首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reduction of metmyoglobin by the iron(II) complex of trans-1,2-diaminocyclohexane-N,N,N'N'-tetraacetate (FeCDTA2-) has been investigated. The equilibrium constant, measured spectrophotometrically, is 0.21 with a resulting reduction potential of 0.050 V for Mb0. The rate constant for the reduction is 28 M-1 sec-1 with a deltaH ++ of 13 kcal M-1 and deltaS ++ of -11 eu. Both CN- and OH- inhibit the reduction because of the relatively low reactivity of cyanometmyoglobin (Mb+CN-) and ionized metmyglobin (Mb+OH-). The rate constant for the reduction of Mb+CN- by FeCDTA2- is 4.0 X 10(-2) M-1 sec-1 and that for reduction of Mb+OH- is 4.8 M-1 sec-1. The nitric oxide complex of metmyoglobin is reduced with a rate constant of 10 M-1 sec-1. The kinetics of oxidation of oxymyoglobin by FeCDTA- were studied. The data are consistent with a mechanism where oxidation takes place entirely through the deoxy form. A rate constant of 1.45 X 10(2) M-1 sec-1 was calculated for the oxidation of deoxymyoglobin by FeCDTA-, in equilibrium constant and rate constant for reduction. The above data are discussed in terms of a simple outer-sphere reduction reaction.  相似文献   

2.
The reaction between reduced Pseudomonas cytochrome c551 and cytochrome oxidase with two inorganic metal complexes, Co(phen)3(3+) and Mn(CyDTA)(H2O)-, has been followed by stopped-flow spectrophotometry. The electron transfer to cytochrome c551 by both reactants is a simple process, characterized by the following second-order rate constant: k = 4.8 X 10(4) M-1 sec-1 in the case of Co(phen)3(3+) and k = 2.3 X 10(4) M-1 sec-1 in the case of Mn(CyDTA)(H2O)-. The reaction of the c-heme of the oxidase with both metal complexes is somewhat heterogeneous, the overall process being characterized by the following second-order rate constants: k = 1.7 X 10(3) M-1 sec-1 with Co(phen)3(3+) and k = 4.3 X 10(4) M-1 sec-1 with Mn(CyDTA)(H2O)- as oxidants; under CO (which binds to the d1-heme) the former constant increases by a factor of 2, while the latter does not change significantly. The oxidation of the d1-heme of the oxidase by Co(phen)3(3+) occurs via intramolecular electron transfer to the c-heme, a direct bimolecular transfer from the complex being operative only at high metal complex concentrations; when Mn(CyDTA)(H2O)- is the oxidant, the bimolecular oxidation of the d1-heme competes successfully with the intramolecular electron transfer.  相似文献   

3.
The reactions of copper(II)-aliphatic polyamine complexes with cysteine, cysteine methyl ester, penicillamine, and glutathione have been investigated, with the goal of understanding the relationship between RS- -Cu(II) adduct structure and preferred redox decay pathway. Considerable mechanistic flexibility exists within this class of mercapto amino acid oxidations, as changes in the rate law could be induced by modest variations in reductant concentration (at fixed [Cu(II)]0), pH, and the structure of the redox partners. With excess cysteine present at 25 degrees C, pH 5.0, I = 0.2 M (NaOAc), decay of 1:1 cys-S- -Cu(II) transient adducts was found to be first order in both cys-SH and transient. Second-order rate constants characteristic of Cu(dien)2+(6.1 X 10(3) M-1 sec-1), Cu(Me5dien)2+ (2.7 X 10(3) M-1 sec-1), Cu(en)22+ (2.1 X 10(3) M-1 sec-1), and Cu(dien)22+ (4.7 X 10(3) M-1 sec-1) are remarkably similar, considering substantial differences in the composition and geometry of the oxidant first coordination sphere. A mechanism involving attack of cysteine on the coordinated sulfur atom of the transient, giving a disulfide anion radical intermediate, is proposed to account for these results. Moderate reactivity decreases in the cysteine-Cu(dien)2+, Cu(Me5dien)2+ reactions with increasing [H+] (pH 4-6) reflect partial protonation of the polyamine ligands. A very different rate law, second order in the RS- -Cu(II) transient and approximately zeroth order in mercaptan, applies in the pH 5.0 oxidations of cysteine methyl ester, penicillamine, and glutathione by Cu(dien)2+ and Cu(Me5dien)2+. This behavior suggests the intermediacy of di-mu-mercapto-bridged binuclear Cu(II) species, in which a concerted two-electron change yields the disulfide and Cu(I) products. Similar hydroxo-bridged intermediates are proposed to account for the transition from first- to second-order transient dependence in cysteine oxidations by Cu(dien)2+ and Cu(Me5dien)2+ as the pH is increased from 5 to 7. Yet another rate law, second order in transient and first order in cysteine, applies in the pH 5.0 oxidation of cysteine by Cu(Me6tren)2+ (k(25 degrees C) 7.5 X 10(7) M-2 sec-1, I = 0.2M). Steric rigidity of this trigonal bipyramidal oxidant evidently protects the coordinated sulfur atom from attack in a RSSR- -forming pathway. Formation of a coordinated disulfide in the rate-determining step is proposed, coupled with attack of a noncoordinated cysteine molecule on a vacated coordination position to stabilize the (Me6tren)Cu(I) product.  相似文献   

4.
A steady-state kinetic analysis was made of thiocyanate (SCN-) oxidation catalyzed by human peroxidase (SPO) isolated from parotid saliva. For comparative purposes, bovine lactoperoxidase (LPO) was also studied. Both enzymes followed the classical Theorell-Chance mechanism under the initial conditions [H2O2] less than 0.2mM, [SCN-] less than 10mM, and pH greater than 6.0. The pH-independent rate constants (k1) for the formation of compound I were estimated to be 8 X 10(6) M-1 s-1 (SD = 1, n = 18) for LPO and 5 X 10(6) M-1 s-1 (SD = 1, n = 11) for SPO. The pH-independent second-order rate constants (k4) for the oxidation of thiocyanate by compound I were estimated to be 5 X 10(6) M-1 s-1 (SD = 1, n = 18) for LPO and 9 X 10(6) M-1 s-1 (SD = 2, n = 11) for SPO. Both enzymes were inhibited by SCN- at pH less than 6. The pH-independent equilibrium constant (Ki) for the formation of the inhibited enzyme-SCN- complex was estimated to be 24 M-1 (SD = 12, n = 8) for LPO and 44 M-1 (SD = 4, n = 10) for SPO. An apparent pH dependence of the estimated values for k4 and Ki for both LPO and SPO was consistent with a mechanism based on assumptions that protonation of compound I was necessary for the SCN- peroxidation step, that a second protonation of compound I gave an inactive form, and that the inhibited enzyme-SCN- complex could be further protonated to give another inactive form.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The reduction of horse and Candida krusei cytochromes c by ferrocyanide has been studied by 1H NMR spectroscopy and the reaction found to involve a precursor complex of ferrocyanide bound to ferricytochrome c (pH* 7.4, 2H2O, I = 0.12, and 25 degrees C). The electron transfer rate constants for the reduction of the two ferricytochromes by associated ferrocyanide were found to be the same at 780 +/- 80 sec-1 but the association constants for binding of ferrocyanide to ferricytochrome c were significantly different: horse, 90 +/- 20 M-1 and Candida, 285 +/- 30 M-1. The different association constants partly accounts for the previously observed reactivity difference between horse and Candida cytochromes c. Comparison of the NMR data with data obtained by other kinetic methods has allowed the electron transfer rate constant for the oxidation of ferrocytochrome c by associated ferricyanide to be determined. This was found to be 4.6 +/- 1 X 10(4) sec-1.  相似文献   

6.
The rate constants and delta H degrees for the non-cooperative dimeric Busycon myoglobin are: oxygen, k' = 4.75 X 10(7) M-1 sec-1, k = 71 sec-1, and CO, l'= 3.46 X 10(5) M-1 sec-1, l = 0.0052 sec-1 at 20 degrees C, pH 7, delta H degrees = -3 kcal/mol for O2 and CO.2. Log-log plots of k vs K for oxygen and of l' vs L for CO binding for numerous non-cooperative hemoglobins and myoglobins point to a large steric influence of the protein on heme ligation reactions. Many of the proteins behave as "R" state for one ligand, but "T" for the other.  相似文献   

7.
Using solid phase systems, the kinetics of binding of monoclonal antibody (LRB 45, IgG2b,kappa) to apoC-I and apoC-I on lipoproteins were investigated. At 25 degrees C, the association constant of LRB 45 antibody to apoC-I (3.56 X 10(6) M-1 X sec-1) was almost three times slower than the association constant LRB 45 antibody to lipoproteins (10.4 X 10(6) M-1 X sec-1). However, the dissociation constant of apoC-I from LRB 45 antibody (0.865 X 10(-4) sec-1) was also slower than the dissociation constant of lipoprotein from antibody (1.5 X 10(-4) sec-1). Thus, the calculated affinity constant (association constant/dissociation constant) of LRB 45 antibody for apoC-I was approximately half of that for lipoproteins (4.12 X 10(10) M-1 vs. 6.92 X 10(10) M-1). The intrinsic affinity constants for antibody binding to apoC-I and apoC-I on lipoproteins were determined by Scatchard analysis. The intrinsic affinity constant of antibody bound to apoC-I was estimated to be 5.49 X 10(10) M-1 whereas that of antibody binding to lipoproteins was 30 to 200 times less. Furthermore, ascites fluid from LRB 45 cell lines could immunoprecipitate serum lipoproteins. Thus, it is concluded that there is multiple binding of antibody to apoC-I on lipoproteins. This binding appears to increase the calculated affinity constant (avidity) for antibody-antigen interaction.  相似文献   

8.
H Ruf 《Biophysical chemistry》1987,26(2-3):313-320
The kinetics of adsorption of the proton carrier o-methyl red to the surface of unilamellar spherical phospholipid vesicles have been investigated by means of the temperature-jump relaxation technique with absorbance detection. Single-exponential relaxation curves were observed with time constants in the range 30-130 microseconds. o-Methyl red binds in both its anionic form A- and protonated form AH. Adsorption-desorption of the two species is coupled by two fast protolytic reactions, occurring in the aqueous bulk phase and in the surface region of the membrane. The rate constants for adsorption and desorption of the two species were obtained from the dependences of the relaxation time on lipid concentration at different pH values. The analysis yielded apparent adsorption rate constants of kasAH = 9.8 X 10(6) M-1 s-1 and kasA = 1.3 X 10(6) M-1 s-1 (expressed in terms of monomeric lipid), and kasAH = 1.2 X 10(11) M-1 s-1 and kasA = 1.6 X 10(10) M-1 s-1 (expressed in terms of vesicle concentration). From the order of these rate constants it is concluded that adsorption of both species is actually diffusion-controlled. The peculiar pH dependence of the relaxation time is a consequence of the protolytic reaction in the surface region of the membrane. Its implication for the kinetics of adsorption-desorption processes are discussed.  相似文献   

9.
The kinetics of the Ca2+-dependent conformational change of the tryptic fragments F12 (residues 1-75) and F34 (residues 78-148) of calmodulin were studied by 1H-NMR. Resonances of two phenylalanines, 16 (or 19) and 65 (or 68), N epsilon, N epsilon, N epsilon-trimethyllysine-115 and tyrosine-138 were examined by the saturation-transfer technique or computer-aided line-shape simulation to obtain the rate of the conformational exchange between the Ca2+-free form and the Ca2+-bound form. The rates for F12 and F34 in the presence of 0.2 M KCl at 22 degrees C were 300-500 s-1 and 3-10 s-1, respectively. Activation parameters are as follows: Delta H not equal to = 11(+/- 2) kcal X M-1 and delta S not equal to = -9(+/- 5) cal X K-1 X M-1 for F12, and delta H not equal to = 16(+/- 2) kcal X M-1 and delta S not equal to = -2(+/- 5) cal X K-1 X M-1 for F34. These kinetic data for the conformational exchange are in agreement with those of Ca2+ dissociation from the binding sites obtained by 43Ca-NMR and stopped-flow fluorescence studies.  相似文献   

10.
Kinetics of the cooperative association of actin to actin filaments.   总被引:21,自引:0,他引:21  
The cooperative formation of actin filaments from monomers was followed by light scattering and electron microscopy. The results are well described by a simple model mechanism in which the growth and destruction of filaments occurs by stepwise addition or dissociation of protomers. All steps except the dimerisation step are assumed to have identical rate constants. These were found to be 5 X 10(3) M-1 - sec-1 and 3 X 10(-2) sec-1 for the association and dissociation, respectively (at pH 7.5 and in the presence of 10(-3) M calcium chloride). The equilibrium constant of elongation as obtained from the critical concentration is 1.7 X 10(5) M-1. The corresponding equilibrium constant of dimerisation is about 10 million times smaller (cooperativity parameter sigma = 2 X 10(-7)). This makes the nucleation extremely difficult and cooperativity very high. A best fit of the model to the experimental data is achieved when the destruction of a dimer is much faster than the addition of a third protomer (fast monomer- dimer pre-equilibrium). The size of the nucleus from which propagation becomes faster than dissociation is 3.  相似文献   

11.
The monomeric heme octapeptide from cytochrome c, microperoxidase-8, (MP-8), coordinates CN- with log K = 7.55 +/- 0.04 at 25 degrees C in 20% (v/v) aqueous methanol. Log K values are independent of pH between 6 and 9. A spectrophotometric titration of cyanoMP-8 between pH 5.5 and 13.8 gave a single pKa greater than or equal to 13.5 ascribed to ionization of the proximal His ligand. A study of the kinetics of the reaction of MP-8 with cyanide between pH 5.5 and 12, at 25 degrees C and mu = 0.1, indicates that formation of cyanoMP-8 occurs via three routes: attack of CN- on Fe(III) (k1 = 6.0 +/- 0.3 X 10(5) M-1 sec-1); attack of HCN on Fe(III) (k2 = 4.8 +/- 2.0 X 10(3) M-1 sec-1), followed by deprotonation and isomerization to form the C-bound species; and displacement of OH- by CN- when the proximal His ligand is ionized (k5 = 1.8 +/- 0.1 X 10(5) M-1 sec-1). These results are compared with available data for the reaction of cyanide with aquocobalamin and with various hemoproteins.  相似文献   

12.
The hydrolysis of 4-nitrophenyl acetate by metal complexes Co(en)2(imH)H2O3+, Co(en)2(bzmH)H2O3+, and Co(en)2(imCH3)H2O3+ (imH = imidazole, bzmH = benzimodazole, imCH3 = methyl imidazole) has been investigated in the pH range 5.4-8.9. The small difference in nucleophilic reactivity in the pH range 5.4-6.7 is assumed to be due to hydrogen bonding abilities of the imidazole and substituted imidazole ligands and small pKa differences (k2(imH) = 2.2 X 10(-2) M-1 sec-1, k2(bzmH) = 5.68 X 10(-2) M-1 sec-1, k2(imCH3) = 1.35 X 10(-2) M-1 sec-1, 40 degrees C, 1 = 0.3 NaClO4, pKa(imH) = 6.2, pKa(imCH3) = 6.2 and pKa(bzmH) = 5.9). In the pH range 7.8-8.9, the differences in nucleophilic reactivity (k3(imH) = 85.5 X 10(-2) M-1 sec-1, k3(bzmH) = 33.4 X 10(-2) M-1 sec-1, 40 degrees C, I = 0.3 NaClO4) are reconciled with a significant steric factor outweighing the acidity of the benzimidazole complex. In the pH region 6.7-7.7, the deviation from linearity is presumably due to both hydroxo and imido ligands functioning as nucleophiles, the latter being about 40 times stronger than the former.  相似文献   

13.
S Loo  J E Erman 《Biochemistry》1975,14(15):3467-3470
The rate of the reaction between cytochrome c peroxidase and hydrogen peroxide was investigated using the stopped-flow technique. The apparent bimolecular rate constant was determined between pH 3.3 and pH 11 as a function of ionic strength. The pH dependence of the apparent bimolecular rate constant can be explained by assuming that two ionizable groups on the enzyme strongly influence the rate of the reaction. At 0.1 M ionic strength, a group with a pKa of 5.5 must be unprotonated and a group with a pKa of 9.8 must be protonated for the enzyme to react rapidly with hydrogen peroxide. The apparent acid dissociation constants depend upon the ionic strength. The true bimolecular rate constant has a value of (4.5 +/- 0.3) X 10(7) M-1 sec-1 and is independent of ionic strength.  相似文献   

14.
The blocking actions of strychnine on excitatory acetylcholine (ACh) responses in isolated, voltage clamped Aplysia neuronal cell bodies has been studied using a rapid drug application technique. Rapid microperfusion of strychnine (10-50 microM) produced a reduction of the steady-state ACh-induced inward current in Aplysia neurons which decayed exponentially with a highly dose-dependent time constant. At the cessation of strychnine perfusion the ACh-induced current recovered to its original value with an exponential time course which was not sensitive to the dose of strychnine previously applied. The calculated association (k1) and dissociation (k-1) constants for a pseudo-first-order reaction between strychnine and its binding site were k1 = 1.2 X 10(4) M-1. sec-1 and k-1 = 0.12 sec-1 (KD = 1 X 10(-5) M-1). These results demonstrate that concentration jump relaxation experiments can be performed on isolated neurons for the study of voltage-independent antagonists by the use of rapid microperfusion systems and provide the first direct estimates to date of the rate constants of the cholinolytic effect of strychnine.  相似文献   

15.
The study of the catalytic activity of a Cu(II)-oxidized glutathione system upon the disproportionation of superoxide radicals shows that the mononuclear complex MA catalyzes dismutation in the pH range 7-9. The corresponding first-order rate constant of value kcat congruent to 6 X 10(6) M-1 sec-1 is pH independent, whereas the second-order rate constant ks for the reference solutions is pH dependent. The kcat constant is about 10-, 100-, and 300-fold higher than the ks constant at pH 7, 8, and 9, respectively. The measured effect is explained in terms of free axial sites in the square-planar arrangement around the copper ion.  相似文献   

16.
The rates of reaction with ozone of some biological antioxidants and simple polyunsaturated fatty acids (PUFA) have been measured in water or in aqueous micellar solutions. At pH 7.0 the rate constants are ca. 10(6) M-1 sec-1 for urate, alpha-tocopherol, and PUFA, and 6 X 10(7) M-1 sec-1 for ascorbate. When ozone-containing air is breathed, ascorbate in the lung may undergo direct ozonation. However, alpha-tocopherol is probably spared direct reaction with ozone because it doesn't effectively compete with PUFA in pulmonary membranes; rather, tocopherol is used to scavenge radicals produced from the ozone-PUFA reaction.  相似文献   

17.
The interaction of peroxynitrite with thiolate dinitrosyl iron complexes (DNIC) has been examined and compared with the interaction with H2O2. Peroxynitrite oxidized DNIC containing various thiolate ligands--cysteine, glutathione, and bovine serum albumin. Analysis of the oxidation suggested a two-electron reaction and gave third-order rate constants of (9.3 +/- 0.5).109 M-2.sec-1 for DNIC with BSA, (4.0 +/- 0.3).108 M-2.sec-1 for DNIC with cysteine, and (1. 8 +/- 0.3).107 M-2.sec-1 for DNIC with glutathione at 20 degrees C and pH 7.6. Peroxynitrite was more reactive towards DNIC than towards sulfhydryls. Addition of sodium dithionite after the reaction led to significant restoration of the EPR signal of DNIC with cysteine. The reaction of glutathione DNIC with H2O2 was about 600 times slower than with ONOO- and not reversed by sodium dithionite. Thus peroxynitrite, in contrast to hydrogen peroxide, changes the pool of nitrosocompounds which can be responsible for interconversion, storage, and transportation of nitric oxide in vivo.  相似文献   

18.
Kinetics and mechanism in the reaction of gene regulatory proteins with DNA   总被引:28,自引:0,他引:28  
We have measured the kinetic properties of the Escherichia coli cAMP receptor protein (CAP) and lac repressor interacting with lac promoter restriction fragments. Under our reaction conditions (10 mM-Tris X HCl (pH 8.0 at 21 degrees C), 1 mM-EDTA, 10 microM-cAMP, 50 micrograms bovine serum albumin/ml, 5% glycerol), the association of CAP is at least a two-step process, with an initial, unstable complex formed with rate constant kappa a = 5(+/- 2.5) X 10(7) M-1 s-1. Subsequent formation of a stable complex occurs with an apparent bimolecular rate constant kappa a = 6.7 X 10(6) M-1 s-1. At low total DNA concentration, the dissociation rate constant for the specific CAP-DNA complex is 1.2 X 10(-4) s-1. The ratio of formation and dissociation rate constants yields an estimate of the equilibrium constant, Keq = 5 X 10(10) M-1, in good agreement with static results. We observed that the dissociation rate constant of both CAP-DNA and repressor-DNA complexes is increased by adding non-specific "catalytic" DNA to the reaction mixture. CAP dissociation by the concentration-dependent pathway is second-order in added non-specific DNA, consistent with either the simultaneous or the sequential participation of two DNA molecules in the reaction mechanism. The results imply a role for distal DNA in assembly-disassembly of specific CAP-DNA complexes, and are consistent with a model in which the subunits in the CAP dimer separate in the assembly-disassembly process. The dissociation of lac repressor-operator complexes was found to be DNA concentration-dependent as well, although in contrast to CAP, the reaction is first-order in catalytic DNA. Added excess operator-rich DNA gave more rapid dissociation than equivalent concentrations of non-specific DNA, indicating that the sequence content of the competing DNA influences the rate of repressor dissociation. The simplest interpretation of these observations is that lac repressor can be transferred directly from one DNA molecule to another. A comparison of the translocation rates calculated for direct transfer with those predicted by the one-dimensional sliding model indicates that direct transfer may play a role in the binding site search of lac repressor.  相似文献   

19.
Tryptophanyl-tRNA synthetase catalyzed formation of Trp-tRNA(Trp) has been studied by mixing tRNA(Trp) with a preformed bis(tryptophanyl adenylate)-enzyme complex in the 0-60-ms time range, on a quenched-flow apparatus. Analyzing the data gives an association rate constant ka = (1.22 +/- 0.47) X 10(8) M-1 S-1, a dissociation rate constant kd = 143 +/- 73 S-1, and a dissociation constant Kd = 1.34 +/- 0.80 microM for tRNA(Trp). The maximum rate constant of tryptophan transfer to tRNA(Trp) is kt = 33 +/- 3 S-1. When starting the aminoacylation reaction with a mono(tryptophanyl adenylate)-enzyme complex, one obtains different kinetic profiles than when using a bis(tryptophanyl adenylate)-enzyme complex. Over a 0-400-ms time range, the monoadenylate-enzyme complex yields an apparent first-order reaction, while the bis-adenylate-enzyme complex yields a biphasic aminoacylation of tRNA(Trp). Analysis of Trp-tRNA(Trp) formation from both complexes according to simple reaction schemes shows that the dissociation of tRNA(Trp) from an enzyme subunit carrying no adenylate is 6.9-fold slower than from an enzyme subunit carrying an adenylate. The apparent rate constant of dissociation of nascent tryptophanyl-tRNA(Trp) is 4.9 S-1 in the absence of free tryptophan, which is much slower than its rate of formation (33 S-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Complex formation between two new double-headed protease inhibitors from black-eyed peas, trypsin-chymotrypsin inhibitor (BEPCI) and a trypsin inhibitor (BEPTI), and trypsin and chymotrypsin was investigated in the concentration range from 10-8 to 10-4 M by titration experiments and gel filtration chromatography. Dissociation equilibrium constants measured for complexes detected in the titration experiments range from as large as 10-8 M for trypsin bound nonspecifically to the chymotrypsin site of BEPCI to as small as 10-18 M2 for the interaction of BEPCI with chymotrypsin. The identity and stoichiometry of complexes detected during titration experiments were confirmed by gel filtration of mixtures of native and fluorescently labeled proteases and inhibitors. Half-site reactivity is observed in the formation of complexes between BEPCI or BEPTI and trypsin and chymotrypsin at all experimentally practical concentrations. The double-headed complex contains 1 molecule each of trypsin, chymotrypsin, and BEPCI dimer. The bimolecular rate constants of complex formation between trypsin or chymotrypsin and isolated BEPCI oligomers range from 1.8 X 10(5) M-1 S-1 for chymotrypsin and BEPCI monomer to 4.4 X 10(7) M-1 S-1 for trypsin and the rapidly equilibrating BEPCI dimer. The estimated rate constants for the dissociation of half-site-liganded dimer complexes and liganded monomer complexes range from 7.5 X 10-3 S-1 for the trypsin-liganded BEPCI monomer complex to 1.6 X 10-6 S-1 for the chymotrypsin-liganded BEPCI dimer complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号