7-5.5) km/gen1/2. The effective selection needed to maintain the steep central portion is strong, 0.47 < s? < 0.64, when combined over potential intrinsic (genetic background) and extrinsic (ecological) sources of selection. The clines in allozyme loci showed variation that was significantly different between the most divergent shapes, and the differences are attributable to different degrees of introgression on the edusa side of the zone. The average selection acting on individual allozyme loci was high at s???e  1.5%, but because of the narrowness of the central region of the cline, we suspect that this estimate is somewhat biased by selection on loci closely linked to the allozyme markers. A common question for taxa that show fixed allozyme differences in parapatry is whether or not they are genetically isolated. A fairly general measure of genetic isolation across hybrid zones is the time, T, that it takes a neutral allele to cross the hybrid zone and recombine into the opposite genetic background, given by T = (β/σ)2, where β is the barrier strength of the hybrid zone. Genetic isolation in the Pontia zone is weak, with T  25 generations for most allozyme markers. By this measure, populations of daplidice and edusa on opposite sides of the hybrid zone share more identical-by-descent alleles than do populations of phenotypically pure daplidice in, say, France and Morocco. Accordingly, we think it best for systematists to consider edusa as a well-marked subspecies of P. daplidice.  相似文献   

7.
Abstract Florida populations of the eastern tiger swallowtail butterfly, Papilio glaucus L., have unique morphological features and ecological adaptations that have contributed to their subspecies status (P. g. maynardi Gauthier). We describe geographically unique abilities for detoxification of Carolina willow, Salix caroliniana Michx. (Salicaceae), for several Florida populations of P. g. maynardi. Of all the approximately 570 worldwide species of the Papilionidae, such Salicaceae detoxification abilities exist only in the allopatric North American western and northernmost species (P. rutulus Lucas, P. eurymedon Lucas and P. canadensis Rothschild & Jordan). Females of P. glaucus collected from populations in southeastern USA were examined for oviposition preference in 5‐choice assays, and displayed a low preference for Salicaceae (<5%), but larvae from Florida populations exhibited a high survival (>60%) on these plants. Detoxification abilities have previously shown to be autosomally inherited, and can be transferred via natural or hand‐paired interspecific hybrid introgression. However, these Florida populations are at least 700–1 500 km from the nearest hybrids or the hybrid species, P. appalachiensis Pavulaan & Wright, which possess these detoxification abilities. In any case, the Z ( = X)‐linked oviposition preferences for Salicaceae are lacking in these Florida populations, illustrating genetic independence of oviposition preference determination and larval survival/performance abilities. The origins of detoxification abilities are unlikely to be due to recent climate‐driven introgression, and may represent ancestral trait carry‐overs from interglacial refugium populations of the Pleistocene epoch.  相似文献   

8.
Two distinct taxa of marine crabs (Menippe mercenaria and M. adina, sensu Williams and Felder [1986]) interbreed extensively in two disjunct areas of the coastal southeastern United States. We used variation in coloration and allele frequencies at three diagnostic loci to examine in detail the structure of the two zones of variation. A narrow hybrid zone in northwest Florida is situated at the junction of the present ranges of the two parental forms, in an area of strong ecological change and hydrological convergence. Despite extensive hybridization in this area, there is a significant deficiency of heterozygotes for the Alp-2 locus, nonrandom associations of alleles for two diagnostic loci, and an absence of certain combinations of phenotypes and genotypes. Along the Atlantic coast (east central Florida into South Carolina), a broad zone of increased variability exists within the range of M. mercenaria. Allele frequencies throughout this zone are similar to those of M. mercenaria but reflect apparent introgression from M. adina. In contrast, color patterns are quite variable, but only in the center of this zone. There is little evidence of a heterozygote deficiency, and the preferred habitat of M. mercenaria is not present. The Atlantic zone of variability is apparently expanding, with alleles at enzyme loci introgressing more rapidly than color characteristics. Despite these differences, certain features are common to both zones. These include 1) asymmetry in terms of the direction of introgression, 2) differential introgression of alleles, and 3) an almost complete absence of M. adina phenotypes that carry high proportions of M. mercenaria alleles. Differences between the two zones illustrate the influence that environmental setting, time of contact in relation to time of divergence, and location of the zone relative to the parental species ranges can have on hybridization events. However, observed similarities between the zones suggest that certain patterns of introgression and recombination may be independent of environmental setting. Thus, we suggest that factors inherent to the organism (intrinsic factors) and factors inherent to the environment (extrinsic factors) both act to structure and maintain the two hybrid zones.  相似文献   

9.
In this study, previously unrecognized hybridization was documented between two meadow katydids in each of two disjunct contact zones, in the southeastern United States and along the Potomac River near Washington, DC. These two zones have very different histories and dynamics of interaction between the two taxa. Orchelimum nigripes and O. pulchellum (Tettigoniidae: Conocephalinae) are distributed west and east, respectively, of the Appalachian Mountains, from the Great Lakes to the Gulf Coast and along the Atlantic Coastal Plain from New York to the Florida Keys, but are not found in the Appalachians themselves. In addition, during this century O. nigripes has become established in a small area east of the Appalachians, in the Potomac River basin, where it has completely replaced O. pulchellum along the river corridor above Washington, DC. I sampled katydids from 40 sites across both hybrid zones and mapped geographic patterns of genetic variation (allele frequencies at two diagnostic loci) and variation in a morphometric index for males. Although the two taxa are quite distinct over most of their extensive distributions, there is clear evidence of introgression in both contact zones. In the Deep South, samples from a transect along the Gulf Coast define a broad hybrid zone of about 50–100 km, while samples from a transect 200 km to the north define a zone of about 150–250 km in width. Only one Deep South population shows a deviation from Hardy-Weinberg equilibrium at either locus, and there is no evidence of linkage disequilibrium in any Deep South population. In the Potomac region, there is a narrow upstream-downstream hybrid zone along the river. Within the Potomac River floodplains downriver from Washington, DC, as well as outside the floodplains throughout the region, O. pulchellum is present in abundance, but O. nigripes markers are virtually absent. Within the floodplains upriver from Washington, DC, O. nigripes is abundant, but O. pulch***ellum markers are virtually absent. All four mixed ancestry Potomac populations sampled show strong and highly significant linkage disequilibrium, although only one clearly deviates from single-locus Hardy-Weinberg equilibrium. The position of the Deep South hybrid zone is generally consistent with interspecific and intraspecific phylogeographic patterns previously reported for numerous taxa from the southeastern United States. The observed genetic and morphometric clines appear to be the result of neutral introgression over thousands of years. In the much younger Potomac hybrid zone, O. nigripes appears to be spreading downriver, interbreeding with O. pulchellum, and replacing it. The mechanism for this replacement remains uncertain, but may be clarified by ongoing behavioral, genetic, and breeding studies.  相似文献   

10.
Studies of the genetics of hybrid zones can provide insight into the genomic architecture of species boundaries. By examining patterns of introgression of multiple loci across a hybrid zone, it may be possible to identify regions of the genome that have experienced selection. Here, we present a comparison of introgression in two replicate transects through the house mouse hybrid zone through central Europe, using data from 41 single nucleotide markers. Using both genomic and geographic clines, we found many differences in patterns of introgression between the two transects, as well as some similarities. We found that many loci may have experienced the effects of selection at linked sites, including selection against hybrid genotypes, as well as positive selection in the form of genotypes introgressed into a foreign genetic background. We also found many positive associations of conspecific alleles among unlinked markers, which could be caused by epistatic interactions. Different patterns of introgression in the two transects highlight the challenge of using hybrid zones to identify genes underlying isolation and raise the possibility that the genetic basis of isolation between these species may be dependent on the local population genetic make-up or the local ecological setting.  相似文献   

11.
The fate of species integrity upon natural hybridization depends on the interaction between selection and dispersal. The relative significance of these processes may be studied in the initial phase of contact before selection and gene flow reach equilibrium. Here we study a hybrid zone of two salamander species, Lyciasalamandra antalyana and Lyciasalamandra billae, at the initial phase of hybridization. We quantify the degree and mode of introgression using nuclear and mtDNA markers. The hybrid zone can be characterized as an abrupt transition zone, the central hybrid zone being only c. 400 m, but introgressed genes were traced up to 3 km. Introgression was traced in both sexes but gene flow may be slightly male-biased. Indirect evidence suggests that hybrid males are less viable than females. Introgression occurred at two levels: (1) locus-specific selection led to different allelic introgression patterns independent of species, while (2) asymmetrical species-level introgression occurred predominately from L. antalyana to L. billae due to range expansion of the former. This indicates that foreign genes can be incorporated into novel genomic environments, which in turn may contribute to the great diversity of morphological variants in Lyciasalamandra.  相似文献   

12.
Gompert Z  Buerkle CA 《Molecular ecology》2011,20(10):2111-2127
We developed a Bayesian genomic cline model to study the genetic architecture of adaptive divergence and reproductive isolation between hybridizing lineages. This model quantifies locus‐specific patterns of introgression with two cline parameters that describe the probability of locus‐specific ancestry as a function of genome‐wide admixture. ‘Outlier’ loci with extreme patterns of introgression relative to most of the genome can be identified. These loci are potentially associated with adaptive divergence or reproductive isolation. We simulated genetic data for admixed populations that included neutral introgression, as well as loci that were subject to directional, epistatic or underdominant selection, and analysed these data using the Bayesian genomic cline model. Under many demographic conditions, underdominance or directional selection had detectable and predictable effects on cline parameters, and ‘outlier’ loci were greatly enriched for genetic regions affected by selection. We also analysed previously published genetic data from two transects through a hybrid zone between Mus domesticus and M. musculus. We found considerable variation in rates of introgression across the genome and particularly low rates of introgression for two X‐linked markers. There were similarities and differences in patterns of introgression between the two transects, which likely reflects a combination of stochastic variability because of genetic drift and geographic variation in the genetic architecture of reproductive isolation. By providing a robust framework to quantify and compare patterns of introgression among genetic regions and populations, the Bayesian genomic cline model will advance our understanding of the genetics of reproductive isolation and the speciation process.  相似文献   

13.
The ecological and genetic factors determining the extent of introgression between species in secondary contact zones remain poorly understood. Here, we investigate the relative importance of isolating barriers and the demographic expansion of invasive Mytilus galloprovincialis on the magnitude and the direction of introgression with the native Mytilus trossulus in a hybrid zone in central California. We use double‐digest restriction‐site‐associated DNA sequencing (ddRADseq) to genotype 1337 randomly selected single nucleotide polymorphisms and accurately distinguish early and advanced generation hybrids for the first time in the central California Mytilus spp. hybrid zone. Weak levels of introgression were observed in both directions but were slightly more prevalent from the native M. trossulus into the invasive M. galloprovincialis. Few early and advanced backcrossed individuals were observed across the hybrid zone confirming the presence of strong barriers to interbreeding. Heterogeneous patterns of admixture across the zone of contact were consistent with the colonization history of M. galloprovincialis with more extensive introgression in northern localities furthest away from the putative site of introduction in southern California. These observations reinforce the importance of dynamic spatial and demographic expansions in determining patterns of introgression between close congeners, even in those with high dispersal potential and well‐developed reproductive barriers. Our results suggest that the threat posed by invasive M. galloprovincialis is more ecological than genetic as it has displaced, and continues to displace the native M. trossulus from much of central and southern California.  相似文献   

14.
We study the strength of the genetic barrier to neutral gene flow in a general one-locus, two-allele model that includes viability selection as well as fertility selection and premating isolation. We have separately considered adult migration and pollen migration. Our theoretical results suggest that selection against hybrid formation in the form of fertility selection or assortative mating is more effective in preventing introgression of neutral alleles than is reduction in hybrid viability. We argue that in experimental studies of introgression testing of F1 hybrids is as important as testing of parental forms. To illustrate the utility of this approach, we estimate the strength of the barrier to neutral gene flow between Piriqueta caroliniana and P. viridis, between Iris hexagona and I. fulva, and between Chorthippus brunneus and C. biguttulus.  相似文献   

15.
Two hybridizing species of newts, Triturus cristatus and T. marmoratus, with overlapping distributions show a parapatric distribution when surveyed in detail. The factors that govern the distribution of cristatus vs. marmoratus in the département (province) of Mayenne in western France are identified as forestation and relief. The parapatric hybrid zone running through Mayenne is narrow but widens to approximately 20 km in an area with mixed habitat. In this area most breeding sites are shared and F1 hybrids form about 4% of the total population. Analysis of survey data collected about 30 years previously also shows an essentially parapatric distribution. Comparison of past and present distribution maps reveals that cristatus has superseded marmoratus over large areas in the south of Mayenne. An area where marmoratus replaced cristatus also exists, but it is more limited in size. Gene flow between cristatus and marmoratus is analyzed using 10 diagnostic genetic markers [9 protein loci and mitochondrial (mt) DNA]. In syntopic populations nuclear gene flow is bidirectional with a mean frequency of introgressed alleles (f) of 0.3%. In allotopic populations of cristatus and marmoratus gene flow is present in areas of species replacement (f = 0.3%), while gene flow appears to be absent in those areas that have been continuously occupied by a single species. At the biogeographic level, the presence or absence of introgression is paralleled by the persistence or absence, respectively, of pockets of cristatus–marmoratus syntopy. All F1 hybrids possess the cristatus type mtDNA. This may be due to asymmetric interspecific mate choice and would explain the observed absence of introgression of the maternally inherited mtDNA genome in areas where cristatus replaced marmoratus. The cristatus–marmoratus hybrid zone bears characteristics of both the clinal (parapatric) hybrid zone model and the mosaic hybrid zone model. Such a mixed model—for which we propose the term “reticulate hybrid zone”—can be appreciated only if studied over a two-dimensional geographic area and also through time.  相似文献   

16.
To examine the processes that maintain genetic diversity among closely related taxa, we investigated the dynamics of introgression across a contact zone between two lineages of California voles (Microtus californicus). We tested the prediction that introgression of nuclear loci would be greater than that for mitochondrial loci, assuming ongoing gene flow across the contact zone. We also predicted that genomic markers would show a mosaic pattern of differentiation across this zone, consistent with genomes that are semi‐permeable. Using mitochondrial cytochrome b sequences and genome‐wide loci developed via ddRAD‐seq, we analyzed genetic variation for 10 vole populations distributed along the central California coast; this transect included populations from within the distributions of both parental lineages as well as the putative contact zone. Our analyses revealed that (1) the two lineages examined are relatively young, having diverged ca. 8.5–54 kya, (2) voles from the contact zone in Santa Barbara County did not include F1 or early generation backcrossed individuals, and (3) there appeared to be little to no recurrent gene flow across the contact zone. Introgression patterns for mitochondrial and nuclear markers were not concordant; only mitochondrial markers revealed evidence of introgression, putatively due to historical hybridization. These differences in genetic signatures are intriguing given that the contact zone occurs in a region of continuous vole habitat, with no evidence of past or present physical barriers. Future studies that examine specific isolating mechanisms, such as microhabitat use and mate choice, will facilitate our understanding of how genetic boundaries are maintained in this system.  相似文献   

17.
Much progress in speciation research stems from documenting patterns of morphological and genetic variation in hybrid zones. Contrasting patterns of marker introgression in different sections of the contact can provide valuable insights on the relative importance of various evolutionary mechanisms maintaining species differences in the face of hybridization and gene flow and on hybrid zone temporal and spatial dynamics. We studied species interactions in the common toads Bufo bufo and B. spinosus in France and northwestern Italy using morphological and molecular data from the mitochondrial and nuclear genomes in an extensive survey, including two independent transects west and east of the Alps. At both, we found sharp, coincident and concordant nuclear genetic transitions. However, morphological clines were wider or absent and mtDNA introgression was asymmetric. We discuss alternative, nonexclusive hypotheses about evolutionary processes generating these patterns, including drift, selection, long‐distance dispersal and spatial shifts in hybrid zone location and structure. The distribution of intraspecific mtDNA lineages supports a scenario in which B. bufo held a local refugium during the last glacial maximum. Present‐day genetic profiles are best explained by an advance of B. spinosus from a nearby Iberian refugium, largely superseding the local B. bufo population, followed by an advance of B. bufo from the Balkans, with prongs north and south of the Alps, driving B. spinosus southwards. A pendulum moving hybrid zone, first northwards and then southwards, explains the wide areas of introgression at either side of the current position of the contact zones.  相似文献   

18.
Samples of Luxilus cornutus, Luxilus chrysocephalus, and their hybrids were collected along hypothesized routes of dispersal from Pleistocene refugia to examine the significance of geographic variation in patterns of introgression between these species. Patterns of allozyme and mitochondrial DNA (mtDNA) variation were generally consistent with those from previous studies. Tests of Hardy-Weinberg equilibrium revealed significant deficiencies of heterozygotes in all samples, indicating some form of reproductive isolation. Mitochondrial DNAs of each species were not equally represented in F1 hybrids; however, this bias was eliminated when the two largest samples were excluded from the analysis. Backcross hybrids exhibited biased mtDNA introgression, as samples from Lake Erie (eastern) and Lake Michigan (western) drainages showed significant excesses of mtDNAs from L. chrysocephalus and L. cornutus, respectively, relative to frequencies of diagnostic allozyme markers. The extent and direction of allozyme and mtDNA introgression was quantified by calculating isolation index values from morphologically “pure” individuals of each species from each locality. Analysis of variance of these measures identified limited introgression of allozyme variants with no geographic pattern, but significant differences in direction of mtDNA introgression between drainages (i.e., postglacial dispersal route). Association between patterns of mtDNA introgression and dispersal route across the latitudinal width of the contact zone is best explained by genetic divergence during past isolation of ancestral populations from these drainages. These results identify a significant role for historical effects in the evolution of reproductive isolation and the process of speciation.  相似文献   

19.
The sibling ground crickets Allonemobius fasciatus and A. socius meet along a mosaic hybrid zone at ≈ 40°N latitude in eastern North America. In this paper we report the findings of a genetic analysis of calling-song variation within and among six cricket populations sampled along a transect through the hybrid zone in southern New Jersey. We compared aspects of the calling song of both wild-caught and laboratory-reared crickets to test the hypothesis that population differences in song observed in the wild were genetically based. We found significant, species-level differences in all aspects of the calling song, and these differences persisted even after a generation of common-garden rearing in the laboratory, supporting the hypothesis that interspecific variation observed in the wild largely reflects genetic differentiation between the two taxa. A discriminant function analysis indicated that individual crickets could be assigned to the proper taxon with less than 10% error, supporting the premise that calling song could be used by female crickets as a mechanism for species recognition. One population, collected from within the hybrid zone and containing significant numbers of hybrid individuals, was intermediate in its calling song, presumably reflecting this population's mixed genetic makeup. In this hybrid zone population, song phenotype was highly correlated to a hybrid index score generated using species-specific alleles at four diagnostic allozyme markers, suggesting a multigenic basis to calling-song variation in these crickets as well as linkage disequilibrium between markers and song. Based on an analysis of laboratory-reared full-sib families, broad-sense heritabilities for calling-song characteristics were generally significant in the two A. socius populations, whereas many components of song showed no significant family effects in the three A. fasciatus populations. The genotypically mixed, hybrid zone population showed very high heritabilities for most calling-song components, which likely reflect the influence of interspecific gene flow on genetic variation for quantitative traits.  相似文献   

20.
Fifty populations of Liriodendron tulipifera were sampled and scored for electrophoretic variation at 23 loci. The level of genetic polymorphism and population differentiation is greater in L. tulipifera than is usual for an outbreeding species. Since this species exhibits a cline of morphological and ecological variation from north to south, the 50 populations were divided into seven geographically defined regional groupings: three from the Appalachian uplands, three from the southeastern coastal plains, and one from the Florida peninsula. Nei's genetic identity, I, was calculated for all within- and among-population and region comparisons. The populations from the upland regions clustered closely together while the coastal plain populations were similar but measurably separated from the upland ones. The populations from the Florida peninsula were markedly divergent. A principal components analysis of the same data set revealed a nearly identical pattern of population clustering. Two hypotheses were explored to explain the pattern observed: 1) post-Pleistocene differentiation and migration from a single refugium and; 2) sympatry of two previously isolated taxa during glacial maxima, followed by introgression and migration. The weight of evidence best supports the introgression hypothesis which is explained in terms of plant migration events during Pleistocene time. The level and distribution of electrophoretic variation in L. tulipifera is compared to that of other woody taxa in which historical events of the Pleistocene may have contributed to modern levels and patterns of variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号