首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Summary Tabulated information on the colonization of roots of barley, cabbage and dwarf bean by fungi during the first 10 days of root development is given. These data, obtained by isolation and direct observation studies, are discussed in relation to previous observations on the association of fungi with the roots of healthy crop plants.The results indicate that initial root colonization may be by any of a wide range of soil fungi, but that this mixed population rapidly gives way to a stable and typical root-surface mycoflora (dominated by such fungi asFusarium spp.,Cylindrocarpon radicicola, Gliocladium spp., andPenicillium spp.  相似文献   

2.
The survival, development and mycorrhizal efficiency of a selected strain of Laccaria bicolor along with naturally occurring ectomycorrhizal fungi in a young plantation of Douglas fir was examined. Symbionts were identified and their respective colonization abilities were determined. Eight species of symbiotic fungi, which may have originated in adjacent coniferous forests, were observed on the root systems. Mycorrhizal diversity differed between inoculated (5 taxa) and control (8 taxa) seedlings. Ectomycorrhizal fungi which occurred naturally in the nursery on control seedlings (Thelephora terrestris and Suillus sp.) did not survive after outplanting. Both inoculated and naturally occurring Laccaria species, as well as Cenococcum geophilum, survived on the old roots and colonized the newly formed roots, limiting the colonization by other naturally occurring fungi. Other fungi, such as Paxillus involutus, Scleroderma citrinum and Hebeloma sp. preferentially colonized the old roots near the seedling's collar. Russulaceae were found mainly in the middle section of the root system. Mycorrhizal colonization by Laccaria species on inoculated seedlings (54%) was significantly greater than on controls (13%) which were consequently dominated by the native fungi. Significant differences (up to 239%) were found in the growth of inoculated seedlings, especially in root and shoot weight, which developed mainly during the second year after outplanting. Seedling growth varied with the species of mycorrhizae and with the degree of root colonization. Competitiveness and effectiveness of the introduced strain on improving growth performances of seedlings are discussed.  相似文献   

3.
Obase K  Tamai Y  Yajima T  Miyamoto T 《Mycorrhiza》2007,17(3):209-215
We investigated the association between ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) fungi and pioneer woody plant species in areas devastated by the eruption of Mt. Usu, Japan, in 2000. We observed eight woody plant species at the research site, most of which were associated with ECM and/or AM fungi. In particular, dominant woody plant species Populus maximowiczii, Salix hultenii var. angustifolia and Salix sachalinensis were consistently associated with ECM fungi and erratically associated with AM fungi. We found one to six morphotypes in the roots of each ECM host and, on average, two in the roots of each seedling, indicating low ECM fungal diversity. ECM colonization ranged from 17 to 42% of root tips. Using morphotyping and molecular analyses, 15 ECM fungi were identified. ECM fungi differed greatly between hosts. However, Laccaria amethystea, Hebeloma mesophaeum, Thelephora terrestris and other Thelephoraceae had high relative colonization, constituting the majority of the ECM colonization in the roots of each plant species. These ECM fungi may be important for the establishment of pioneer woody plant species and further revegetation at Mt. Usu volcano.  相似文献   

4.
We investigated the occurrence of arbuscular mycorrhizal fungi in the roots of Isoëtes lacustris and I. echinospora. These submerged lycopsids are the only macrophyte species inhabiting the bottom of two acidified glacial lakes in the Czech Republic. Arbuscular mycorrhizal (AM) fungi were detected in the roots of both species but the percentage of root colonization was both low and variable. Nevertheless, planting Littorella uniflora in the sediments from Isoëtes rhizosphere revealed high levels of viable AM propagules in both lakes. While AM colonization of Isoëtes roots did not exceed 25%, the average colonization of Littorella roots amounted to more than 80%. Although colonization of quillwort roots by AM fungi is evident, the taxonomic identity and role of these AM fungi in plant growth remain unclear. In addition to AM fungi, root-colonizing dark septate endophytic fungi were observed in both Isoëtes species.  相似文献   

5.
Li AR  Guan KY 《Mycorrhiza》2007,17(2):103-109
Colonization of mycorrhizal and root endophytic fungi in 14 Pedicularis species from northwest of Yunnan Province, southwest China, was examined. These species included: Pedicularis gracilis Wall., Pedicularis longipes Maxim., Pedicularis axillaris Franch., Pedicularis cephalantha Franch., Pedicularis tenuisecta Franch., Pedicularis tapaoensis Tsoong, Pedicularis likiangensis Franch., Pedicularis dichotoma Bonati, Pedicularis yui Li, Pedicularis rhinanthoides Schrenk, Pedicularis rex C.B. Clarke, Pedicularis longiflora Rudolph., Pedicularis siphonantha Don, and Pedicularis oxycarpa Franch., among which nine are endemic to China (one to Yunnan). Three types of potentially beneficial fungi associated with roots of these species were observed, namely, arbuscular mycorrhizal fungi, ectomycorrhizal fungi, and dark septate endophytic fungi (DSEF), with DSEF as the most common colonizers. An unexpected high colonization level was detected in this hemiparasitic genus. Of the 19 sampling sites examined, 10 gave colonization frequency of above 50% and 6 showed a colonization index of above 50. Heavy colonization suggested a significant ecological role of these fungi and their potential to be applied to successful cultivation of these intractable plants.  相似文献   

6.
Although roots of species in the Pinaceae are usually colonized by ectomycorrhizal (EM) fungi, there are increasing reports of the presence of arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi in these species. The objective of this study was to determine the colonization patterns in seedlings of three Pinus (pine) species (Pinus banksiana, Pinus strobus, Pinus contorta) and Picea glauca x Picea engelmannii (hybrid spruce) grown in soil collected from a disturbed forest site. Seedlings of all three pine species and hybrid spruce became colonized by EM, AM, and DSE fungi. The dominant EM morphotype belonged to the E-strain category; limited colonization by a Tuber sp. was found on roots of Pinus strobus and an unknown morphotype (cf. SuillusRhizopogon group) with thick, cottony white mycelium was present on short roots of all species. The three fungal categories tended to occupy different niches in a single root system. No correlation was found between the percent root colonized by EM and percent colonization by either AM or DSE, although there was a positive correlation between percent root length colonized by AM and DSE. Hyphae and vesicles were the only AM intracellular structures found in roots of all species; arbuscules were not observed in any roots.  相似文献   

7.
The survival and development of two inoculant ectomycorrhizal fungi (Hebeloma westraliense Bough. Tom. and Mal. and Setchelliogaster sp. nov.) on roots of outplanted Eucalyptus globulus Labill. was examined at two expasture field sites in the south-west of Western Australia. Site 1 was a gravelly yellow duplex soil, and Site 2 was a yellow sandy earth. Plants were grown in steamed or unsteamed soil, in root bags designed as field containers for young growing trees. Three, 6 and 12 months after outplanting, plants were removed from these bags and assessed for dry weights of shoots and ectomycorrhizal colonization of roots.The inoculant ectomycorrhizal fungi (identified on the basis of the colour and morphology of their mycorrhizas) survived on roots of E. globulus for at least 12 months after outplanting at both field sites. At Site 1, however, colonization of new fine roots by the inoculant fungi was low (less than 20% of fine root length). Inoculation had no effect on the growth of E. globulus at this site. In contrast, at Site 2 the inoculant ectomycorrhizal fungi colonized up to 30–50% of new fine root length during the first 6 months after outplanting. There was a corresponding growth response to ectomycorrhizal inoculation at this site, with a close relationship (r2=0.82**) between plant growth at 12 months and root colonization at 3 months. Plant growth at 12 months was related less closely with root colonization at 6 or 12 months. Root colonization by resident ectomycorrhizal fungi increased with time at both field sites. At Site 2, this increase appeared to be at the expense of colonization by the inoculant fungi, which was reduced to less than 10% of fine root length at 12 months. Steaming the soil had little effect on colonization by the inoculant ectomycorrhizal fungi at either field site, but decreased colonization by the resident ectomycorrhizal fungi.  相似文献   

8.
The populations of the general microflora (bacteria, actinomycetes and fungi) in the rhizosphere and their corresponding non-rhizosphere soil samples of Ginkgo biloba L. of two age groups (Group A, <25 years-young trees; Group B, >60 years-old trees) growing under a temperate location of Indian Himalayan Region (IHR) have been determined. Observations were also made for the diversity, distribution and colonization of arbuscular mycorrhizal (AM) fungi and occurrence of endophytes in roots of G. biloba. The population of general microflora was found to be higher in the rhizosphere of Group B trees, more clearly reflected in terms of rhizosphere: soil (R:S) ratios. Contrary to this, per cent colonization and spore densities of AM fungi were higher in the rhizosphere of Group A trees as compared to the rhizosphere of Group B. AM fungal colonization was observed mostly in form of loose coils. All the spores detected, belonged to the genus Glomus with five different types. Presence of endophytes (both bacteria and fungi) was observed in the cortical cells of G. biloba roots, more profound in case of Group B trees. Data suggest that, while the species of Glomus dominated the rhizosphere of G. biloba, an inverse correlation exist between the colonization of general microflora and the colonization of AM fungi including endophytes.  相似文献   

9.
We used the aqueous extract fromArtemisia campesttis ssp.caudata to investigate its effects on the colonization of sand dune grass roots by mycorrhizal fungi and seedling growth. The percent colonization decreased with higher extract concentrations, and growth of three grass species was inhibited. Colonization by mycorrhizal fungi was more sensitive to the extract than was seedling growth, and no significant differences in the latter were found between the mycorrhizal and non-mycorrhizal treatments.  相似文献   

10.
To understand arbuscular mycorrhizal (AM) fungi resources and develop AM fungal species in ornamental plants with saline-alkaline tolerances, Iris lactea, which grows in the Songnen saline-alkaline grassland with a high ornamental value, was selected as the experimental material, and the colonization characteristics of its roots and the AM fungal diversity in its rhizosphere were explored. The results of the observations and calculations of mycorrhizae from ten different samples showed that AM fungi colonized the roots of I. lactea and formed Arum-type mycorrhizal structures. There was a significant correlation between soil spore density and pH value, while the colonization rate showed a fluctuating trend with increasing pH values. The observed colonization intensities were of Levels II (1%–10%) or III (11%–50%), and the vesicle abundances were of grades A2 or A3 among different sites. AM fungi produced a large number of mycelia and vesicles in the roots of I. lactea after colonization. Thirty-seven species belonging to 15 genera of AM fungi were isolated from the rhizosphere of I. lactea and identified by morphological identification. Funneliformis and Glomus were the dominant genera, accounting for 21.79% and 20.85% of the total number, respectively. F. mosseae and Rhizophagus intraradices were isolated in all samples with importance values of 58.62 and 51.19, respectively. These results are expected to provide a theoretical basis for the analysis of the salt tolerance mechanism of I. lactea and for the discovery, exploration and further screening of AM fungal resources with salinity tolerances in saline-alkaline soils.  相似文献   

11.
The spread of arbuscular mycorrhizal (AM) fungi from tree to crop roots was examined by molecular and microscopic methods in a glasshouse study. Growth of Calliandra calothyrsus Meissner trees inoculated with isolates of the AM fungi Glomus etunicatum Becker and Gerdemann and Gigaspora albida Schenck and Smith was monitored over an 18-month period. Three successive ‘intercrops’ of beans or maize were sown at 25, 50 and 75 cm distances from the tree and harvested during this period. At each crop harvest, the distribution of tree and crop roots and the spread of the inoculant fungi were determined using traditional microscopic methods and fungal specific primers. Both inoculants greatly improved the growth of the trees and colonization spread to the crops once the trees were 6 months old. However, benefits of inoculation to crop growth were not observed due to increased competition from the larger inoculated trees growing in a restricted soil volume. Of the two inoculant fungi, Glomus etunicatum appeared to be more mobile as it spread more rapidly, formed higher levels of colonization at increasing distances from the tree and was responsible for most of the mycorrhizal cross-contamination. In contrast, colonization of tree and crop roots by Gigaspora albida was higher nearest the tree. This work demonstrated the benefits of mycorrhizal fungus inoculation for tree growth and confirmed that trees and crops share the same AM fungi. Trees may therefore act as reservoirs of mycorrhizal fungi, either inoculant or indigenous, for surrounding crops or other annual vegetation. It was also shown that tree pruning, the normal practice in agroforestry systems, did not reduce mycorrhizal colonization or prevent spread to crops. However, the slow rates of inoculant spread found here suggest that it may take years before inoculants benefit the growth of crops sown several metres from the tree. The work also demonstrated that microscopic quantification of mycorrhizal colonization and the use of molecular probes to identify specific fungi within roots can complement each other effectively. Molecular probes were more sensitive at detecting mycorrhizal fungi than microscopic methods, but did not discriminate between full mycorrhizal structures and traces of hyphae.  相似文献   

12.
Most land plants live symbiotically with arbuscular mycorrhizal fungi. Establishment of this symbiosis requires signals produced by both partners: strigolactones in root exudates stimulate pre‐symbiotic growth of the fungus, which releases lipochito‐oligosaccharides (Myc‐LCOs) that prepare the plant for symbiosis. Here, we have investigated the events downstream of this early signaling in the roots. We report that expression of miR171h, a microRNA that targets NSP2, is up‐regulated in the elongation zone of the root during colonization by Rhizophagus irregularis (formerly Glomus intraradices) and in response to Myc‐LCOs. Fungal colonization was much reduced by over‐expressing miR171h in roots, mimicking the phenotype of nsp2 mutants. Conversely, in plants expressing an NSP2 mRNA resistant to miR171h cleavage, fungal colonization was much increased and extended into the elongation zone of the roots. Finally, phylogenetic analyses revealed that miR171h regulation of NSP2 is probably conserved among mycotrophic plants. Our findings suggest a regulatory mechanism, triggered by Myc‐LCOs, that prevents over‐colonization of roots by arbuscular mycorrhizal fungi by a mechanism involving miRNA‐mediated negative regulation of NSP2.  相似文献   

13.
Associations between plants and arbuscular mycorrhizal (AM) fungi are widespread and well-studied. Yet little is known about the pattern of association between clonal plants and AM fungi. Here we report on the pattern of mycorrhizal association within the rhizome systems of mayapple, Podophyllum peltatum. Mayapple is a long-lived understory clonal herb that is classified as obligately mycorrhizal. We found that while all mayapple rhizome systems maintained mycorrhizal associations, the percent colonization of roots by AM fungi differed among ramets of different age. The highest concentrations of AM fungi were in the roots of intermediate-aged ramets, while roots beneath the youngest ramet were not colonized. This pattern of ramet age or position-dependent colonization was observed in two separate studies; each conducted in a different year and at a different site. The pattern of AM fungal colonization of mayapple rhizome systems suggests that the mycorrhizal relationship is facultative at the ramet level. This conclusion is reinforced by our observation that augmentation of soil phosphate lowers root colonization by AM fungi. We also found that soil phosphate concentrations were depleted by ca. 1% under the same ramet positions where roots bore the highest AM fungal loads. Three non-exclusive hypotheses are proposed regarding the mechanisms that might cause this developmentally dependent pattern of mycorrhizal association.  相似文献   

14.

Arbuscular mycorrhizal (AM) fungi can form symbiosis with 90% of the vascular plants and play important roles in ecosystem. To realize the AM fungal colonization at different succession stages in saline-alkali land and screen AM fungi species with great functions, roots and soil samples were collected from the three succession stages of Songnen saline-alkali grassland. The soil properties and AM fungal colonization were measured, and the fungus distributed extensively in three stages was annotated by sequencing for AML1/AML2 target, subsequently, maize was selected as the host to verify its colonization. The results showed that the soil properties improved with the succession of saline-alkali grassland. The plants’ communities of the three stages could be colonized by AM fungi, and the colonization rate of Leymus chinensis (the third stage) ranged from 66.67% to 100%, Puccinellia tenuiflora (the second stage) ranged from 50% to 80%, while the Suaeda glauca (the first stage) was only 35%–60%. Glomeraceae sp1 was identified as the dominant AM fungi species which occurred frequently in the succession of saline-alkali land with the isolation frequency, relative abundance, and importance value of 100%, 18.1%, and 59.1%, respectively. The colonization rate of Glomeraceae sp1 in maize ranged from 80% to 87% and similar mycorrhizal characteristics were detected in the roots of P. tenuiflora, S. glauca, and L. chinensis, indicating that Glomeraceae sp1 colonized the samples in the field. The correlation matrix indicated that colonization rate, colonization intensity, and vesicle abundance were closely related to soil conditions most, and they were related significantly to all the soil properties except cellulase activity. Besides, redundancy analysis (RDA) showed that soil properties drove the changes of AM fungal colonization and sporulation. These results will provide theoretical support for realizing the relationship between AM fungal colonization and soil conditions, and also for the exploration of AM fungi species with great functions.

  相似文献   

15.
Clethra barbinervis (Ericales), Cucumis sativus, and Lycopersicon esculentum were grown in soils collected from six different vegetation sites (cedar, cypress, larch, red pine, bamboo grass, and Italian ryegrass), and morphology and colonization preference of arbuscular mycorrhizal (AM) fungi were investigated by microscopic observation and PCR detection. C. barbinervis consistently formed Paris-type AM throughout the sites. C. sativus formed both Arum- and Paris-type AM with high occurrence of Arum-type AM. L. esculentum also formed both Arum- and Paris-type AM but with high occurrence of Paris-type AM. AM diversity within the same plant species was different among the sites. Detected AM diversity from AM spores in different site soils did not consistently reflect AM fungal diversity seen in test plants. Detected families were different, depending on test plants grown even in the same soil. AM fungi belonging to Glomaceae were consistently detected from roots of all test plants throughout the sites. Almost all the families were detected from roots of C. barbinervis and L. esculentum. On the other hand, only two or three families of AM fungi (Archaeosporaceae and/or Paraglomaceae and Glomaceae) but not two other families (Acaulosporaceae and Gigasporaceae) were detected from roots of C. sativus, indicating strong colonization preference of AM fungi to C. sativus among test plants. This study demonstrated that host plant species strongly influenced the colonization preference of AM fungi in the roots.  相似文献   

16.
Maize, genetically modified with the insect toxin genes of Bacillus thuringiensis (Bt), is widely cultivated, yet its impacts on soil organisms are poorly understood. Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with plant roots and may be uniquely sensitive to genetic changes within a plant host. In this field study, the effects of nine different lines of Bt maize and their corresponding non‐Bt parental isolines were evaluated on AMF colonization and community diversity in plant roots. Plants were harvested 60 days after sowing, and data were collected on plant growth and per cent AMF colonization of roots. AMF community composition in roots was assessed using 454 pyrosequencing of the 28S rRNA genes, and spatial variation in mycorrhizal communities within replicated experimental field plots was examined. Growth responses, per cent AMF colonization of roots and AMF community diversity in roots did not differ between Bt and non‐Bt maize, but root and shoot biomass and per cent colonization by arbuscules varied by maize cultivar. Plot identity had the most significant effect on plant growth, AMF colonization and AMF community composition in roots, indicating spatial heterogeneity in the field. Mycorrhizal fungal communities in maize roots were autocorrelated within approximately 1 m, but at greater distances, AMF community composition of roots differed between plants. Our findings indicate that spatial variation and heterogeneity in the field has a greater effect on the structure of AMF communities than host plant cultivar or modification by Bt toxin genes.  相似文献   

17.
Two arbuscular mycorrhizal fungi (Glomus deserticola and Glomus fasciculatum) were entrapped in calcium alginate, alone or in combination with a phosphate-solubilizing yeast (Yarowia lipolytica) and, after storage for 60 days, were inoculated into soil microcosms with tomato as the test plant. The average extent of root colonization by gel-entrapped G. deserticola and G. fasciculatum were 32 ± 5.6 and 24 ± 12.1%, respectively. Improved infective potential and colonization efficiency were observed when Y. lipolytica was co-entrapped with the mycorrhizal fungi. The best value, 49%, of mycorrhizal colonization was in roots of plants inoculated with G. deserticola co-entrapped with Y. lipolytica.  相似文献   

18.
Urcelay C  Acho J  Joffre R 《Mycorrhiza》2011,21(5):323-330
Here, we examined the colonization by fungal root symbionts in the cultivated Andean grain Chenopodium quinoa and in 12 species that dominate plant communities in the Bolivian Altiplano above 3,700 m elevation and explore for the possible relationships between fungal colonization and fine root proportion. The 12 most abundant species in the study area were consistently colonized by AMF and DSE. In contrast, the annual Andean grain C. quinoa showed negligible or absence of mycorrhizal fungi colonizing roots. On the other hand, C. quinoa, Junelia seriphioides and Chersodoma jodopappa were infected to a varying degree by the root pathogen Olpidium sp. We observed no relationship between AMF and DSE colonization and proportion of fine roots in the root system, but instead, the ratio between DSE and AMF colonization (ratio DSE/AMF) negatively related with proportion of fine roots. Our findings support the hypothesis regarding the importance of DSE at high altitudes and suggest a functional relationship between the rate of DSE/AMF and proportion of fine roots. The colonization by the root pathogen Olpidium sp. in C. quinoa deserves further study since this Andean grain is increasingly important for the local economy in these marginal areas.  相似文献   

19.
The growth of licorice in arid areas faces nutritional and environmental stresses. Arbuscular mycorrhizal (AM) fungi have been shown to increase the abilities of plants to develop. However, little is known regarding the role of AM fungi in licorice (Glycyrrhiza uralensis) growth. In the present study, by inoculation with two AM fungi, Glomus mosseae (Nicolson & Gerdemann) Gerd. & Trappe and Glomus veriforme (P. Karst.), the effects on licorice growth in sand were examined by measuring plant height, number of leaves, shoot and root fresh weight, and by analyzing morphological parameters of the root system in sand. The influence of the two microorganisms on the accumulation of mineral nutritions and bioactive components in licorice were also investigated. The results showed that mycorrhyzae were of the Arum-type and their colonization frequency (F %), colonization intensity (M %) and colonization intensity (m %) of AM fungi inoculation were found to be 80.0–84.6%, 49.4–60.0% and 58.4–71.9%, respectively. The inoculation significantly improved plant growth during early and late growth stages in comparison with the control. Moreover, inoculation of G. mosseae and G. versiforme, alone or in combination, improved plant phosphorus acquisition in the leaf over non-inoculation plants. In addition, mycorrhiza formation enhanced the glycyrrhizin concentration in roots, but resulted in a considerable reduction of the root oxidase activity. The results indicate that the inoculation with AM fungi could be a useful approach to increase the licorice pharmic quality.  相似文献   

20.
Early events of mycorrhizal and nonmycorrhizal fungal colonization in newly-emerging roots of mature apple (Malus domestica Borkh) trees were characterized to determine the relationship of these events to fine root growth rate and development. New roots were traced on root windows to measure growth and then collected and stained to quantify microscopically the presence of mycorrhizal and nonmycorrhizal fungal structures. Most new roots were colonized by either mycorrhizal or nonmycorrhizal fungi but none less 25 days old were ever internally colonized by both. Compared to nonmycorrhizal colonization, mycorrhizal colonization was associated with faster growing roots and roots that grew for a longer duration, leading to longer roots. While either type of fungi was observed in roots as soon as 3 days after root emergence, intraradical colonization by mycorrhizal fungi was generally faster (peaking at 7 to 15 days) than that by nonmycorrhizal fungi and often occurred more frequently in younger roots. Only 15 to 35% of the roots had no fungal colonization by 30 days after emergence. This study provides the first detailed examination of the early daily events of mycorrhizal and nonmycorrhizal fungal colonization in newly emerging roots under field conditions. We observed marked discrimination of roots between mycorrhizal and nonmycorrhizal fungi and provide evidence that mycorrhizal fungi may select for faster growing roots and possibly influence the duration of root growth by non-nutritional means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号