首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K Bundo-Morita  S Gibson  J Lenard 《Biochemistry》1987,26(19):6223-6227
The target sizes associated with fusion and hemolysis carried out by Sendai virus envelope glycoproteins were determined by radiation inactivation analysis. The target size for influenza virus mediated fusion with erythrocyte ghosts at pH 5.0 was also determined for comparison; a value of 57 +/- 15 kDa was found, indistinguishable from that reported previously for influenza-mediated fusion of cardiolipin liposomes [Gibson, S., Jung, C. Y., Takahashi, M., & Lenard, J. (1986) Biochemistry 25, 6264-6268]. Sendai-mediated fusion with erythrocyte ghosts at pH 7.0 was likewise inactivated exponentially with increasing radiation dose, yielding a target size of 60 +/- 6 kDa, a value consistent with the molecular weight of a single F-protein molecule. The inactivation curve for Sendai-mediated fusion with cardiolipin liposomes at pH 7.0, however, was more complex. Assuming a "multiple target-single hit" model, the target consisted of 2-3 units of ca. 60 kDa each. A similar target was seen if the liposomes contained 10% gangliosides or if the reaction was measured at pH 5.0, suggesting that fusion occurred by the same mechanism at high and low pH. A target size of 261 +/- 48 kDa was found for Sendai-induced hemolysis, in contrast with influenza, which had a more complex target size for this activity (Gibson et al., 1986). Sendai virus fusion thus occurs by different mechanisms depending upon the nature of the target membrane, since it is mediated by different functional units. Hemolysis is mediated by a functional unit different from that associated with erythrocyte ghost fusion or with cardiolipin liposome fusion.  相似文献   

2.
G van Meer  J Davoust  K Simons 《Biochemistry》1985,24(14):3593-3602
Unilamellar liposomes can be fused at low pH with the plasma membrane of cells that express the hemagglutinin glycoprotein of influenza virus on their surface [van Meer, G., & Simons, K. (1983) J. Cell Biol. 97, 1365-1374]. Here, we have resolved this fusion process into two kinetically distinct steps. The first and more rapid step converts the bound liposome to a form that can no longer be released by neuraminidase. The second step is the actual membrane fusion as measured by the loss of resonance energy transfer between two liposomal fluorescent phospholipids, N-(7-nitro-2,1,3-benzoxadiazol-4-yl)dioleoylphosphatidylethanolami ne (N-NBD-PE) and N-(lissamine rhodamine B sulfonyl)dioleoylphosphatidylethanolamine (N-Rh-PE). In contrast to the first step, the rate of the second one was highly dependent on the liposomal lipid composition and the cell type used. The replacement of 50% of the phosphatidylcholine (PC) in egg PC-cholesterol liposomes by unsaturated phosphatidylethanolamine (PE) species increased the rate of fusion at least 2-fold. Of the PE-containing liposomes that were associated with Madin-Darby canine kidney (MDCK) cells after 30 s of fusion, 80% had actually fused with the plasma membrane. Fringe pattern fluorescence photobleaching experiments showed that after fusion a fraction of the cell-associated N-Rh-PE diffused laterally in the plasma membrane. Without fusion, the N-Rh-PE was completely immobile. Under optimal conditions, the mobile fractions were 65% on MDCK cells and 78% on baby hamster kidney cells. The mobility was acquired simultaneously with the dilution of the fluorescent phospholipids as measured from the loss of resonance energy transfer. The mobile fraction of N-Rh-PE on the cell surface can therefore be used as a second independent measure of actual membrane fusion. Finally, we observed that upon fusion up to 80% of the nonexchangeable liposome markers cholesterol [14C]oleate and glycerol tri[14C]oleate became accessible to cellular hydrolases. The results showed that this hydrolysis assay can also be used to monitor the second step of the fusion process.  相似文献   

3.
Fusion between influenza virus and target membranes is mediated by the viral glycoprotein hemagglutinin (HA). Replacement of the transmembrane domain of HA with a glycosylphosphatidylinositol (GPI) membrane anchor allows lipid mixing but not the establishment of cytoplasmic continuity. This observation led to the proposal that the fusion mechanism passes through an intermediate stage corresponding to hemifusion between outer monolayers. We have used confocal fluorescence microscopy to study the movement of probes for specific bilayer leaflets of erythrocytes fusing with HA-expressing cells. N-Rh-PE and NBD-PC were used for specific labeling of the outer and inner membrane leaflet, respectively. In the case of GPI-HA-induced fusion, different behaviors of lipid transfer were observed, which include 1) exclusive movement of N-Rh-PE (hemifusion), 2) preferential movement of N-Rh-PE relative to NBD-PC, and 3) equal movement of both lipid analogs. The relative population of these intermediate states was dependent on the time after application of a low pH trigger for fusion. At early time points, hemifusion was more common and full redistribution of both bilayers was rare, whereas later full redistribution of both probes was frequently observed. In contrast to wild-type HA, the latter was not accompanied by mixing of the cytoplasmic marker Lucifer Yellow. We conclude that 1) the GPI-HA-mediated hemifusion intermediate is meta-stable and 2) expansion of an aqueous fusion pore requires the transmembrane and/or cytoplasmic domain of HA.  相似文献   

4.
Frozen samples of membrane-bound pig kidney Na,K-ATPase were subjected to target size analysis by radiation inactivation with 10-MeV electrons at -15 degrees C. The various properties investigated decreased monoexponentially with radiation dose, and the decay constants, gamma, were independent of the presence of other proteins and of sucrose concentrations above 0.25 M. The temperature factor was the same as described by others. Irradiation of four proteins of known molecular mass, m, showed that gamma for protein integrity was proportional to m with a proportionality factor about 20% higher than that conventionally used. By this standard curve, glucose-6-phosphate dehydrogenase activity used as internal standard gave a radiation inactivation size of 110 +/- 5 kDa, very close to m = 104-108 kDa for the dimer, as expected. For Na+/K+-transporting ATPase the following target sizes and radiation inactivation size values were very close to m = 112 kDa for the alpha-peptide: peptide integrity of alpha, 115 kDa; unmodified binding sites for ATP and vanadate, 108 kDa; K+-activated p-nitrophenylphosphatase activity, 106 kDa. There was thus no sign of dimerization of the alpha-peptide or involvement of the beta-peptide. In contrast, optimal Na+/K+-transporting ATPase activity had a radiation inactivation size = 189 +/- 7 kDa, and total nucleotide binding capacity corresponded to 72 +/- 3 kDa. These latter results will be extended and discussed in a forthcoming paper.  相似文献   

5.
Basolateral membrane vesicles made from rabbit kidney proximal tubules were frozen and irradiated with a high energy electron beam and the effects of irradiation on Na,K-ATPase activity, p-aminohippurate (PAH) transport, the membrane diffusion barrier and vesicle volume were measured. The vesicle volume and diffusion barrier were not significantly changed by radiation exposure. Na,K-ATPase activity was inactivated as a simple exponential function of radiation dose. Target size analysis of the data yielded a molecular size of 267 +/- 17 kDa, consistent with its existence as a (alpha beta)2 dimer. The carrier-mediated PAH uptake by basolateral membrane vesicles was also inactivated as a function of radiation dose. A target molecular size of 74 +/- 16 kDa was calculated for the PAH transport system. This study is the first measurement of the functional size of the organic acid transport system based directly on flux measurements.  相似文献   

6.
Radiation inactivation analysis of liver pieces yielded a target size of 210 kDa for hepatic 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase [S)-mevalonate:NADP+ oxidoreductase (CoA-acylating), EC 1.1.1.34) from rats fed a normal diet. Feeding a diet containing mevinolin and colestipol, which causes a marked increase in enzyme activity, resulted in a reduction of the target size to 120 kDa. These results are consistent with those obtained by radiation inactivation and immunoblotting analysis of isolated microsomes and suggest that the increase in HMG-CoA reductase activity caused by these dietary agents is accompanied by a change from a dimer to a monomer form of the enzyme.  相似文献   

7.
The glutathione S-transferases are a family of dimeric enzymes. Three isozymes from the alpha family, termed YaYa, YaYc, and YcYc, and three from the mu family, termed Yb1Yb1, Yb1Yb2, and Yb2Yb2, were purified from rat liver. Binding studies were performed by equilibrium dialysis using a radiolabeled product, S(-)[14C](dinitrophenyl)glutathione. Each isozyme contained two independent binding sites which had equal affinity for the ligand. The presence of two independent active sites per enzyme dimer suggests that each subunit contains a complete active site. This conclusion was examined further using radiation inactivation which also allowed for assessment of the importance of subunit interactions in catalytic activity. The activity target size of YaYa (47 kDa) was significantly larger than the protein monomer target size (31 kDa); similarly the activity target size of YaYc was that of the dimer (54 kDa). In contrast, the activity target sizes of Yb1Yb1 and Yb2Yb2 were the same, being 35 and 29 kDa, respectively, and the protein monomer target size of Yb1Yb1 also was similar, being 32 kDa. These data indicate that interactions between subunits are critical for the maintenance of enzymatic activity of alpha class enzymes whereas each subunit of the two mu class proteins is capable of independent catalytic activity.  相似文献   

8.
The homotrimeric spike glycoprotein hemagglutinin (HA) of influenza virus undergoes a low pH-mediated conformational change which mediates the fusion of the viral envelope with the target membrane. Previous approaches predict that the interplay of electrostatic interactions between and within HA subunits, HA 1 and HA2, are essential for the metastability of the HA ectodomain. Here, we show that suspension media of low ionic concentration promote fusion of fluorescent labelled influenza virus X31 with erythrocyte ghosts and with ganglioside containing liposomes. By measuring the low pH mediated inactivation of the fusion competence of HA and the Proteinase K sensitivity of low pH incubated HA we show that the conformational change is promoted by low ionic concentration. We surmise that electrostatic attraction within the HA ectodomain is weakened by lowering the ionic concentration facilitating the conformational change at low pH. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   

9.
The structure of the UDP-glucuronyltransferases in microsomes from guinea pig and rat liver was examined in situ by radiation inactivation analysis. The p-nitrophenol conjugating activity of guinea pig microsomes increased at lower doses of radiation; at higher doses (greater than or equal to 36 megarads), activity showed a first order decline yielding a target size of 71 +/- 9 kDa. Treating microsomes with Triton X-100 eliminated the activation seen at lower doses of radiation and yielded a simple exponential decrease in activity which gave a larger target size (95 +/- 18 kDa). A monoexponential decrease in activity was seen in sonicated microsomes, at greater than or equal to 36 megarads. The same response was obtained when the reaction was assayed in the reverse direction. The estrone conjugating activity of guinea pig microsomes was similarly activated at lower doses of radiation and declined at higher doses (greater than or equal to 36 megarads), with a target size of 57 +/- 11 kDa. Allosteric activation of the enzyme by UDP-N-acetylglucosamine was eliminated by lower doses of radiation. Thus, activation of the enzyme by radiation, detergent, sonication, and UDP-N-acetylglucosamine appear to be interdependent. These activations are postulated to be due to the existence of the enzyme in an oligomeric form which can be dissociated into monomers with higher activity. The same biphasic activation-inactivation curves were obtained for p-nitrophenol conjugation in rat liver microsomes. The target sizes were 54 +/- 8 kDa (p-nitrophenol in the forward direction) and 66 +/- 10 kDa (p-nitrophenol in the reverse direction). Thus, the enzyme appears to be smaller in rat liver as compared with guinea pig liver. Lithocholate glucuronidating activity in rat liver microsomes (at greater than 36 megarads) gave a target size of 74 +/- 1 kDa.  相似文献   

10.
The data for the pH dependence of lipid mixing between influenza virus (A/PR/8/34 strain) and fluorescently labeled liposomes containing gangliosides has been analyzed using a comprehensive mass action kinetic model for hemaglutinin (HA)-mediated fusion. Quantitative results obtained about the architecture of HA-mediated membrane fusion site from this analysis are in agreement with the previously reported results from analyses of data for HA-expressing cells fusing with various target membranes. Of the eight or more HAs forming a fusogenic aggregate, only two have to undergo the "essential" conformational change needed to initiate fusion. The mass action kinetic model has been extended to allow the analysis of the pKa for HA activation and pKi for HA inactivation. Inactivation and activation of HA following protonation were investigated for various experimental systems involving different strains of HA (A/PR/8/34, X:31, A/Japan). We find that the pKa for the final protonation site on each monomer of the trimer molecule is 5.6 to 5.7, irrespective of the strain. We also find that the pKi for the PR/8 strain is 4.8 to 4.9. The inactivation rate constants for HA, measured from experiments done with PR/8 virions fusing with liposomes and X:31 HA-expressing cells fusing with red blood cells, were both found to be of the order of 10(-4) s(-1). This number appears to be the minimal rate for HA's essential conformational change at low HA surface density. At high HA surface densities, we find evidence for cooperativity in the conformational change, as suggested by other studies.  相似文献   

11.
Hyaluronan (HA), a linear polysaccharide composed of N-acetylglucosamine-glucuronic acid repeats, is found in the extracellular matrix of vertebrate tissues as well as the capsule of several pathogenic bacteria. The HA synthases (HASs) are dual-action glycosyltransferases that catalyze the addition of two different sugars from UDP-linked precursors to the growing HA chain. The prototypical vertebrate hyaluronan synthase, xlHAS1 (or DG42) from Xenopus laevis, is a 588-residue membrane protein. Recently, the streptococcal enzyme was found to function as a monomer of protein with approximately 16 lipid molecules. The vertebrate enzymes are larger than the streptococcal enzymes; based on the vertebrate HAS deduced amino acid sequence, two additional membrane-associated regions at the carboxyl terminus are predicted. We have utilized radiation inactivation to measure the target size of yeast-derived recombinant xlHAS1. The target size of HAS activity was confirmed using two internal standards. First, samples were spiked with glucose-6-phosphate dehydrogenase, an enzyme of known molecular weight. Second, parallel samples of native xlHAS1 and a xlHAS1-green fluorescent protein fusion (833 residues) were compared; substantial confidence was gained by using this novel internal standard. Our test also corroborated the basic tenets of radiation inactivation theory. We found that the vertebrate HAS protein functions catalytically as a monomer.  相似文献   

12.
We investigated the potential role of scavenger receptor B-I (SR-BI) in the selective removal of liposomal markers from blood by hepatocytes. Liposomes were labeled with [(3)H]cholesteryloleyl-ether ([(3)H]COE), 1,2-di[1-(14)C]palmitoyl-phosphatidylcholine ([(14)C]PC), and N-(lissamine rhodamine-B sulfonyl)-phosphatidylethanolamine (N-Rh-PE). The radiolabels were eliminated at identical rates from plasma, while N-Rh-PE was cleared twice as fast. Involvement of SR-BI in the selective removal of N-Rh-PE from liposomes was studied in transfected Chinese hamster ovary cells over-expressing SR-BI. Uptake of N-Rh-PE from liposomes containing phosphatidylserine was higher than [(3)H]COE, and was further enhanced by apolipoprotein A-I, confirming involvement of SR-BI in the selective uptake of liposomal N-Rh-PE by cells.  相似文献   

13.
Target analysis studies of red cell water and urea transport   总被引:1,自引:0,他引:1  
Radiation inactivation was used to determine the nature and molecular weight of water and urea transporters in the human red cell. Red cells were frozen to -50 degrees C in a cryoprotectant solution, irradiated with 1.5 MeV electrons, thawed, washed and assayed for osmotic water and urea permeability by stopped-flow light scattering. The freezing and thawing process did not affect the rates of water or urea transport or the inhibitory potency of p-chloromercuribenzenesulfonate (pCMBS) on water transport and of phloretin on urea transport. Red cell urea transport inactivated with radiation (0-4 Mrad) with a single target size of 469 +/- 36 kDa. 40 microM phloretin inhibited urea flux by approx. 50% at each radiation dose, indicating that urea transporters surviving radiation were inhibitable. Water transport did not inactivate with radiation; however, the inhibitory potency of 2.5 mM pCMBS decreased from 86 +/- 1% to 4 +/- 9% over a 0-2 Mrad dose range. These studies suggest that red cell water transport either required one or more low-molecular-weight proteins, or is lipid-mediated, and that the pCMBS-binding site which regulates water flow inactivates with radiation. These results also suggest that red cell urea transport is mediated by a specific, high-molecular-weight protein. These results do not support the hypothesis that a band 3 dimer (190 kDa) mediates red cell osmotic water and urea transport.  相似文献   

14.
Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine with important roles in inflammation, wound repair, and cancer. Cells secrete TGF-beta as a latent protein complex, consisting of disulfide-bonded homodimers of growth factor and latency-associated propeptide. Latency regulates extracellular TGF-beta action by controlling the levels of active growth factor available. We report here that active and latent TGF-beta were inactivated in vitro by reduction of the growth factor dimer under physiological conditions. We also demonstrate that the latency-associated propeptide has chaperone-like activity and partially protects TGF-beta from inactivation. TGF-beta inactivation occurred upon incubation with the physiological redox agents, cysteine, homocysteine, and reduced glutathione. Inactivation was temperature- and dose-dependent. While inactivation by physiological concentrations of redox agents was partial at 37 degrees C, active and latent TGF-beta were completely inactivated by raising the temperature in the presence of the redox agents. The mechanism of TGF-beta inactivation involved the generation of biologically inactive growth factor monomer and required the presence of free thiol groups, since thiol blockers protected TGF-beta from reduction. We conclude that non-enzymatic redox reactions may be involved in the regulation of extracellular TGF-beta activity. This might be of particular relevance in wound repair (e.g. in burns), as a mechanism protecting from excess TGF-beta activity, as well as in conditions involving redox dysregulation, such as reperfusion injury of the heart, Alzheimer's disease, and cancer.  相似文献   

15.
Phospholipid liposomes composed of phosphatidylcholine (PC) and cholesterol (chol), bearing the sialoglycoprotein glycophorin (GP), are able to effectively bind Sendai virus particles, but not to be lysed by them. Incorporation of gangliosides (gangl) into the above phospholipid vesicles (yielding liposomes composed of PC/chol/gangl/GP), although not increasing their ability to interact with Sendai virions, rendered them susceptible to the viral lytic activity. This was inferred from the ability of the virus to induce release of carboxyfluorescein (CF) upon interaction at 37 degrees C with liposomes composed of PC/chol/gangl/GP. Lysis of liposomes required the presence of the two viral envelope glycoproteins, namely the hemagglutinin/neuraminidase (HN) and the fusion (F) polypeptides, and was inhibited by phenylmethyl sulfonylfluoride (PMSF), dithiothreitol (DTT) and trypsin, showing that virus-induced lysis of PC/chol/gangl/GP liposomes reflects the fusogenic activity of the virus. Incubation of Sendai virus particles with liposomes containing the acidic phospholipid dicetylphosphate (DCP) but lacking sialic acid containing receptors, also resulted in release of the liposome content. Lysis of these liposomes was due to the activity of the viral HN glycoprotein, therefore not reflecting the natural viral fusogenic activity. Fluorescence dequenching studies, using fluorescently labeled reconstituted Sendai virus envelopes (RSVE), have shown that the viral envelopes are able to fuse with neutral, almost to the same extent, as with negatively charged liposomes. However, fusion with negatively charged liposomes, as opposed to fusion with neutral liposomes, was mediated by the viral HN glycoprotein and not by the viral fusion polypeptide.  相似文献   

16.
To determine the radiation sensitivity of galactose oxidase, a 68 kDa monomeric enzyme containing a mononuclear copper ion coordinated with an unusually stable cysteinyl‐tyrosine (Cys‐Tyr) protein free radical. Both active enzyme and reversibly rendered inactive enzyme were irradiated in the frozen state with high‐energy electrons. Surviving polypeptides and surviving enzyme activity were analyzed by radiation target theory giving the radiation sensitive mass for each property. In both active and inactive forms, protein monomer integrity was lost with a single radiation interaction anywhere in the polypeptide, but enzymatic activity was more resistant, yielding target sizes considerably smaller than that of the monomer. These results suggest that the structure of galactose oxidase must make its catalytic activity unusually robust, permitting the enzymatic properties to survive in molecules following cleavage of the polymer chain. Radiation target size for loss of monomers yielded the mass of monomers indicating a polypeptide chain cleavage after a radiation interaction anywhere in the monomer. Loss of enzymatic activity yielded a much smaller mass indicating a robust structure in which catalytic activity could be expressed in cleaved polypeptides.  相似文献   

17.
The influenza virus enters target cells via the action of hemagglutinin proteins (HA) inserted into the viral envelope. HA promotes membrane fusion between the viral envelope and endosomal membrane at low pH, following viral binding to sialic acid-containing receptors on target cells, and internalization by endocytosis. The effect of target membrane sialic acid residues on the fusion activity of the influenza virus towards model membranes was evaluated by both reduction, (i.e. treating somatic cells with neuraminidase- (NA-) prior to virus-cell interactions), and by supplementing liposomes with the gangliosides GD1a and GT1b. The harshness of the neuraminidase pretreatment of target cells required to affect virus-induced membrane merging was found to greatly depend on the assay conditions, i.e. whether a virus-cell prebinding step at neutral pH was included prior to acidification. Minor concentrations of neuraminidase were found to greatly reduce virus fusion, but only in the absence of a prebinding step; they had no effect if this step was included. Although membrane merging was greatly reduced following cell neuraminidase pretreatment, virus-cell association at low pH was not disturbed proportionately. This probably reflects unspecific virus-cell binding under these conditions, probably of inactivated or aggregated virus particles, which does not translate into membrane merging. This seems to suggest both that target membrane sialic acid can protect the virus from losing its activity before triggering membrane merging, and that the importance of this interaction is not merely to ensure virus-target proximity. With liposomes, we found that both types of ganglioside supported efficient fusion, with GD1a promoting a slightly faster initial rate. However, in this case, virus-target proximity closely mirrored fusion activity, thus pointing to differential specificity between targets routinely used to assay influenza virus fusion activity.  相似文献   

18.
Kelly K Lee 《The EMBO journal》2010,29(7):1299-1311
Enveloped viruses use specialized protein machinery to fuse the viral membrane with that of the host cell during cell invasion. In influenza virus, hundreds of copies of the haemagglutinin (HA) fusion glycoprotein project from the virus surface. Despite intensive study of HA and its fusion activity, the protein's modus operandi in manipulating viral and target membranes to catalyse their fusion is poorly understood. Here, the three‐dimensional architecture of influenza virus–liposome complexes at pH 5.5 was investigated by electron cryo‐tomography. Tomographic reconstructions show that early stages of membrane remodeling take place in a target membrane‐centric manner, progressing from punctate dimples, to the formation of a pinched liposomal funnel that may impinge on the apparently unperturbed viral envelope. The results suggest that the M1 matrix layer serves as an endoskeleton for the virus and a foundation for HA during membrane fusion. Fluorescence spectroscopy monitoring fusion between liposomes and virions shows that leakage of liposome contents takes place more rapidly than lipid mixing at pH 5.5. The relation of ‘leaky’ fusion to the observed prefusion structures is discussed.  相似文献   

19.
Membrane vesicles containing the Sendai virus hemagglutinin/neuraminidase (HN) glycoprotein were able to induce carboxyfluorescein (CF) release from loaded phosphatidylserine (PS) but not loaded phosphatidylcholine (PC) liposomes. Similarly, fluorescence dequenching was observed only when HN vesicles, bearing self-quenched N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine (N-NBD-PE), were incubated with PS but not PC liposomes. Thus, fusion between Sendai virus HN glycoprotein vesicles and the negatively charged PS liposomes is suggested. Induction of CF release and fluorescence dequenching were not observed when Pronase-treated HN vesicles were incubated with the PS liposomes. On the other hand, the fusogenic activity of the HN vesicles was not inhibited by treatment with dithiothreitol (DTT) or phenylmethanesulfonyl fluoride (PMSF), both of which are known to inhibit the Sendai virus fusogenic activity. Fusion was highly dependent on the pH of the medium, being maximal after an incubation of 60-90 s at pH 4.0. Electron microscopy studies showed that incubation at pH 4.0 of the HN vesicles with PS liposomes, both of which are of an average diameter of 150 nm, resulted in the formation of large unilamellar vesicles, the average diameter of which reached 450 nm. The relevance of these observations to the mechanism of liposome-membrane and virus-membrane fusion is discussed.  相似文献   

20.
Addition of the quaternary ammonium detergent [[[(1,1,3,3-tetramethylbutyl)cresoxy]ethoxy]ethyl] dimethylbenzylammonium hydroxide (DEBDA[OH]) and the fluorescent probes N-(7-nitro-2-1,3-benzoxadiazol-4-yl)phosphatidylethanolamine and N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-NBD-PE and N-Rh-PE, respectively) to liposomes composed of phosphatidylcholine (PC) and cholesterol (chol) resulted in the formation of fluorescently labeled liposomes bearing DEBDA[OH]. Incubation of the anionic polymer poly(aspartic acid) (PASP) with such liposomes resulted in strong agglutination, indicating an association between the negatively charged PASP and the positively charged liposome-associated DEBDA[OH]. Addition of PASP to a mixture of fluorescently labeled and nonlabeled liposomes, both carrying DEBDA[OH], resulted in a significant increase in the extent of fluorescence, namely, fluorescence dequenching. The degree of the fluorescence dequenching was dependent upon the ratio between the nonfluorescent and the fluorescent liposomes, upon the temperature of incubation, and upon the amount of DEBDA[OH] which was associated with the liposomes. Electron microscopic observations revealed that large liposomes were formed upon incubation of liposomes bearing DEBDA[OH] with PASP. The results of the present work strongly indicate that the fluorescence dequenching observed is due to a process of PASP-induced liposome-liposome fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号