首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about the effect of male parental care and behavioural sex‐role reversal on the mating system of birds because genetic markers for species with these characteristics are lacking. We developed primers for nine polymorphic microsatellite loci in pheasant coucals (Centropus phasianinus). Eight of the primers were also polymorphic in African black coucals (Centropus grillii). Pheasant coucals are of particular interest in the study of evolutionary and behavioural ecology, because their sex‐role reversal and extensive male parental care suggests low levels of extra‐pair fertilizations, yet they have large testes indicating sperm competition.  相似文献   

2.
Not all butterflies are innocuous plant‐feeders. A small number of taxa in the family Lycaenidae have graduated from mutualistic partnerships with ants to predatory or parasitic associations. These highly‐specialized life histories, involving butterfly larvae living inside ant colonies, are often associated with rarity and vulnerability to extinction. In the present study, we examined the evolutionary relationships of a poorly‐known group of seven taxa herein referred to as the idmo‐group within the Australian lycaenid genus Ogyris. The idmo‐group has a relictual distribution across southern Australia and includes taxa with highly‐specialized phytophagous and myrmecophagous life histories. A phylogeny based on mitochondrial DNA (cytochrome oxidase I and cytochrome b] and the nuclear DNA locus elongation factor 1α (EF1α), generally agrees with current taxonomy and supports the recent elevation of endangered taxon Ogyris halmaturia to full species status. The transition to myrmecophagy was dated to the mid‐Miocene (approximately 16 Mya), when southern Australia experienced a humid climate and extensive mesic biome. The arid Nullarbor Plain, a major biogeographical feature of central southern Australia, divides the remnants of this mesic biome into south‐eastern and south‐western isolates. Late‐Miocene to Pliocene divergence estimates for polytypic Ogyris species across the Nullarbor were older than estimates made for similarly distributed birds, butterflies, mammals, and reptiles, which mostly date to the Pleistocene. The concept of highly‐specialized life histories as evolutionary dead‐end strategies is well exemplified by the idmo‐group. Data compiled on the known extant subpopulations for idmo‐group taxa show that all of these extraordinary butterflies are scarce and several face imminent threat of extinction. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 473–484.  相似文献   

3.
We provide a taxonomic review of the extinct testudinid Testudo catalaunica, based on published and unpublished material from several Miocene (late Aragonian and early Vallesian) sites of the Vallès‐Penedès Basin (north‐east Iberian Peninsula). We show that Testudo catalaunica irregularis is a junior subjective synonym of T. catalaunica, and further provide an emended diagnosis of the latter based on newly reported material. Contrary to some recent suggestions, this emended diagnosis discounts an alternative attribution of T. catalaunica to Paleotestudo. The latter is merely recognized as a subgenus of Testudo, based on a cladistic analysis that assessed the phylogenetic position of all extant and most extinct species of Testudo currently recognized as valid (including T. catalaunica). Our phylogenetic analysis (which recovers the molecular phylogeny of extant Testudo s.l.) supports a taxonomic scheme in which the three extant subgenera of Testudo are represented in the fossil record. Testudo s.s. is retrieved as the sister taxon of Testudo (Agrionemys) + [Testudo (Paleotestudo) + Testudo (Chersine)]. The extinct Testudo (Paleotestudo) is therefore the sister taxon of the Testudo (Chersine) clade. The latter subgenus reveals as the most diverse clade of Testudo s.l. in the fossil record, with T. catalaunica Testudo steinheimensis constituting a subclade distinct from that including Testudo hermanni.  相似文献   

4.
The cephalopod genus Nautilus is considered a “living fossil” with a contested number of extant and extinct species, and a benthic lifestyle that limits movement of animals between isolated seamounts and landmasses in the Indo‐Pacific. Nautiluses are fished for their shells, most heavily in the Philippines, and these fisheries have little monitoring or regulation. Here, we evaluate the hypothesis that multiple species of Nautilus (e.g., N. belauensis, N. repertus and N. stenomphalus) are in fact one species with a diverse phenotypic and geologic range. Using mitochondrial markers, we show that nautiluses from the Philippines, eastern Australia (Great Barrier Reef), Vanuatu, American Samoa, and Fiji fall into distinct geographical clades. For phylogenetic analysis of species complexes across the range of nautilus, we included sequences of Nautilus pompilius and other Nautilus species from GenBank from localities sampled in this study and others. We found that specimens from Western Australia cluster with samples from the Philippines, suggesting that interbreeding may be occurring between those locations, or that there is limited genetic drift due to large effective population sizes. Intriguingly, our data also show that nautilus identified in other studies as N. belauensis, N. stenomphalus, or N. repertus are likely N. pompilius displaying a diversity of morphological characters, suggesting that there is significant phenotypic plasticity within N. pompilius.  相似文献   

5.
Balaenidae (right whales) are large, critically endangered baleen whales represented by four living species. The evolutionary relationships of balaenids are poorly known, with the number of genera, relationships to fossil taxa, and position within Mysticeti in contention. This study employs a comprehensive set of morphological characters to address aspects of balaenid phylogeny. A sister‐group relationship between neobalaenids and balaenids is strongly supported, although this conflicts with molecular evidence, which may be an artifact of long‐branch attraction (LBA). Monophyly of Balaenidae is supported, and three major clades are recognized: (1) extinct genus Balaenula, (2) extant and extinct species of the genus Eubalaena, and (3) extant and extinct species of the genus Balaena plus the extinct taxon, Balaenella. The relationships of these clades to one another, as well as to the early Miocene stem balaenid, Morenocetus parvus, remain unresolved. Pliocene taxa, Balaenula astensis and Balaenula balaenopsis, form a clade that is the sister group to the Japanese Pliocene Balaenula sp. Eubalaena glacialis and Pliocene Eubalaena belgica, are in an unresolved polytomy with a clade including E. japonica and E. australis. Extant and fossil species of Balaena form a monophyletic group that is sister group to the Dutch Pliocene Balaenella, although phylogenetic relationships within Balaena remain unresolved.  相似文献   

6.
Fossil fruits and a vegetative axis assignable to the extant genus Ceratophyllum are described from four North American Tertiary localities. Fossil fruits assignable to the extant species C. muricatum and C. echinatum are reported from the Eocene Green River and Claiborne formations, and the Miocene Esmerelda Formation, respectively. An extinct species, C. furcatispinum, is described from the Paleocene Fort Union Formation and represents the oldest published report of Ceratophyllum in the fossil record. The existence of extant angiosperm species in the Eocene is very unusual and may be attributable in this case to slow evolutionary rates and unusual evolutionary properties associated with hydrophily in the genus Ceratophyllum.  相似文献   

7.
Extremely developed or specialized traits such as the elongated upper canines of extinct sabre‐toothed cats are often not analogous to those of any extant species, which limits our understanding of their evolutionary cause. However, an extant species may have undergone directional selection for a similar extreme phenotype. Among living felids, the clouded leopard, Neofelis nebulosa, has exceptionally long upper canines for its body size. We hypothesized that directional selection generated the elongated upper canines of clouded leopards in a manner similar to the process in extinct sabre‐toothed cats. To test this, we developed an approach that compared the effect of directional selection among lineages in a phylogeny using a simulation of trait evolution and approximate Bayesian computation. This approach was applied to analyse the evolution of upper canine length in the Felidae phylogeny. Our analyses consistently showed directional selection favouring longer upper canines in the clouded leopard lineage and a lineage leading to the sabre‐toothed cat with the longest upper canines, Smilodon. Most of our analyses detected an effect of directional selection for longer upper canines in the lineage leading to another sabre‐toothed cat, Homotherium, although this selection may have occurred exclusively in the primitive species. In all the analyses, the clouded leopard and Smilodon lineages showed comparable directional selection. This implies that clouded leopards share a selection advantage with sabre‐toothed cats in having elongated upper canines.  相似文献   

8.
A humerus and a coracoid from the Early Eocene Wasatch Formation in the Washakie Basin of south‐western Wyoming are the oldest materials (by ~2 million years) of the pelecaniform Limnofregata (Aves) and represent a new large species, Limnofregata hutchisoni sp. nov. This fossil is the oldest known member of the frigatebird lineage. Other than its large size relative to Limnofregata azygosternon and Lhasegawai, the new material is very similar morphologically to other known Limnofregata specimens. The size of this new species is comparable to the largest living species (e.g. Fregata minor and Fregata magnifiscens) and much larger than the two described species of Limnofregata. This fossil indicates that the hard minimum date previously advocated for molecular calibration of the split between Fregatidae and Suloidea is an underestimate by approximately two million years. The presence of early pelecaniform bird lineages (represented by Limnofregata and Masillastega) in limnic ecosystems prior to their known occurrences in marine deposits/habitats appears to indicate that some clades of pelecaniform birds may have undergone an evolutionary transition from freshwater to marine habitats in a pattern reminiscent of what has been suggested during the evolution of pinnipeds or that their palaeoecology included broader niches ranging across a variety of aquatic habitats. That transition in habitat occupation and the origin of many of the characteristic biological aspects present in the crown frigatebird clade likely occurred during a significant temporal gap (> 45 million years) in the fossil record of the frigatebird lineage after these earliest occurrences in the Early Eocene and before the oldest records of the extant Fregata species in the Pleistocene.  相似文献   

9.
S. Marchant 《Ibis》1972,114(2):219-233
Modern geological ideas on ocean-floor spreading are briefly reviewed. Pangea began to break up at the end of the Trias, but Africa, Antarctica and Australia remained together or close to each other till the end of the Cretaceous. The position of western New Guinea at the start of the Miocene could have been approximately where Arnhem Land is now, and at the start of the Pliocene somewhat north of the present-day Aru Islands. Its size until the end of the Pliocene was much smaller than it is today. Friedmann's proposal for the evolutionary spread of Chrysococcyx therefore demands that the whole process occurred since about the start of the Pliocene. There may not have been enough time in these seven million years for the evolutionary dispersal of a genus of parasitic cuckoos halfway round the world. His proposal also regards C. osculans as an awkward throw-back, and leaves a gap between species in New Guinea and southeastern Asia that is not bridged by intermediates. If a stock of cuckoos had been in Gondwanaland before it broke up, that stock could have given rise to the genus Cacomantis and the forerunners of C. osculans. The lineage of osculans would have quickly given rise to a lineage of glossy cuckoos that then divided into two branches. One could have penetrated Africa, south of where Madagascar then was, produced the species klaas, cupreus, caprius and flavigularis (an aberrant end-product), and much later, after Madagascar had drifted south from India (having been separate from Africa since the Cretaceous), colonised Asia where maculatus and xanthorhynchus would have differentiated. The other line could have differentiated, perhaps more slowly, in Australia into basalts, lucidus, ruficollis and malayanut (minutillus). When Australia had drifted near enough to the Malay Archipelago and as New Guinea grew, ruficollis and minutillus could have moved forward to colonise the islands, where minutillus would have produced the many races oimalayanus and meyerii differentiated as an aberrant end-product. This proposal overcomes some of the objections to Friedmann's theory because it arranges events to accord better with geological developments and avoids the evolutionary discontinuities of his proposal. The migratory habits of the cuckoos, thought by Friedmann to be significant, are discounted as evidence for evolutionary history. The parasitic habits are re-interpreted. Better data are presented for the parasitic behaviour of basalis and lucidus; they suggest that both species are sophisticated and probably host-specific parasites. Jensen & Jensen (1969) have already given evidence that some African glossy cuckoos are highly host-specific. There seems to be a trend of decreasing parasitic sophistication in Australian species, correlated with the possible age of the species. In Africa parasitism seems to be far in advance of that in Australia, probably because the opportunities for parasitism are far better in Africa. These trends and differences in parasitic behaviour are compatible with an evolutionary spread from Gondwanaland. The crucial question is whether the stock of Cacomantis and Chrysococcyx could have existed before the break-up of Gondwanaland, i.e. before the early Eocene. The present fossil record suggests that this is unlikely, but the paucity of fossils and the difficulties of palaeoclimates do not seem to be insuperable and it is suggested that a southern origin for these cuckoos should be considered seriously.  相似文献   

10.
11.
Front Cover     
In most animals, competition for mating opportunities is higher among males, whereas females are more likely to provide parental care. In few species, though, these "conventional" sex roles are reversed such that females compete more strongly for matings and males provide most or all parental care. This "reversal" in sex roles is often combined with classical polyandry—a mating system in which a female forms a harem with several males. Here, we review the major hypotheses relating such role reversals to evolutionary and behavioural traits (anisogamy, phylogenetic history, sexy males, parental care, genetic paternity, trade‐off between mating and parenting, adult sex ratio) and to ecological factors (food supply, offspring predation). We evaluate each hypothesis in relation to coucals (Centropodinae), a group of nesting cuckoos of great interest for mating system and parental care theory. The black coucal (Centropus grillii) is the only known bird combining classical polyandry with altricial development of young, a costly trait with regard to parental care. Our long‐term study offers a unique possibility to compare the strongly polyandrous black coucal with a monogamous close relative breeding in the same area and habitat, the white‐browed coucal (C. superciliosus). We show that the evolution of sex roles in coucals and other animals has many different facets. Whereas phylogenetic constraints are important, confidence in genetic paternity is not. In combination with facilitating ecological conditions, adult sex ratios are key to understanding sex roles in coucals, shorebirds, and most likely also other animals. We plead for more studies including experimental tests to understand how biased adult sex ratios emerge and whether they drive sexual selection or vice versa. How do sex ratios and sexual selection interact and feedback on each other? Answers to these questions will be fundamental for understanding the evolution of sex roles in mating and parenting in coucals and other species.  相似文献   

12.
13.
A new fossil species of crane-fly, Helius botswanensis:Diptera: Tipulidaey is described. The specimen was discovered recently in reliably dated. Cretaceous sediments from Botswana. Ii is extremely well preserved, has a distinctive morphology, and is identified as belonging to the extant genus Helius. The single specimen puts the origin of the subfamily Limoniinae and the genus well into the Cretaceous Period, and provides data on the southern African Cretaceous palaeoenvironment. The conservative nature of a dipteran of such antiquity, assignable to an extant genus which has an association with flowers, has implications for evolutionary theory.  相似文献   

14.
Collared lemmings (genus Dicrostonyx) are circumpolar Arctic arvicoline rodents associated with tundra. However, during the last glacial maximum (LGM), Dicrostonyx lived along the southern ice margin of the Laurentide ice sheet in communities comprising both temperate and boreal species. To better understand these communities and the fate of these southern individuals, we compare mitochondrial cytochrome b sequence data from three LGM‐age Dicrostonyx fossils from south of the Laurentide ice sheet to sequences from modern Dicrostonyx sampled from across their present‐day range. We test whether the Dicrostonyx populations from LGM‐age continental USA became extinct at the Pleistocene–Holocene transition ~11000 years ago or, alternatively, if they belong to an extant species whose habitat preferences can be used to infer the palaeoclimate along the glacial margin. Our results indicate that LGM‐age Dicrostonyx from Iowa and South Dakota belong to Dicrostonyx richardsoni, which currently lives in a temperate tundra environment west of Hudson Bay, Canada. This suggests a palaeoclimate south of the Laurentide ice sheet that contains elements similar to the more temperate shrub tundra characteristic of extant D. richardsoni habitat, rather than the very cold, dry tundra of the Northern Arctic. While more data are required to determine whether or not the LGM southern population is ancestral to extant D. richardsoni, it seems most probable that the species survived the LGM in a southern refugium.  相似文献   

15.
Glassfishes of the family Ambassidae, comprising around 50 species, are distributed in the Indo‐West Pacific where they inhabit marine, estuarine, and freshwater ecosystems. We investigated for the first time the molecular phylogenetic and evolutionary relationships of this group using a combined dataset of mitochondrial and nuclear genes, particularly focusing on the taxa occurring in the Indian subcontinent. Results revealed that marine and freshwater genera of Ambassidae diverged during the Paleocene (~62 mya). The enigmatic monotypic genus Chanda is nested within the larger clade currently recognized as Parambassis, indicating its paraphyly. Based on cleared and stained osteological preparations and phylogenetic placement of Chanda nama, we hypothesize that the elongated and protruding lower jaw is an autapomorphic character that might have evolved for the lepidophagous habit of the species. The southern Indian species of Parambassis, Parambassis dayi, and Parambassis thomassi, which formed a monophyletic group, probably diverged from other species of Parambassis and Chanda nama around the Eocene (~42 mya) and can potentially be recognized as a distinct genus in view of the apomorphic characters such as the presence of serration on the ventral fringe of interopercle, densely serrated palatine and ectopterygoid, and the presence of more than 30 serrations along the lower preopercle and the posterior edge. Our analysis provides new insights into the evolution and phylogenetic relationships of glassy perchlets, including detailed relationships among the Indian species within this family.  相似文献   

16.
The evolutionary history of aquatic invasion in birds would be incomplete without incorporation of extinct species. We show that aquatic affinities in fossil birds can be inferred by multivariate analysis of skeletal features and locomotion of 245 species of extant birds. Regularized discriminant analyses revealed that measurements of appendicular skeletons successfully separated diving birds from surface swimmers and flyers, while also discriminating among different underwater modes of swimming. The high accuracy of this method allows detection of skeletal characteristics that are indicative of aquatic locomotion and inference of such locomotion in bird species with insufficient behavioural information. Statistical predictions based on the analyses confirm qualitative assessments for both foot‐propelled (Hesperornithiformes) and wing‐propelled (Copepteryx) underwater locomotion in fossil birds. This is the first quantitative inference of underwater modes of swimming in fossil birds, enabling future studies of locomotion in extinct birds and evolutionary transitions among locomotor modes in avian lineage.  相似文献   

17.
The living hyena species (spotted, brown, striped and aardwolf) are remnants of a formerly diverse group of more than 80 fossil species, which peaked in diversity in the Late Miocene (about 7–8 Ma). The fossil history indicates an African origin, and morphological and ancient DNA data have confirmed that living spotted hyenas (Crocuta crocuta) of Africa were closely related to extinct Late Pleistocene cave hyenas from Europe and Asia. The current model used to explain the origins of Eurasian cave hyena populations invokes multiple migrations out of Africa between 3.5–0.35 Ma. We used mitochondrial DNA sequences from radiocarbon‐dated Chinese Pleistocene hyena specimens to examine the origin of Asian populations, and temporally calibrate the evolutionary history of spotted hyenas. Our results support a far more recent evolutionary timescale (430–163 kya) and suggest that extinct and living spotted hyena populations originated from a widespread Eurasian population in the Late Pleistocene, which was only subsequently restricted to Africa. We developed statistical tests of the contrasting population models and their fit to the fossil record. Coalescent simulations and Bayes Factor analysis support the new radiocarbon‐calibrated timescale and Eurasian origins model. The new Eurasian biogeographic scenario proposed for the hyena emphasizes the role of the vast steppe grasslands of Eurasia in contrast to models only involving Africa. The new methodology for combining genetic and geological data to test contrasting models of population history will be useful for a wide range of taxa where ancient and historic genetic data are available.  相似文献   

18.
Transitroides morsei new genus, new species, is described from late Oligocene Early Miocene amber deposits of Chiapas Province from southern Mexico. This new taxon is the first known fossil member of the amphipod family Talitridae and superfamily Talitroidea. It appears intermediate between regional extant palustral (salt‐marsh) genera and fully terrestrial landhoppers of the genus Caribitroides. These beetle‐like crustaceans form a significant part of the forest‐floor leaf‐litter communities in some tropical parts of the globe. Extant terrestrial amphipods occur in south‐central Mexico and adjacent rain forest habitats in Central America and the Caribbean. Their occasional use of arboreal habitats in search for decaying organic matter, which serves as food, explains their occurrence in fossilized resin.  相似文献   

19.
20.
Phylogenetic relationships within the bee family Megachilidae are poorly understood. The monophyly of the subfamily Fideliinae is questionable, the relationships among the tribes and subtribes in the subfamily Megachilinae are unknown, and some extant genera cannot be placed with certainty at the tribal level. Using a cladistic analysis of adult external morphological characters, we explore the relationships of the eight tribes and two subtribes currently recognised in Megachilidae. Our dataset included 80% of the extant generic‐level diversity, representatives of all fossil taxa, and was analysed using parsimony. We employed 200 characters and selected 7 outgroups and 72 ingroup species of 60 genera, plus 7 species of 4 extinct genera from Baltic amber. Our analysis shows that Fideliinae and the tribes Anthidiini and Osmiini of Megachilinae are paraphyletic; it supports the monophyly of Megachilinae, including the extinct taxa, and the sister group relationship of Lithurgini to the remaining megachilines. The Sub‐Saharan genus Aspidosmia, a rare group with a mixture of osmiine and anthidiine features, is herein removed from Anthidiini and placed in its own tribe, Aspidosmiini, new tribe . Protolithurgini is the sister of Lithurgini, both placed herein in the subfamily Lithurginae; the other extinct taxa, Glyptapina and Ctenoplectrellina, are more basally related among Megachilinae than Osmiini, near Aspidosmia, and are herein treated at the tribal level. Noteriades, a genus presently in the Osmiini, is herein transferred to the Megachilini. Thus, we recognise four subfamilies (Fideliinae, Pararhophitinae, Lithurginae and Megachilinae) and nine tribes in Megachilidae. We briefly discuss the evolutionary history and biogeography of the family, present alternative classifications, and provide a revised key to the extant tribes of Megachilinae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号