首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We show here that a new labyrinthulid strain, L72, isolated from a fallen leaf in the Seto Inland Sea of Japan, produced only docohexaenoic acid (DHA) among all the long-chain polyunsaturated fatty acids (LCPUFAs). The main fatty acid composition was 16:0 (28.9%), 18:0 (7.2%), 18:1 (5.7%), 18:2 (10.4%), and DHA (45.9%) without any other LCPUFA. The lipid content of the strain was 27.4%. The cells had many lipid bodies, which were densely located in all of the cells. On phylogenetic analysis using the 18S rDNA sequence, the strain was located in the labyrinthulids group, forming a monophyletic group with Labyrinthula sp. (strain s) and Labyrinthuila sp. (strain L59). We further tested the culture optimization of strain L72 to evaluate the ability of the strain to produce DHA. The optimum salt concentration and the temperature of the strain were 100% of artificial seawater and 20°C. Strain L72 could grow well on soybean oil (SBO) or soybean lecithin (SBL) as the carbon source. When 20 g/l of SBL was added to the medium, DHA production reached the maximum amount at 0.67 g/l for 14 d. The two important facts, that the strain can use SBL as the main nutrient and contains only DHA among the LCPUFAs, will be of great advantage for industry.  相似文献   

2.
Culture conditions of Schizochytrium limacinum SR21 for the purpose of microbial docosahexaenoic acid (DHA) production were investigated. The strain SR21 showed a wide tolerance to salinity; that is, the optimum salinity was between 50% and 200% that of sea water. Monosaccharides (glucose and fructose) and glycerol supported good cell growth and DHA yield. Di- and polysaccharides, oleic acid, and linseed oil gave low DHA yields. A high content of DHA (more than 30% of total fatty acids) was obtained from culture on glucose, fructose, and glycerol, and also the strain had simple polyunsaturated fatty acid profiles. The major polyunsaturated fatty acids other than DHA were n-6 docosapentaenoic acid only, and the contents of icosapentaenoic acid and arachidonic acid were less than 1%. Using corn steep liquor as a nitrogen source, a high total fatty acid content was obtained. The total fatty acid content in the dry cell weight increased as the concentration of the nitrogen source decreased, reached more than 50%. An increase in carbon source concentration led to a high DHA yield. A maximum DHA yield of more than 4 g/l was obtained in both glucose and glycerol media at 9% and 12% respectively. S. limacinum SR21 was thought to be a promising resource for microbial DHA production yielding a good level of productivity as well as a simple polyunsaturated fatty acid profile. Received: 26 June 1997 / Received revision: 29 August 1997  / Accepted: 19 September 1997  相似文献   

3.
Summary WhenMortierella alpina ATCC 32222 was incubated in a glucose salts medium at 25°C the biomass (17.5 g/l) contained 9.62% arachidonic acid which amounted to 54% (w/w) of total biomass lipids. When the glucose concentration in the medium was varied from 0 to 150 g/l, the percentage of arachidonic acid in biomass and in lipids was highest at a glucose concentration of 30 g/l, but highest yield of arachidonic acid per litre of culture broth was observed at a glucose concentration of 100 g/l. While production of biomass reached a plateau of 17 g/l after a 3-day incubation at 25°C, the percentage of arachidonic acid in lipids and biomass increased dramatically from 3 to 6 days with a concurrent arachidonic acid yield increase from 0.89 to 1.63 g/l. Optimum initial culture pH for arachidonic acid production was in the range 6.0–6.7. By increasing the concentration of the glucose salts medium three-fold, yields of biomass and arachidonic acid were increased to 35.8 g/l and 3.73 g/l, respectively.  相似文献   

4.
Marine heterotrophic microalgal species which are potentially rich in docosahexaenoic acid (DHA, C22:6n−3) have been found in Taiwan; however, there was a lack of detailed analysis and characterization of these indigenous algae which is needed for the development of commercial applications. Hence, the objective of this study was to screen DHA-rich heterotrophic microalgae species indigenous to Taiwan for commercial purposes. Heterotrophic microalgae from a variety of marine habitats were isolated, cultivated, and then identified according to their 18S rRNA gene sequences and morphological characteristics. A comparison was made of their fatty acid profiles, fatty acid content, and amount of biomass. For the strain with highest DHA yield, the optimal growth conditions were determined in order to establish the best fermentation conditions for scale-up. In this study, 25 heterotrophic microalgal strains were successfully isolated from marine habitats around Taiwan. All of the isolated strains showed a close phylogenic relationship with the Thraustochytriaceae family according to their 18S rRNA gene sequences. GC/MS analysis discerned seven distinctive fatty acid profiles of these strains, with the production of eicosapentaenoic acid (C20:5n−3) ranging from 0.02 to 2.61 mg L−1, and DHA ranging from 0.8 to 18.0 mg L−1. An Aurantiochytrium strain BL10 with high DHA production was subsequently chosen for further manipulation. Under optimal growth conditions it could produce up to 59.0 g of dry biomass per liter of culture, with dry biomass containing 73% total fatty acid and 29% DHA, revealing BL10 as an excellent source of microbial DHA.  相似文献   

5.
Liquid residues from beer (RB) and potato (RP) processing were evaluated as carbon sources for the production of docosahexaenoic acid (C22:6n-3, DHA) by two native Thraustochytriidae sp., M12-X1 and C41, in shaking flask experiments. Results were compared with those obtained in the fermentations of glucose, maltose, soluble starch and ethanol. Both strains produced the highest biomass concentration (2.3 g/L) in the fermentation of RB supplemented with nitrogen sources [yeast extract (YE) and monosodium glutamate (MSG)]. DHA content in the fatty acids produced by the native thraustochytrids was dependent on the fermented carbon source; the fatty acids from biomass grown on carbon sources that permitted a lower growth rate contained more DHA. The highest DHA productivity [55.1 mg/(day L)] was obtained in the fermentation of RB-YE-MSG by M12-X1 strain. In this medium, M12-X1 strain grew at a specific growth rate of 0.014 h?1 and total fatty acid content in the biomass was 41.3%. Production of DHA by M12-X1 strain followed a non-growth rate associated pattern and DHA content in the biomass decreased significantly after growth ceased.  相似文献   

6.
The influence of culture age and nitrogen concentration on the distribution of fatty acids among the different acyl lipid classes has been studied in continuous cultures of the microalga Phaeodactylum tricornutum. The culture age was tested in the range of 1.15-7 days, controlled by adjusting the dilution rate of fresh medium supplied. The effect of nitrogen concentration was tested from saturating conditions to starvation by modifying nitrate concentration in the fresh medium. Culture age had almost no influence on the fatty acid content; 16:0, 16:3 and 20:5 increased moderately wherein the level of 16:1 decreased when the culture age decreased. Culture age had no effect on the total fatty acid content that remained around 11% of dry weight. Conversely, culture age had a greater impact on lipid classes, producing changes in amounts of triacylglycerols (TAG) which ranged between 43% and 69%, and galactolipids (GLs) that oscillated between 20% and 40%. In general, the content of polar lipids of the biomass decreased with culture age. The other factor assayed, nitrogen content, affected the fatty acid profile. Saturated and monounsaturated fatty acids accumulated when the nitrogen concentration was decreased. The experiments regarding the effect of nitrogen concentration on lipid species were carried out with cells of an average age of 3.5 days. A decrease of the nitrogen concentration caused the GL fraction to decrease from 21 to 12%. Conversely, both neutral lipids (NLs) and phospolipids (PLs) increased from about 73 to 79% and from 6 to 8%, respectively. In these experiments, TAG was the lipid class with the highest increase, from 69 to 75%.  相似文献   

7.
Yue Jiang  Feng Chen   《Process Biochemistry》2000,35(10):1205-1209
The effects of medium glucose concentration and pH on growth and docosahexaenoic acid (DHA, C22:6 ω-3) content of Crypthecodinium cohnii were investigated. Over a range of glucose concentrations (5–40 g l−1) investigated, the highest specific growth rate (0.12 h−1), highest cell dry weight concentration (3.13 g l−1) and highest growth yield on glucose (0.6 g g−1) were obtained at 20 g l−1 glucose. However, the highest degree of fatty acid unsaturation (3.2) and highest DHA proportion (53.4% of total fatty acids) were achieved at 5 g l−1 glucose. Low glucose concentrations enhanced the degree of fatty acid unsaturation and DHA formation. Medium pH also affected cell growth, fatty acid unsaturation and DHA proportion. When medium pH was 7.2, the highest specific growth rate (0.089 h−1), highest cell dry weight concentration (2.73 g l−1), highest growth yield on glucose (0.564 g g−1), highest degree of fatty acid unsaturation (3.4) and highest DHA proportion (56.8% of total fatty acids) were obtained. Results suggest that glucose concentration and pH value could be effectively manipulated to achieve maximum DHA production by C. cohnii.  相似文献   

8.
The green microalga Chlorella sp. TISTR 8990 was grown heterotrophically in the dark using various concentrations of a basal glucose medium with a carbon‐to‐nitrogen mass ratio of 29:1. The final biomass concentration and the rate of growth were highest in the fivefold concentrated basal glucose medium (25 g L?1 glucose, 2.5 g L?1 KNO3) in batch operations. Improving oxygen transfer in the culture by increasing the agitation rate and decreasing the culture volume in 500‐mL shake flasks improved growth and glucose utilization. A maximum biomass concentration of nearly 12 g L?1 was obtained within 4 days at 300 rpm, 30°C, with a glucose utilization of nearly 76% in batch culture. The total fatty acid (TFA) content of the biomass and the TFA productivity were 102 mg g?1 and 305 mg L?1 day?1, respectively. A repeated fed‐batch culture with four cycles of feeding with the fivefold concentrated medium in a 3‐L bioreactor was evaluated for biomass production. The total culture period was 11 days. A maximum biomass concentration of nearly 26 g L?1 was obtained with a TFA productivity of 223 mg L?1 day?1. The final biomass contained (w/w) 13.5% lipids, 20.8% protein and 17.2% starch. Of the fatty acids produced, 52% (w/w) were saturated, 41% were monounsaturated and 7% were polyunsaturated (PUFA). A low content of PUFA in TFA feedstock is required for producing high quality biodiesel. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1589–1600, 2017  相似文献   

9.
The fungus Mortierella alpina CBS 343.66 was grown in a fermentor at different pH, temperatures and supplies of carbon source (glucose) in order to optimize the culture conditions for rapid biomass and lipid production with a high proportion of polyunsaturated fatty acids, especially arachidonic acid (AA). Good growth and lipid production with 31% AA was obtained at pH 6.5 and 25°C. A temperature decrease to 18°C gave a significantly higher degree of polyunsaturated fatty acids. Eicosapentaenoic acid was not detected at 25°C, but was formed at 18°C at about 10%. The AA concentration but was similar for 18°C about 10%. The AA concentration was similar for 18°C and 25°C (around 30%): 18°C allowed relatively good growth and had a beneficial effect on the fungus morphology, i.e. pellets were formed. Best lipid production and a AA content of up to 33% was achieved at an excess of glucose (carbon source) and a deficit of ammonium chloride (nitrogen source). The percentage of AA of the total fatty acid composition was constant as ong as glucose was present. At glucose exhaustion, the proportion of AA increased to 57%. The increase in AA corresponded to a decrease in palmitic acid, stearic acid and oleic acid. Correspondence to: G. Molin  相似文献   

10.
Yeast species were screened for the incorporation and accumulation of docosahexaenoic acid (DHA) with a yeast-malt medium containing 0.5% free fatty acid prepared from fish oil (DHA, 28% of total fatty acids in fish oil). The most suitable strain was Pichia methanolica HA-32. The optimum cultivation conditions for the accumulation of lipids and incorporation of DHA were as follows: 5% glucose, 20% yeast extract, and 3% free fatty acid in the medium, at pH 6.0 and with incubated at 25°C for 3 days. Under these conditions, about 200 mg of total lipids and 60 mg of DHA were recovered from 1 g of dry cells. The accumulation of DHA in cells increased in conjunction with the amount of yeast extract added to the medium. Vitamin B groups and minerals also had an effect on the accumulation of DHA. Choline and K2HPO4, which caused browning of the medium, promoted the accumulation of DHA in cells.  相似文献   

11.
Lipid and docosahexaenoic acid (DHA) accumulation into Schizochytrium G13/2S was studied under batch and continuous culture. Different glucose and glutamate concentrations were supplemented in a defined medium. During batch cultivation, lipid accumulation, 35% total fatty acids (TFA) occurred at the arithmetic growth phase but ceased when cell growth stopped. When continuous culture was performed under different glutamate concentrations, nitrogen-growth-limiting conditions induced the accumulation of 30–28% TFA in Schizochytrium. As the dilution rate decreased from 0.08 to 0.02 h−1, both cell dry weight and TFA content of the cell increased. Under a constant dilution rate of 0.04 h−1, carbon-limiting conditions decreased the TFA to 22%. Fatty acid profile was not affected by the different nutrient concentrations provided during continuous culture. Consequently, lipid accumulation can be induced through the carbon and nitrogen source concentration in the medium to maximise the TFA and subsequently DHA productivity by this microorganism.  相似文献   

12.
Two green algae (Chlorella vulgaris and Scenedesmus obliquus) and four blue-green algae (Anacystis nidulans, Microcystis aeruginosa, Oscillatoria rubescens and Spirulina platensis) were grown in 81 batch cultures at different nitrogen levels. In all the algae increasing N levels led to an increase in the biomass (from 8 to 450 mg/l), in protein content (from 8 to 54 %) and in chlorophyll. At low N levels, the green algae contained a high percentage of total lipids (45 % of the biomass). More than 70 % of these were neutral lipids such as triacylglycerols (containing mainly 16:0 and 18:1 fatty acids) and trace amounts of hydrocarbons. At high N levels, the percentage of total lipids dropped to about 20 % of the dry weight. In the latter case the predominant lipids were polar lipids containing polyunsaturated C16 and C18 fatty acids. The blue-green algae, however, did not show any significant changes in their fatty acid and lipid compositions, when the nitrogen concentrations in the nutrient medium were varied. Thus the green but not the blue-green algae can be manipulated in mass cultures to yield a biomass with desired fatty acid and lipid compositions. The data may indicate a hitherto unrecognized distinction between prokaryotic and eukaryotic organisms.  相似文献   

13.
Tan Y  Lin J 《Bioresource technology》2011,102(21):10131-10135
This investigation examined the effects of nitrogen–phosphate combined deficiency on the biomass yield, fatty acid methyl esters (FAME) production and composition from Scenedesmus rubescens-like microalga. A 15-day indoor culture was performed as a 3 × 3 factorial design (NaNO3 levels: 3, 10 and 20 mM; KH2PO4 levels: 20, 50 and 150 μM). The algae grown under medium nitrogen concentration (10 mM) and high phosphate concentration (150 μM) reached the highest biomass (1223.5 ± 152.5 mg/L). Both nitrogen and phosphate had a significant influence on the FAME yield (P < 0.05 and P < 0.0001, respectively). The FAME yield from algae grown under low nitrogen (3 mM) and phosphate concentration (20 μM) increased throughout the experiment and the highest FAME yield (42.2 ± 2.5% of AFDW) as well as C16 and C18 content (95.8 ± 1.6% of AFDW) was achieved under these conditions. Algae grown under medium nitrogen concentration (10 mM) and low phosphate concentration (20 μM) had the highest FAME productivity (426.0 mg/L ± 135.0 mg/L). Thus, the lower nitrogen concentration (3 mM–10 mM) and low phosphate concentration (20 μM) would be an optimal combination tested to produce the most FAME from S. rubescens-like algae.  相似文献   

14.
Nine thraustochytrid strains isolated from subtropical mangroves were screened for their eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) production potential in a glucose yeast extract medium. Their ability to utilize okara (soymilk residue) for growth and EPA and DHA production was also evaluated. EPA yield was low in most strains, while DHA level was high on glucose yeast extract medium, producing 28.1–41.1% of total fatty acids, for all strains, with the exception of Ulkenia sp. KF13. The DHA yield of Schizochytrium mangrovei strains ranged from 747.7 to 2778.9 mg/l after 52 h of fermentation at 25°C. All strains utilized okara as a substrate for growth, but DHA yield was lower when compared with fermentation in a glucose yeast extract medium. Journal of Industrial Microbiology & Biotechnology (2001) 27, 199–202. Received 11 December 2000/ Accepted in revised form 29 June 2001  相似文献   

15.
The rotifer Brachionus plicatilis was cultured using the microalga Isochrysis aff. galbana clone T-ISO as feed. T-ISO was cultured semi-continuously with daily renewal rates of 10%, 20%, 30%, 40%, and 50% of the volume of cultures. The increase of renewal rate led to increasing nutrient and light availability in microalgal cultures, which caused differences in the biochemical composition of microalgal biomass. Growth rate, individual dry weight, organic content, and biomass productivity of rotifer cultures increased in response to higher growth rate in T-ISO cultures. Rotifer growth rate showed a strong negative correlation (R 2 = 0.90) with the C/N ratio of microalgal biomass. Rotifer dry weight was also affected by nutrient availability of T-ISO cultures, increasing up to 50% from nutrient-limited to nutrient-sufficient conditions. Consequently, biomass productivity of rotifer cultures increased more than twofold with the increase of renewal rate of T-ISO cultures. Rotifer organic content underwent the same trend of total dry weight. Maximum content of polyunsaturated fatty acids was reached in rotifers fed T-ISO from the renewal rate of 40%, with percentages of docosahexaenoic acid (22:6ω-3, DHA) and eicosapentaenoic acid (20:5ω-3, EPA) of 11% and 5% of total fatty acids, respectively. Selecting the most appropriate conditions for microalgal culture can therefore enhance the nutritive quality of microalgal biomass, resulting in a better performance of filter feeders and their nutrient content, and may constitute a useful tool to improve the rearing of fish larvae and other aquaculture organisms that require live feed in some or all the stages of their life cycle.  相似文献   

16.
为探索不同水平N和P对等鞭金藻(Isochrysis galbana Parke)产量及油脂品质的影响,在富N(80.00 mg·L-1 NO3--N)和无N(0.00 mg·L-1 NO3--N)条件下设置富P、限P和无P(20.00、0.25和0.00 mg·L-1 PO43--P)共6组培养基,对培养10 d时等鞭金藻的藻体质量浓度、P吸收量、总脂肪酸质量分数和脂肪酸产率变化、13个脂肪酸组分及其质量分数以及EPA和DHA的相对含量和产量进行了比较分析。结果显示:在富N培养基中,等鞭金藻藻体质量浓度的增幅明显高于无N培养基且按培养基中P质量浓度从高到低依次降低。总体上看,随培养时间延长,等鞭金藻的总脂肪酸质量分数持续升高,且在富N培养基中总脂肪酸质量分数高于无N培养基;其中,富N限P和富N无P培养基中的总脂肪酸质量分数基本上均高于富N富P培养基。富N培养基中各脂肪酸组分的质量分数大体上高于无N培养基,且限P培养基中各脂肪酸组分的质量分数大体上高于富P和无P培养基。在富N富P培养基中1 L藻体的P吸收量最高(0.0148 mg),并且吸收的P绝大部分被贮存在藻体中,而在无N富P培养基中P吸收量明显降低(0.0098 mg)。在富N富P培养基中,饱和脂肪酸质量分数和相对含量及EPA相对含量和产量均最低,但DHA相对含量和产量则最高。在富N限P培养基中,等鞭金藻的EPA产量和脂肪酸产率均最高,其DHA产量也较高;5种优质脂肪酸组分(即C18:1n9c、C16:0、C14:0、C18:0和C16:1n9)的总相对含量达到65.86%,尤其是C18:1n9c,其相对含量高达28.19%。综合分析结果显示:富N培养基有利于等鞭金藻的生长、P吸收及脂肪酸积累,其中,富N限P培养基是等鞭金藻高产且产优质油脂的适宜培养基。此外,等鞭金藻不但是生产生物柴油的优质资源而且是生产DHA和清除废水中P的潜在生物资源。  相似文献   

17.
Thraustochytrids have recently emerged as a promising source for docosahexaenoic acid (DHA) production due to their high growth rate and oil content. In this study, two thraustochytrid isolates, Aurantiochytrium sp. PKU#SW7 and Thraustochytriidae sp. PKU#Mn16 were used for DHA production. Following growth parameters were optimized to maximize DHA production: temperature, pH, salinity, and glucose concentration. Both isolates achieved the highest DHA yield at the cultivation temperature of 28 °C, pH 6, 100 % seawater, and 2 % glucose. A DHA yield of 1.395 g/l and 1.426 g/l was achieved under the optimized culture conditions. Further investigation revealed that both isolates possess simple fatty acids profiles with palmitic acid and DHA as their dominant constituents, accounting for ~79 % of total fatty acids. To date, very few studies have focused on the DHA distribution in various lipid fractions which is an important factor for identifying strains with a potential for industrial DHA production. In the present study, the lipids profiles of each strain both revealed that the majority of DHA was distributed in neutral lipids (NLs), and the DHA distribution in NLs of PKU#SW7 was exclusively in the form of triacylglycerols (TAGs) which suggest that PKU#SW7 could be utilized as an alternative source of DHA for dietary supplements. The fermentation process established for both strains also indicating that Aurantiochytrium sp. PKU#SW7 was more suitable for cultivation in fermenter. In addition, the high percentage of saturated fatty acids produced by the two thraustochytrids indicates their potential application in biodiesel production. Overall, our findings suggest that two thraustochytrid isolates are suitable candidates for biotechnological applications.  相似文献   

18.
Following an isolation programme for thraustochytrids (marine fungoid protists) from three different locations, 57 isolates were screened for biomass, oil and docosahexaenoic acid production (DHA). Although a common fatty acid profile for the thraustochytrid isolates emerged, there was considerable variation in the DHA content of the oil. In some isolates from a cold temperate environment, DHA represented almost 50% of the total fatty acids present. Although isolates from a sub-tropical environment produced higher levels of biomass, with up to 37% (w/w) oil, the DHA fraction of the fatty acids was low. Cool temperate isolates gave intermediate values. Studies to optimise biomass and DHA production by manipulation of growth medium composition were carried out on a tropical strain. Results indicated that medium with a high C:N ratio stimulated DHA production. The use of such media in bioreactor cultivations gave maximum biomass, lipid and DHA content of 14 g l−1, 78 and 25% (w/w), respectively. Optimum DHA production was 2.17 g l−1 after 107 h cultivation.  相似文献   

19.
An isolation program targeting Thraustochytrids (marine fungoid protists) from 19 different Atlantic Canadian locations was performed. Sixty-eight isolates were screened for biomass, total fatty acid (TFA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) content. Analysis of fatty acid methyl ester results discerned four distinctive clusters based on fatty acid profiles, with biomass ranging from 0.1 to 2.3 g L−1, and lipid, EPA, and DHA contents ranging from 27.1 to 321.14, 2.97 to 21.25, and 5.18 to 83.63 mg g−1 biomass, respectively. ONC-T18, was subsequently chosen for further manipulations. Identified using 18S rRNA gene sequencing techniques as a Thraustochytrium sp., most closely related to Thraustochytrium striatum T91-6, ONC-T18 produced up to 28.0 g L−1 biomass, 81.7% TFA, 31.4% (w/w biomass) DHA, and 4.6 g L−1 DHA under optimal fermentation conditions. Furthermore, this strain was found to produce the carotenoids and xanthophylls astaxanthin, zeaxanthin, canthaxanthin, echinenone, and β-carotene. Given this strain’s impressive productivity when compared to commercial strains, such as Schizochytrium sp. SR21 (which has only 50% TFA), coupled with its ability to grow at economical nitrogen and very low salt concentrations (2 g L−1), ONC-T18 is seen as an ideal candidate for both scale-up and commercialization.  相似文献   

20.
The fatty acid composition of the alga Chlorella saccharophila was investigated under different growth conditions. Using glucose as the sole carbon source, heterotrophically-grown Chlorella saccharophila produced a greater proportion of the polyunsaturated fatty acids (C18: 2 and C18: 3) than photosynthetic cultures, with linoleic acid (C18: 2) predominating. An unexpected discovery was the observation that at the lowest glucose concentration (2.5 gl–1) the lipid content of the algae increased to between 36–47% of the cell weight, depending on the temperature. At glucose concentrations of 5 g l–1 or more, the lipid content fell to 10–12% of the cell, although total fatty acid yield was higher due to higher biomass concentrations. Aeration of heterotrophic cultures promoted the production of unsaturated fatty acids compared to non-aerated cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号