首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 426 毫秒
1.
The carcinogenic or cocarcinogenic potential of extremely low frequency (ELF; 50 or 60 Hz) magnetic fields (MFs) has been evaluated worldwide in diverse animal model systems. Though most results have been negative, weakly positive or equivocal results have been reported in several cancer models, including the rat DMBA (7,12-dimethylbenz[a]anthracene) model of mammary cancer. Based on the experimental conditions used in studies in which cocarcinogenic effects of ELF MF were found, it was recently proposed that MF exposure may potentiate the effects of known carcinogens only when the animals are exposed to both MF and carcinogen during an extended period of tumor development, i.e., when the carcinogen is given repeatedly during MF exposure. This review summarizes a series of experiments from our group, showing cocarcinogenic MF effects in the DMBA breast cancer model in rats, to test whether the above proposal is confirmed by existing data. Flux densities of 50 or 100 microT significantly increased the growth of mammary tumors, independent of whether DMBA was given in a single administration or repeatedly over a prolonged period. Thus, these data do not substantiate the hypothesis requiring repeated doses of DMBA during MF exposure. Instead, several other aspects of study design and experimental factors are identified that seem to be critical for the detection of cocarcinogenic effects of MF exposure in the rat DMBA mammary cancer model. These include the rat subline used, the dose of DMBA, the duration of MF exposure, the flux density, the background (sham control) tumor incidence, and the location of mammary tumors in the mammary gland complex. These and other experimental aspects may explain why some laboratories did not detect cocarcinogenic MF effects in the DMBA model. We hope that direct comparison of MF bioeffects in different rat sublines and further evaluation of other experimental differences between studies on MF exposure in the DMBA model will eventually determine which genetic and environmental factors are critical for potential carcinogenic or cocarcinogenic effects of ELF MF exposure.  相似文献   

2.
A series of epidemiological studies have indicated associations between exposure to magnetic fields (MFs) and a variety of cancers, including breast cancer. In order to test the possibility that MF acts as a cancer promoter or copromoter, four separate experiments have been conducted in rats in which the effects of chronic exposure to MFs on the development of mammary tumors induced by 7,12-dimethylbenz(a)anthracene (DMBA) were determined. Female rats were exposed in magnetic coils for 91 days (24 h/day) to either alternating current (AC; 50 Hz)-MF or direct current (DC)-MF. Magnetic flux density of the DC-MF was 15 mT. Two AC-MF exposures used a homogeneous field with a flux density of 30 mT (rms); one used a gradient field with flux density ranging from 0.3–1 μT. DMBA (5 mg) was administered orally at the onset of MF exposure and was repeated thrice at intervals of 1 week. In each experiment, 18–36 animals were exposed in 6 magnetic coils. The same number of rats were used as sham-exposed control. These control animals were treated with DMBA and were placed in dummy coils in the same room as the MF-exposed rats. Furthermore, groups of age-matched rats (reference controls) were treated with DMBA but housed in another room to exclude any MF exposure due to the magnetic stray field from the MF produced by coils. At the end of the exposure or sham-exposure period, tumor number and weight or size of tumors were determined at necropsy. Results were as follows: In sham-exposed animals or reference controls, the tumor incidence varied between 50 and 78% in the 4 experiments. The average number of mammary tumors per tumor-bearing animal varied between 1.6 and 2.9. In none of the experiments did MFs significantly alter tumor incidence, but in one of the experiments with AC-MF exposure at 30 mT, the number of tumors per tumor-bearing animal was significantly increased. Furthermore, exposure to a DC-MF at 15 mT significantly enhanced the tumor weight. Exposure to a gradient AC-MF at 0.3–1 μT exerted no significant effects. These experiments seem to indicate that MFs at high flux densities may act as a promoter or copromoter of breast cancer. However, this interpretation must be considered only a tentative conclusion because of the limitations of this study, particularly the small sample size used for MF exposure and the lack of repetition of data. © 1993 Wiley-Liss. Inc.  相似文献   

3.
Magnetic fields (MFs) from domestic power sources have been implicated as being a potential risk to human health. A number of epidemiological studies have found a significant link between exposure to MFs and increased rates of cancers. There have also been a number of in vivo and in vitro studies reporting effects of MFs in animal disease models and on the expression or activity of a range of proteins. In the past decade, our group proposed that atherosclerosis may have an autoimmune component, with heat shock protein 60 (Hsp60) expressed in endothelial cells as the dominant autoantigen. A number of stressors have been shown to induce the expression of Hsp60, including the classical risk factors for atherosclerosis. We were interested to see if the exposure of endothelial cells to an MF elicited increased expression of Hsp60, as has been reported previously for Hsp70. The present work describes the exposure of endothelial cells to domestic power supply (50 Hz) MFs at an intensity of 700 microT. The results from our system indicate that cultured endothelial cells exposed to a high intensity of MF either alone or in combination with classical heat stress show no effects on the expression of Hsp60 at either the messenger ribonucleic acid or the protein level. As such, there is no evidence that exposure to extremely low-frequency MF would be expected to increase the expression of Hsp60 and therefore the initiation or progression of atherosclerosis.  相似文献   

4.
Resting EEG is affected by exposure to a pulsed ELF magnetic field   总被引:8,自引:0,他引:8  
An increasing number of reports have demonstrated a significant effect of extremely low frequency magnetic fields (ELF MFs) on aspects of animal and human behavior. Recent studies suggest that exposure to ELF MFs affects human brain electrical activity as measured by electroencephalography (EEG), specifically within the alpha frequency (8-13 Hz). Here we report that exposure to a pulsed ELF MF with most power at frequencies between 0 and 500 Hz, known to affect aspects of analgesia and standing balance, also affects the human EEG. Twenty subjects (10 males; 10 females) received both a magnetic field (MF) and a sham session in a counterbalanced design for 15 min. Analysis of variance (ANOVA) revealed that alpha activity was significantly higher over the occipital electrodes (O1, Oz, O2) [F(1,16) = 6.858; P =.019, eta2 = 0.30] and marginally higher over the parietal electrodes (P3, Pz, P4) [F(1,16) = 4.251; P =.056, eta2 = 0.21] post MF exposure. This enhancement of alpha activity was transient, as it marginally decreased over occipital [F(1,16) = 4.417; P =.052; eta2 = 0.216] and parietal electrodes [F(1,16) = 4.244; P =.056; eta2 = 0.21] approximately 7 min after MF exposure compared to the sham exposure. Significantly higher occipital alpha activity is consistent with other experiments examining EEG responses to ELF MFs and ELF modulated radiofrequency fields associated with mobile phones. Hence, we suggest that this result may be a nonspecific physiological response to the pulsed MFs.  相似文献   

5.
Understanding the biological mechanisms by which extremely low-frequency (ELF, < 300 Hz) magnetic fields (MFs) interact with human brain activity is an active field of research. Such knowledge is required by international agencies providing guidelines for general public and workers exposure to ELF MFs (such as ICNIRP, the International Commission on Non-Ionizing Radiation Protection). The identification of these interaction mechanisms is extremely challenging, since the effects of ELF MF exposure need to be monitored and understood at very different spatial (from micrometers to centimeters) and temporal (from milliseconds to minutes) scales. One possibility to overcome these issues is to develop biophysical models, based on the systems of mathematical equations describing the electric or metabolic activity of the brain tissue. Biophysical models of the brain activity offer the possibility to simulate how the brain tissue interacts with ELF MFs, in order to gain new insights into experimental data, and to test novel hypotheses regarding interaction mechanisms. This paper presents novel hypotheses regarding the effects of power line (60 Hz in North America) MFs on human brain activity, with arguments from biophysical models. We suggest a hypothetic chain of events that could bridge MF exposure with detectable effects on human neurophysiology. We also suggest novel directions of research in order to reach a convergence of biophysical models of brain activity and corresponding experimental data to identify interaction mechanisms.  相似文献   

6.
Based primarily on the results of in vitro studies, it has been suggested that power-line (50 or 60 Hz) magnetic fields (MFs) may reduce immune function, which could lower resistance to infection or cancer. This study was conducted to evaluate the influence of acute and chronic in vivo exposure to a linearly polarized 50 Hz MF on immune function in female Sprague-Dawley rats. Groups of rats were exposed continuously to the MF at a flux density of 100 microT for periods of 3 days, 14 days or 13 weeks. For each exposure period, one control group of rats was sham-exposed together with each MF-exposed group. Experimental end points included analyses of T-lymphocyte subsets as well as other immune cells involved in cell-mediated immune responses, i.e. natural killer (NK) cells, B lymphocytes, macrophages, and granulocytes in blood, spleen and mesenteric lymph nodes. In addition, immunohistochemical methods were used to detect proliferating and apoptotic cells in the various compartments of spleen tissue. The results obtained failed to demonstrate a significant effect of short or prolonged MF exposure on different types of leukocytes, including lymphocyte subsets. Furthermore, the experiments on the in vivo proliferation activity of lymphocytes and the extent of apoptosis in spleen samples did not indicate a difference between the MF-exposed and sham-exposed groups, indicating that MF exposure does not affect the mechanisms involved in the control of lymphocyte homeostasis. The lack of MF effects in the immune tests used in the present in vivo study makes it highly unlikely that MF exposure induces immunotoxicity, at least under the experimental conditions used. However, the data do not exclude the possibility that functional alterations in T-cell responses to mitogens and in NK cell activity as recently described for MF-exposed rodents may be one mechanism involved in the carcinogenic effects of MF exposure observed in some models of co-carcinogenesis.  相似文献   

7.
We examined the separate and combined effects of 60 Hz sinusoidal magnetic fields (MFs) and a phorbol ester on protein kinase C (PKC) activity in HL60 cells. No enhancement in PKC activity was observed when a cell culture was exposed to a 1.1 mT (rms) MF alone or to a combination of MF and 2 μM phorbol 12-myristate 13-acetate (PMA) for 1 h. In a second set of experiments, cells were preexposed to a less than optimal concentration of PMA (50 nM) for 45 min, followed by a 15 min exposure to both PMA and MF. The data showed a greater decrease in cytosolic PKC activity and a larger increase in membrane activity than was induced by either 1 h PMA treatment alone or PMA and sham MF exposure. One logical conclusion from these data is that MFs may be acting in a synergistic manner on a pathway that has already been activated. Therefore, we suggest that MFs, rather than producing biological effects by a new pathway or mechanism of interaction, exert their effect(s) by interacting with already functioning reactions or pathways. If correct, the question of an MF's mechanism of interaction refocuses on how weak fields might enhance or depress a molecular reaction in progress, rather than on finding a new transduction pathway. Bioelectromagnetics 19:469–476, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
In a previous article we developed an in vitro 23 kHz magnetic field (MF) exposure system that generated an MF of 532 µTrms. Using this system, the biological effects of 23 kHz MFs on cell functions have been reported. To further clarify the biological effect of intermediate‐frequency (IF) MFs and investigate the dose–response relationship in cell lines, an exposure system that generates stronger MFs is required. To meet this requirement, we developed a 6.25 mTrms MF exposure system for in vitro study. This level is 1000 times the reference level for the general public in the ICNIRP guidelines. This system provides an MF of 6.25 mTrms at 23 kHz with a uniformity within ±5%. To verify that in vitro experimental conditions are maintained, we examined the temperature, environmental MF, and MF leakage for a sham exposure system. In addition, we examined the harmonics, coil shape, and heat generated in the medium by the high‐strength MF. As a result, it was confirmed that this system can be used to evaluate the biological effects of IF MFs. This article presents the design and successful construction of the in vitro exposure system. Bioelectromagnetics 31:156–163, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
A C Chovil 《CMAJ》1979,121(5):548-5
This paper considers modern theories of carcinogenesis as they apply to the induction of lung cancer by tobacco smoking and occupational exposure to carcinogens. Some of the known and postulated factors affecting carcinogenesis are discussed, with particular reference to syncarcinogenesis and thresholds. Factors affecting the intensity of smoking exposure are reviewed, and the generally accepted occupational lung carcinogens are listed. Relative risks for the various carcinogens according to smoking status (where known) are presented. The carcinogens are considered individually, and known or postulated interactions with smoking are discussed. It is concluded that the effects of lung carcinogens can be explained on the basis of current theories that support a rational definition of priorities for the prevention of occupational lung cancer.  相似文献   

10.
Animal studies can contribute to addressing the issue of possible greater health risk for children exposed to 50–60 Hz extremely low frequency (ELF) magnetic fields (MFs), mostly in terms of teratological effects and cancer.Teratology has been extensively studied in animals exposed to ELF MFs but experiments have not established adverse developmental effects.Childhood leukaemia has been the only cancer consistently reported in epidemiological studies as associated with exposure to ELF MFs. This association has been the basis for the classification as “possibly carcinogenic to humans” by the International Agency for Research on Cancer in 2002. Animal experiments have provided only limited support for these epidemiological findings. However, none but one study used an animal model for acute lymphoblastic leukaemia (ALL), the main form of childhood leukaemia, and exposures to ELF MFs were not carried out over the whole pregnancy period, when the first hit of ALL is assumed to occur.Moreover, there are no generally accepted biophysical mechanisms that could explain carcinogenic effects of low-level MFs. The radical pair mechanism and related cryptochromes (CRY) molecules have recently been identified in birds and other non-mammalian species, as a sensor of the geomagnetic field, involved in navigation. The hypothesis has to be tested in mammalian models. CRY, which is part of the molecular circadian clock machinery, is a ubiquitous protein likely to be involved in cancer cell growth and DNA repair.In summary, we now have some clues to test for a better characterization of the interaction between ALL and ELF MFs exposure.  相似文献   

11.
The present study investigates the effects of a weak (+/-200 microT(pk)), pulsed, extremely low frequency magnetic field (ELF MF) upon the human electroencephalogram (EEG). We have previously determined that exposure to pulsed ELF MFs can affect the EEG, notably the alpha frequency (8-13 Hz) over the occipital-parietal region of the scalp. In the present study, subjects (n = 32) were exposed to two different pulsed MF sequences (1 and 2, used previously) that differed in presentation rate, in order to examine the effects upon the alpha frequency of the human EEG. Results suggest that compared to sham exposure, alpha activity was lowered over the occipital-parietal regions of the brain during exposure to Sequence 1, while alpha activity over the same regions was higher after Sequence 2 exposure. These effects occurred after approximately 5 min of pulsed MF exposure. The results also suggest that a previous exposure to the pulsed MF sequence determined subjects' responses in the present experiment. This study supports our previous observation of EEG changes after 5 min pulsed ELF MF exposure. The results of this study are also consistent with existing EEG experiments of ELF MF and mobile phone effects upon the brain.  相似文献   

12.
The evidence of magnetic field (MF) effects on melatonin production in humans is limited and inconsistent. Part of the inconsistencies might be explained by findings suggesting interaction with light in pineal responses to MFs. To test this hypothesis, we reanalyzed data from a previously published study on 6-hydroxy melatonin sulfate (6-OHMS) excretion in women occupationally exposed to extremely low-frequency MFs. Based on questionnaire data on exposure to light-at-night (LAN), and measurement-based MF data, the 60 women were classified to four groups: no MF, no LAN; MF, no LAN; no MF, LAN; MF, LAN. The lowest excretion of 6-OHMS was observed in the group of women who were exposed to both MF and LAN, and the differences between the four groups were significant (P < .0001). The result is based on low numbers, but supports the hypothesis that daytime occupational exposure to MF enhances the effects of nighttime light exposure on melatonin production.  相似文献   

13.
14.
The effect of magnetic field (MF) exposure on microcirculation and microvasculature is not clear or widely explored. In the limited body of data that exists, there are contradictions as to the effects of MFs on blood perfusion and pressure. Approximately half of the cited studies indicate a vasodilatory effect of MFs; the remaining half indicate that MFs could trigger either vasodilation or vasoconstriction depending on initial vessel tone. Few studies indicate that MFs cause a decrease in perfusion or no effect. There is a further lack of investigation into the cellular effects of MFs on microcirculation and microvasculature. The role of nitric oxide (NO) in mediating microcirculatory MF effects has been minimally explored and results are mixed, with four studies supporting an increase in NO activity, one supporting a biphasic effect, and five indicating no effect. MF effects on angiogenesis are also reported: seven studies supporting an increase and two a decrease. Possible reasons for these contradictions are explored. This review also considers the effects of magnetic resonance imaging (MRI) and anesthetics on microcirculation. Recommendations for future work include studies aimed at the cellular/mechanistic level, studies involving perfusion measurements both during and post-exposure, studies testing the effect of MFs on anesthetics, and investigation into the microcirculatory effects of MRI.  相似文献   

15.
Wang T  Nie Y  Zhao S  Han Y  Du Y  Hou Y 《Bioelectromagnetics》2011,32(6):443-452
Effects of magnetic fields (MFs) on cancer cells may depend on cell type and exposure conditions. Gene expression levels are different among cancer cells. However, the effect of MFs on cancer cells with different gene expressions is still unclear. In this study, the cancer cell lines BGC-823, MKN-45, MKN-28, A549, SPC-A1, and LOVO were exposed to a low-frequency MF. Specific parameters of MFs were determined. Furthermore, the potential of the MF to influence cancer cell growth with midkine (MK) expression was evaluated. Cell proliferation and cell cycle were detected using the CCK-8 assay and flow cytometry. Cell ultrastructure was observed by transmission electron microscopy. BGC-823 cells with over-expression of MK (BGC-MK cells) and stanniocalcin-1 were generated by plasmid construction and transfection. Results showed that exposure to a 0.4-T, 7.5 Hz MF inhibited the proliferation of BGC-823, MKN-28, A549, and LOVO cells, but not MKN-45 and SPC-A1 cells. Moreover, the inhibitory effect of the MF on BGC-MK cells was lower (12.3%) than that of BGC-823 cells (20.3%). Analysis of the cell cycle showed that exposure to the MF led to a significant increase in the S phase in BGC-823 cells, but not in BGC-MK cells. In addition, organelle morphology was modified in BGC-823 cells exposed to the MF. These results suggest that exposure to a 0.4-T, 7.5 Hz MF could inhibit tumor cell proliferation and disturb the cell cycle. The alteration of MK expression in cancer cells may be related to the inhibitory effect of the MF on these cells.  相似文献   

16.
BACKGROUND: Epidemiologic data revealed increased brain tumor incidence in workers exposed to magnetic fields (MFs), raising concerns about the possible link between MF exposure and cancer. However, MFs seem to be neither mutagenic nor tumorigenic. The mechanism of their tumorigenic effect has not been elucidated. METHODS: To evaluate the interference of MFs with physical (heat shock, HS) and chemical (etoposide, VP16) induced apoptoses, respectively, we exposed a human glioblastoma primary culture to 6 mT static MF. We investigated cytosolic Ca(2+) ([Ca(2+)](i)) fluxes and extent of apoptosis as key endpoints. The effect of MFs on HS- and VP16-induced apoptoses in primary glioblastoma cultures from four patients was also tested. RESULTS: Static MFs increased the [Ca(2+)](i) from a basal value of 124 +/- 4 nM to 233 +/- 43 nM (P < 0.05). MF exposure dramatically reduced the extent of HS- and VP16-induced apoptoses in all four glioblastoma primary cultures analyzed by 56% (range, 28-87%) and 44% (range, 38-48%), respectively. However, MF alone did not exert any apoptogenic activity. Differences were observed across the four cultures with regard to apoptotic induction by HS and VP16 and to MF apoptotic reduction, with an individual variability with regard to apoptotic sensitivity. CONCLUSION: The ability of static MFs to reduce the extent of damage-induced apoptosis in glioblastoma cells might allow the survival of damaged and possibly mutated cells.  相似文献   

17.
The investigation of weak (<500 microT), extremely low frequency (ELF, 0-300 Hz) magnetic field (MF) exposure upon human cognition and electrophysiology has yielded incomplete and contradictory evidence that MFs interact with human biology. This may be due to the small number of studies undertaken examining ELF MF effects upon the human electroencephalogram (EEG), and the associated analysis of evoked related potentials (ERPs). Relatively few studies have examined how MF exposure may affect cognitive and perceptual processing in human subjects. The introduction of this review considers some of the recent studies of ELF MF exposure upon the EEG, ERPs and cognitive and perceptual tasks. We also consider some of the confounding factors within current human MF studies and suggest some new strategies for further experimentation.  相似文献   

18.
Research into effects of weak magnetic fields (MFs) at biologically relevant frequencies has produced ambiguous results. Although they do affect human physiology and behaviour, the direction of effects is inconsistent, with a range of complex and unrelated behaviours being susceptible. A possible explanation is that these effects, rather than being directly caused, are instead related to changes in affective state. A previous study showed that MFs altered the affective content of concurrent perceptions, but it was unclear whether the emotional response was direct or indirect. Here it is shown that exposure to a 0-5 microT MF (DC-offset sinudsoidal wave form) within EEG alpha-band frequencies (8-12 Hz), results in a reported change in emotional state. This relates to a decrease global field power but lacks the frontal alpha-asymmetry that would physiologically indicate a directly induced emotional state, suggesting that participant experiences are due to an interpretation of the effects of MF exposure.  相似文献   

19.
The effect induced by exposure to 50 Hz magnetic fields (MFs) in immunocytes from the mussel Mytilus galloprovincialis is evaluated. The whole animal was exposed for 15 and 30 min to MF intensities ranging from 200 to 1,000 microT. The changes in the cellular shape of immunocytes, expressed as shape factor (SF), were studied at different times after addition of the chemotacting substance N-formyl-Meth-Leu-Phe (fMLP). Results show that MFs provoke differing delays in fMLP-induced cellular shape changes: 200 microT are ineffective, while levels from 300 microT upwards cause a significant increase in immunocyte SF values compared to controls. Reactivation of the cells is possible up to an intensity of 600 microT. The use of PCO 400, an opener of ATP-sensitive K+ channels, shows that potassium channels are involved in the effect of MFs on M. galloprovincialis immunocytes.  相似文献   

20.
Chronic exposure to magnetic fields (MFs) has a diverse range of effects on biological systems but definitive molecular mechanisms of the interaction remain largely unknown. One of the most frequently reported effects of MF exposure is an elevated concentration of intracellular Ca2+ through disputed pathways. Other prominent effects include increased oxidative stress and upregulation of neural markers through EGFR activation in stem cells. Further characterization of cascades triggered by MF exposure is hindered by the phenotype diversity of biological models used in the literature. In an attempt to reveal more mechanistic data in this field, we combined the most commonly used biological model and MF parameters with the most commonly reported effects of MFs.Based on clues from the pathways previously defined as sensitive to MFs (EGFR and Zn2+-binding enzymes), the roles of different types of channels (voltage gated Ca2+ channels, NMDA receptors, TRP channels) were inquired in the effects of 50 Hz MFs on bone marrow-derived mesenchymal stem cells. We report that, an influx of Zn2+ accompanies MF-induced Ca2+ intake, which is only attenuated by the broad-range inhibitor of TRP channels and store-operated Ca2+ entry (SOCE), 2-Aminoethoxydiphenyl borate (2-APB) among other blockers (memantine, nifedipine, ethosuximide and gabapentin). Interestingly, cation influx completely disappears when intracellular Zn2+ is chelated. Our results rule out voltage gated Ca2+ channels as a gateway to MF-induced Ca2+ intake and suggest Zn2+-related channels as a new focus in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号