首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Rapid climate change may prompt species distribution shifts upward and poleward, but species movement in itself is not sufficient to establish climate causation. Other dynamics, such as disturbance history, may prompt species distribution shifts resembling those expected from rapid climate change. Links between species distributions, regional climate trends and physiological mechanism are needed to convincingly establish climate‐induced species shifts. We examine a 38‐year shift (1974–2012) in an elevation ecotone between two closely related ant species, Aphaenogaster picea and A. rudis. Even though A. picea and A. rudis are closely related with North American distributions that sometimes overlap, they also exhibit local‐ and regional‐scale differences in temperature requirements so that A. rudis is more southerly and inhabits lower elevations whereas A. picea is more northerly and inhabits high elevations. We find considerable movement by the warm‐habitat species upward in elevation between 1974 and 2012 with A. rudis, replacing the cold‐habitat species, A. picea, along the southern edge of the Appalachian Mountain chain in north Georgia, USA. Concomitant with the distribution shifts, regional mean and maximum temperatures remain steady (1974–2012), but minimum temperatures increase. We collect individuals from the study sites and subject them to thermal tolerance testing in a controlled setting and find that maximum and minimum temperature acclimatization occurs along the elevation gradient in both species, but A. rudis consistently becomes physiologically incapacitated at minimum and maximum temperatures 2 °C higher than A. picea. These results indicate that rising minimum temperatures allow A. rudis to move upward in elevation and displace A. picea. Given that Aphaenogaster ants are the dominant woodland seed dispersers in eastern deciduous forests, and that their thermal tolerances drive distinct differences in temperature‐cued synchrony with early blooming plants, these climate responses not only impact ant‐ant interactions, but might have wide implications for ant‐plant interactions.  相似文献   

2.
J. H. Ness  D. F. Morin  I. Giladi 《Oikos》2009,118(12):1793-1804
Ant‐dispersed herbs (myrmecochores) can account for more than one‐third of the stems in the temperate deciduous forests of eastern North America. Because many ant species have been observed collecting the seeds, this interaction is often described as a generalized mutualism. Here, we combine fieldwork and meta‐analyses to test this assumption. Our meta‐analysis demonstrated that Aphaenogaster ants (predominantly A. rudis) collect approximately 74±26% (mean±SD) of the myrmecochorous seeds in eastern North American forests where any encounters with Aphaenogaster were reported, and approximately 61±37% of the seeds in all the eastern forests where any seed collection has been monitored. This remarkable monopolization of seeds is due to at least two factors: 1) Aphaenogaster are significantly more likely to collect the ant‐adapted seeds they discover than are ten other ant genera found in these forests and 2) the densities of Aphaenogaster and myrmecochorous plants are positively correlated at three nested spatial scales (within 20×20 m patches, among patches within a forest, and among 41 forests in the eastern United States). Although other ants can collect seeds, our analyses demonstrate that A. rudis is the primary seed dispersal vector for most of this rich temperate ant‐dispersed flora. The low levels of plant partner diversity for myrmecochores demonstrated here rivals that of tropical ant‐plants (myrmecophytes) and well exceeds that typically observed in temperate plant–frugivore and plant–pollinator mutualisms and myrmecochory in other biomes.  相似文献   

3.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   

4.
Jeon, M.‐J., Song, J.‐H. & Ahn, K.‐J. (2012). Molecular phylogeny of the marine littoral genus Cafius (Coleoptera: Staphylinidae: Staphylininae) and implications for classification. —Zoologica Scripta, 41, 150–159. A phylogenetic analysis of the marine littoral genus Cafius Stephens is presented based on molecular characters. The data set comprised partial mitochondrial COI (910 bp), COII (369 bp), 12S rDNA (351–354 bp), 16S rDNA (505–509 bp) and nearly complete sequences of 18S rDNA (1814–1830 bp) for 37 species. Twenty‐seven Cafius species, representing five of six subgenera, two Remus Holme species, three Phucobius Sharp species, monotypic Thinocafius Steel and four outgroups were included. The sequences were analysed simultaneously by parsimony analysis in Tree Analysis Using New Technology (TNT) with traditional manual alignment, direct optimization (DO) in the program POY4 under a variety of gap costs and partitioned Bayesian analysis for the combined data. The genus Cafius and nearly all of its subgenera were not supported as being monophyletic. Instead, all analyses (parsimony trees, DO tree under equal weighting and Bayesian tree) showed monophyly of Cafius + Phucobius + Remus + Thinocafius (clade Z) and all seven nested clades (A–G). However, the phylogenetic relationships among clades A–G differed among the analyses. The genus Phucobius was recovered as a monophyletic group within Cafius. The genus Remus was not monophyletic but formed a clade with C. rufescens Sharp and C. rufifrons Bierig within Cafius. The genus Thinocafius formed a clade with C. caviceps Broun, C. litoreus (Broun) and C. quadriimpressus (White) within Cafius. We propose new concepts for the genus Cafius and its related genera, and the seven nested clades.  相似文献   

5.
Approaches that integrate multiple independent, yet complimentary, lines of evidence have been effectively utilized to identify and evaluate species diversity. Integrative approaches are especially useful in taxa that exhibit cryptic diversity and are highly morphologically conserved, as well as organisms whose distributions may be sympatric or parapatric. The Incilius coccifer complex in Honduras is comprised of three putative taxa: I. coccifer, I. ibarrai and I. porteri. The taxonomy of the I. coccifer complex has been a source of debate among specialists, with some recognizing three species, while others choose to recognize one widespread taxon. To assess species boundaries and evaluate the taxonomic structure for the I. coccifer complex, we utilized a combination of comprehensive field sampling, molecular phylogenetics and macroecological modelling. Using 58 samples representing all three putative taxa, we generated sequence data from the mitochondrial loci 16S and COI in order to assess genetic diversity and phylogenetic relationships, and tested putative species boundaries using General Mixed Yule‐Coalescent models. To evaluate macroecological differences in the distribution of putative taxa, we utilized maximum entropy modelling and identified areas of suitable and non‐suitable habitat, as well as identifying potential areas of overlap between species habitats. We recovered three clades that broadly correspond to the three named taxa that, while being monophyletic, are separated by relatively small genetic distances. Species distribution models revealed that I. coccifer is macroecologically different than the other two taxa, but that I. ibarrai and I. porteri are highly similar. We uncovered cases of sympatry between pairs of species in at least three localities in Honduras, suggesting the potential for hybridization in these closely related lineages.  相似文献   

6.
Characeae (Charophyceae, Charophyta) contains two tribes with six genera: tribe Chareae with four genera and tribe Nitelleae, which includes Tolypella and Nitella. This paper uses molecular and morphological data to elucidate the phylogeny of Tolypella species in North America. In the most comprehensive taxonomic treatment of Characeae, 16 Tolypella species worldwide were subsumed into two species, T. intricata and T. nidifica, in two sections, Rothia and Tolypella respectively. It was further suggested that Tolypella might be a derived group within Nitella. In this investigation into species diversity and relationships in North American Tolypella, sequence data from the plastid genes atpB, psbC, and rbcL were assembled for a broad range of charophycean and land plant taxa. Molecular data were used in conjunction with morphology to test monophyly of the genus and species within it. Phylogenetic analyses of the sequence data showed that Characeae is monophyletic but that Nitelleae is paraphyletic with Tolypella sister to a monophyletic Nitella + Chareae. The results also supported the monophyly of Tolypella and the sections Rothia and Tolypella. Morphologically defined species were supported as clades with little or no DNA sequence differences. In addition, molecular data revealed several lineages and a new species (T. ramosissima sp. nov.), which suggests greater species diversity in Tolypella than previously recognized.  相似文献   

7.
The present molecular systematic and phylogeographic analysis is based on sequences of cytochrome c oxidase subunit 1 (cox1) (mtDNA) and 28S ribosomal DNA and includes 59 isolates of cestodes of the genus Anoplocephaloides Baer, 1923 s. s. (Cyclophyllidea, Anoplocephalidae) from arvicoline rodents (lemmings and voles) in the Holarctic region. The emphasis is on Anoplocephaloides lemmi (Rausch 1952) parasitizing Lemmus trimucronatus and Lemmus sibiricus in the northern parts of North America and Arctic coast of Siberia, and Anoplocephaloides kontrimavichusi (Rausch 1976) parasitizing Synaptomys borealis in Alaska and British Columbia. The cox1 data, 28S data and their concatenated data all suggest that A. lemmi and A. kontrimavichusi are both non‐monophyletic, each consisting of two separate, well‐defined clades, that is independent species. As an example, the sister group of the clade 1 of A. lemmi, evidently representing the ‘type clade’ of this species, is the clade 1 of A. kontrimavichusi. For A. kontrimavichusi, it is not known which one is the type clade. There is also fairly strong evidence for the non‐monophyly of Anoplocephaloides dentata (Galli‐Valerio, 1905)‐like species, although an earlier phylogeny suggested that this multispecies assemblage may be monophyletic. The results suggest a deep phylogenetic codivergence of Lemmus spp. and A. lemmi, primarily separating the two largely allopatric host and parasite species at the Kolyma River in east Siberia. There are also two allopatric sublineages within each main clade/species of A. lemmi and Lemmus, but the present distributions of the sublineages within the eastern L. trimucronatus and clade 1 of A. lemmi are not concordant. This discrepancy may be most parsimoniously explained by an extensive westward distributional shift of the easternmost parasite subclade. The results further suggest that the clade 1 of A. kontrimavichusi has diverged through a host shift from the precursor of L. trimucronatus to S. borealis.  相似文献   

8.
The mesic four‐striped grass rat Rhabdomys dilectus De Winton, 1897 is distributed in mesic regions of southern and eastern Africa. We carried out a molecular and chromosomal study of the northernmost populations of the species to provide insight into the subspecific boundaries identified within the species and to describe its genetic structure in Eastern Africa. Maximum likelihood, maximum parsimony and neighbour‐joining methods were used to construct phylogenetic relationships among all the haplotypes belonging to the large part of the species range. Times of divergences were estimated assuming a relaxed molecular clock with two calibration points. We identified three well‐supported clades within R. dilectus. One basal clade corresponding to Rhabdomys d. chakae (2n = 48) is found in South Africa. Two additional sister clades corresponding to R. d. dilectus (2n = 48 and 2n = 46) are allopatrically distributed in southern and northern parts of the species range. Genetic divergence among the three clades is relatively high (ranges 4.2–5.7%). A very divergent new karyotype 2n = 38, FNa = 60 was found in two high‐altitude populations on Mt. Meru and Mt. Kilimanjaro. The karyotype differences consist in three Robertsonian fusions and one whole‐arm reciprocal translocation. Interestingly, the mtDNA phylogeny does not match with the diploid numbers. In fact, the 2n = 38 specimens form a monophyletic group within a clade that includes specimens with the 2n = 46 karyotype that appears as paraphyletic. We estimated the new karyotype originated in peripatric condition during the last phases of the Pleistocene. This study confirms the importance of chromosomal analysis in detecting taxonomic units and cryptic diversity in rodents.  相似文献   

9.
Map turtles of the genus Graptemys are native to North America, where a high degree of drainage endemism is believed to have shaped current diversity. With 14 species and one additional subspecies, Graptemys represents the most diverse genus in the family Emydidae. While some Graptemys species are characterized by pronounced morphological differences, previous phylogenetic analyses have failed yet to confirm significant levels of genetic divergence for many taxa. As a consequence, it has been debated whether Graptemys is taxonomically inflated or whether the low genetic divergence observed reflects recent radiations or ancient hybridization. In this study, we analysed three mtDNA blocks (3228 bp) as well as 12 nuclear loci (7844 bp) of 89 specimens covering all species and subspecies of Graptemys. Our analyses of the concatenated mtDNA sequences reveal that the widespread G. geographica constitutes the sister taxon of all other Graptemys species. These correspond to two clades, one comprised of all broad‐headed Graptemys species and another clade containing the narrow‐headed species. Most species of the broad‐headed clade are reciprocally monophyletic, except for G. gibbonsi and G. pearlensis, which are not differentiated. By contrast, in the narrow‐headed clade, many currently recognized species are not monophyletic and divergence is significantly less pronounced. Haplotype networks of phased nuclear loci show low genetic divergence among taxa and many shared haplotypes. Principal component analyses using coded phased nuclear DNA sequences revealed eight distinct clusters within Graptemys that partially conflict with the terminal mtDNA clades. This might be explained by male‐mediated gene flow across drainage basins and female philopatry within drainage basins. Our results support that Graptemys is taxonomically oversplit and needs to be revised.  相似文献   

10.
The true diversity and interspecific limits in the Neotropical endemic avian genus Dendrocolaptes (Furnariidae) remain a highly controversial subject, with previous genus‐wide assessments, based mostly on morphological characters, producing poorly resolved phylogenies. The lack of well‐resolved, robust, and taxonomically densely sampled phylogenies for Dendrocolaptes prevents reliable inferences on the genus’ actual species diversity and evolutionary history. Here, we analyzed 2,741 base pairs of mitochondrial and nuclear genes from 43 specimens belonging to all species and the majority of subspecies described for Dendrocolaptes to evaluate species limits and reconstruct its diversification through time. Our phylogenies recovered a monophyletic Dendrocolaptes, with two main highly supported internal clades corresponding to the D. certhia and D. picumnus species complexes. Also, our analyses supported the monophyly of most Dendrocolaptes species recognized today, except D. picumnus, which was consistently recovered as paraphyletic with respect to D. hoffmannsi. A coalescent‐based test supported a total of 15 different lineages in Dendrocolaptes and indicated that the number of currently accepted species within the genus may be greatly underestimated. Particularly relevant, when combined with previous analyses based on plumage characters, comparative high levels of genetic differentiation and coalescent analyses support the recognition of D. picumnus transfasciatus as a full species that is already under threat. Ancestral area reconstructions suggest that diversification in Dendrocolaptes was centered in lowland Amazonia, with several independent dispersal events leading to differentiation into different adjacent dry and high elevation forest types throughout the Neotropics, mainly during the Middle and Late Pleistocene.  相似文献   

11.
A Bayesian analysis, utilizing a combined data set developed from the small subunit (SSU) and large subunit (LSU) rDNA gene sequences, was used to resolve relationships and clarify generic boundaries among 84 strains of plastid‐containing euglenophytes representing 11 genera. The analysis produced a tree with three major clades: a Phacus and Lepocinlis clade, a Discoplastis clade, and a Euglena, Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade. The majority of the species in the genus Euglena formed a well‐supported clade, but two species formed a separate clade near the base of the tree. A new genus, Discoplastis, was erected to accommodate these taxa, thus making the genus Euglena monophyletic. The analysis also supported the monophyly of Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena, which formed two subclades sister to the Euglena clade. Colacium, Trachelomonas, and Strombomonas, all of which produce copious amounts of mucilage to form loricas or mucilaginous stalks, formed a well‐supported lineage. Our analysis supported retaining Strombomonas and Trachelomonas as separate genera. Monomorphina and Cryptoglena formed two well‐supported clades that were sister to the Colacium, Trachelomonas, and Strombomonas clade. Phacus and Lepocinclis, both of which have numerous small discoid chloroplasts without pyrenoids and lack peristaltic euglenoid movement (metaboly), formed a well‐supported monophyletic lineage that was sister to the larger Euglena through Cryptoglena containing clade. This study demonstrated that increased taxon sampling, multiple genes, and combined data sets provided increased support for internal nodes on the euglenoid phylogenetic tree and resolved relationships among the major genera in the photosynthetic euglenoid lineage.  相似文献   

12.
With 72 species belonging to ten genera, Sarcolaenaceae are the largest and most diverse of Madagascar's endemic plant families. Comprising shrubs and trees, with members found in nearly all of this island nation's biogeographic regions, they are characterised by the presence of a distinctive extra‐floral involucre that is more or less accrescent, partially or completely covering or enveloping the fruit. We present the first molecular phylogenetic study of Sarcolaenaceae, using broad sampling that encompasses the family's taxonomic and morphological diversity, including 46 species representing all ten genera and sequence data from one nuclear marker (ITS) and three plastid regions (psaA‐ORF170, psbAtrnH and rbcL), to reconstruct phylogenetic relationships using Bayesian inference and maximum likelihood. Results confirm the monophyly of Sarcolaenaceae and of eight of the ten genera; the monophyly of Rhodolaena remains ambiguous, although the taxa sampled were recovered in two well supported clades that are coherent in terms of morphology and geography. Only a single species of Eremolaena was available for study. The phylogenetic backbone of Sarcolaenaceae is not fully resolved, making it difficult to identify potential morphological synapomorphies or ecological preferences between and within genera. In the family, two monophyletic groups were, however, found [Pentachlaena + Eremolaena + Perrierodendron (Clade A) and Xyloolaena + Leptolaena + Sarcolaena + Mediusella + Xerochlamys (Clade B)] that are consistent with previous results based on morphology. Expanded species sampling and data from additional, more quickly evolving markers will be needed to produce a fully resolved phylogenetic tree for Sarcolaenaceae, which could then serve as a basis for exploring macroevolutionary patterns and processes in this remarkable family and reconstructing its biogeographic history.  相似文献   

13.
Orthoptera have been used for decades for numerous evolutionary questions but several of its constituent groups, notably crickets, still suffer from a lack of a robust phylogenetic hypothesis. We propose the first phylogenetic hypothesis for the evolution of crickets sensu lato, based on analysis of 205 species, representing 88% of the subfamilies and 71% tribes currently listed in the database Orthoptera Species File (OSF). We reconstructed parsimony, maximum likelihood and Bayesian phylogenies using fragments of 18S, 28SA, 28SD, H3, 12S, 16S, and cytb (~3600 bp). Our results support the monophyly of the cricket clade, and its subdivision into two clades: mole crickets and ant‐loving crickets on the one hand, and all the other crickets on the other (i.e. crickets sensu stricto). Crickets sensu stricto form seven monophyletic clades, which support part of the OSF families, “subfamily groups”, or subfamilies: the mole crickets (OSF Gryllotalpidae), the scaly crickets (OSF Mogoplistidae), and the true crickets (OSF Gryllidae) are recovered as monophyletic. Among the 22 sampled subfamilies, only six are monophyletic: Gryllotalpinae, Trigonidiinae, Pteroplistinae, Euscyrtinae, Oecanthinae, and Phaloriinae. Most of the 37 tribes sampled are para‐ or polyphyletic. We propose the best‐supported clades as backbones for future definitions of familial groups, validating some taxonomic hypotheses proposed in the past. These clades fit variously with the morphological characters used today to identify crickets. Our study emphasizes the utility of a classificatory system that accommodates diagnostic characters and monophyletic units of evolution. Moreover, the phylogenetic hypotheses proposed by the present study open new perspectives for further evolutionary research, especially on acoustic communication and biogeography.  相似文献   

14.
15.
The taxonomic assignment of Prorocentrum species is based on morphological characteristics; however, morphological variability has been found for several taxa isolated from different geographical regions. In this study, we evaluated species boundaries of Prorocentrum hoffmannianum and Prorocentrum belizeanum based on morphological and molecular data. A detailed morphological analysis was done, concentrating on the periflagellar architecture. Molecular analyses were performed on partial Small Sub‐Unit (SSU) rDNA, partial Large Sub‐Unit (LSU) rDNA, complete Internal Transcribed Spacer Regions (ITS1‐5.8S‐ITS2), and partial cytochrome b (cob) sequences. We concatenated the SSU‐ITS‐LSU fragments and constructed a phylogenetic tree using Bayesian Inference (BI) and maximum likelihood (ML) methods. Morphological analyses indicated that the main characters, such as cell size and number of depressions per valve, normally used to distinguish P. hoffmannianum from P. belizeanum, overlapped. No clear differences were found in the periflagellar area architecture. Prorocentrum hoffmannianum and P. belizeanum were a highly supported monophyletic clade separated into three subclades, which broadly corresponded to the sample collection regions. Subtle morphological overlaps found in cell shape, size, and ornamentation lead us to conclude that P. hoffmanianum and P. belizeanum might be considered conspecific. The molecular data analyses did not separate P. hoffmannianum and P. belizeanum into two morphospecies, and thus, we considered them to be the P. hoffmannianum species complex because their clades are separated by their geographic origin. These geographic and genetically distinct clades could be referred to as ribotypes: (A) Belize, (B) Florida‐Cuba, (C1) India, and (C2) Australia.  相似文献   

16.
Here, we present a molecular phylogenetic analysis of the Neotropical genus Pseudopaludicola focusing on species relationships including 11 of the 17 known species of Pseudopaludicola; several samples of Pseudopaludicola are not assigned to any species; and 34 terminal species as an outgroup. The study was based on the analysis of approximately 2.3 kb of the sequence of the mitochondrial 12S rRNA, tRNAval and 16S rRNA genes through maximum parsimony and Bayesian phylogenetic reconstruction approaches. Our results showed that Pseudopaludicola is a well‐supported monophyletic group organized into four major clades and confirmed that the assemblage of species that lack T‐shaped terminal phalanges is paraphyletic with respect to the P. pusilla Group. Chromosomal data mapped on the cladogram showed a direct correlation among the four clades and observed chromosome numbers (2n = 22, 20, 18 and 16) with a progressive reduction in the chromosome number. Overall, our findings suggest that some taxonomic changes are necessary and reinforce the need for a revision of the genus Pseudopaludicola.  相似文献   

17.
The relationships of the hyline tribe Dendropsophini remain poorly studied, with most published analyses dealing with few of the species groups of Dendropsophus. In order to test the monophyly of Dendropsophini, its genera, and the species groups currently recognized in Dendropsophus, we performed a total evidence phylogenetic analysis. The molecular dataset included sequences of three mitochondrial and five nuclear genes from 210 terminals, including 12 outgroup species, the two species of Xenohyla, and 93 of the 108 recognized species of Dendropsophus. The phenomic dataset includes 46 terminals, one per species (34 Dendropsophus, one Xenohyla, and 11 outgroup species). Our results corroborate the monophyly of Dendropsophini and the reciprocal monophyly of Dendropsophus and Xenohyla. Some species groups of Dendropsophus are paraphyletic (the D. microcephalus, D. minimus, and D. parviceps groups, and the D. rubicundulus clade). On the basis of our results, we recognize nine species groups; for three of them (D. leucophyllatus, D. microcephalus, and D. parviceps groups) we recognize some nominal clades to highlight specific morphology or relationships and facilitate species taxonomy. We further discuss the evolution of oviposition site selection, where our results show multiple instances of independent evolution of terrestrial egg clutches during the evolutionary history of Dendropsophus.  相似文献   

18.
Spiny ants (Polyrhachis Smith) are a hyper‐diverse genus of ants distributed throughout the Palaeotropics and the temperate zones of Australia. To investigate the evolution and biogeographic history of the group, we reconstructed their phylogeny and biogeography using molecular data from 209 taxa and seven genes. Our molecular data support the monophyly of Polyrhachis at the generic level and several of the 13 recognized subgenera, but not all are recovered as monophyletic. We found that Campomyrma Wheeler consists of two distinct clades that follow biogeographic affinities, that the boundaries of Hagiomyrma Wheeler are unclear depending on the analysis, that Myrma Billberg might be treated as one or two clades, and that Myrmhopla Forel is not monophyletic, as previously proposed. Our biogeographic ancestral range analyses suggest that the evolution of Polyrhachis originated in South‐East Asia, with an age of the modern crown‐group Polyrhachis of 58 Ma. Spiny ants dispersed out of South‐East Asia to Australia several times, but only once to mainland Africa around 26 Ma.  相似文献   

19.
Within the nematode class Chromadorea, the suborder Tylenchina is an ecologically and morphologically diverse assemblage of nematodes that includes free‐living microbivores, fungivores and various types of plant parasites. A recent nematode classification system based largely on SSU rDNA phylogenetic trees classified suborder Tylenchina to include four infraorders: Panagrolaimomorpha, Cephalobomorpha, Tylenchomorpha and Drilonematomorpha, and phylogenetic relationships among species of these infraorders have not always been robustly supported. In this study, we determined the complete mitochondrial genome sequences of three Tylenchina species (Aphelenchus avenae [Aphelenchidae, Tylenchomorpha], Halicephalobus gingivalis, Panagrellus redivivus [Panagrolaimomorpha]) and the partial genome sequence of Acrobeles complexus (Cephalobomorpha) and used these sequences to infer phylogenetic relationships among representatives of the Tylenchina and other nematodes. Phylogenetic analysis of amino acid sequences for 12 protein‐coding genes of 100 nematode species supports monophyly of: Chromadorea, Spiruromorpha, Oxyuridomorpha, Ascarididae + Toxocaridae + Anisakidae, Meloidogynidae + Pratylenchidae + Heteroderidae and Aphelenchoidea. Bayesian and maximum‐likelihood analyses also show the nested position of Diplogasteromorpha within Rhabditomorpha, and Rhigonematomorpha within Ascaridomorpha. These analyses also show non‐monophyly of: clade III, Ancylostomatidae, Panagrolaimomorpha, Tylenchina and Tylenchomorpha. Reconstructed mitochondrial genome phylogeny also revealed that among two main Tylenchomorpha groups, the monophyletic group representing Aphelenchoidea species was sister to the large clade consisting of Ascaridomorpha, Diplogasteromorpha, Rhabditomorpha and Rhigonematomorpha and some Panagrolaimomorpha species, whereas Tylenchoidea species were sister to the most inclusive assemblage containing all infraordinal groups of Chromadorea, except for P. redivivus (Panagrolaimomorpha) and Acrobeles complexus (Cephalobomorpha). The monophyly of Aphelenchoidea (i.e. sister relationship between Aphelenchidae and Aphelenchoididae) recovered in this study indicates that similarity in certain aspects of pharyngeal structure between these two families appears best explained by common ancestry, rather than convergent evolution.  相似文献   

20.
Schisandraceae are traditionally subdivided in two genera, Schisandra and Kadsura, based on differences in the organisation of the floral receptacle, the carpels, and the presence or absence of a ``pseudostigma'. Recently, phylogenetic analyses utilizing ITS sequence data and morphological data resulted in incongruent tree topologies, with the morphological trees suggesting monophyly of the two genera, whereas ITS trees did not resolve Schisandra and Kadsura as monophyletic clades. In the present paper we study seed morphology and leaf epidermal features of 22 species of Schisandraceae in order to provide additional data for a morphological data matrix. Seed morphological characters are highly homoplastic and do not yield further evidence for monophyly of the two genera. Instead, a number of characters appear to support sister group relationships between taxa within the genera, such as, for instance, for K. coccinea and K. scandens, both of which have large seeds along with a multi-layered mesotesta. Considering leaf epidermal characteristics, species of Kadsura were found to be consistently amphistomatic, whereas species of Schisandra are always hypostomatic. Phylogenetic analysis using the extended data matrix resulted in weakly supported Kadsura and Schisandra clades with five and four synapomorphies indicating monophyly of Kadsura and Schisandra, respectively. Fossils ascribed to Schisandraceae date back to the Late Cretaceous. These are tri-and hexacolpate pollen types displaying a combination of features found in modern Schisandraceae and partly also in Illiciaceae. Leaf remains from this period are poorly preserved and difficult to ascribe to Schisandraceae because of the lack of synapomorphies for the family. In the Early Cainozoic, leaf and seed remains from North America and Europe unambiguously belong to the family. Seeds from the Eocene of North America show some similarities to the modern Schisandra glabra from North America, while fossils from Europe show more similarities to modern Asian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号