首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoclonal antibodies (8/1, 10/10, and 25/3) against rat brain type II protein kinase C were used for the immunochemical characterization of this kinase. These antibodies immunoprecipitated the type II protein kinase C in a dose-dependent manner but did neither to the type I nor III isozyme. Immunoblot analysis of the tryptic fragments from protein kinase C revealed that all three antibodies recognized the 27-38-kDa fragments, the phospholipid/phorbol ester-binding domain, but not the 45-48-kDa fragments, the kinase catalytic domain. The immune complexes of the kinase and the antibodies retained 70-80% of the kinase activity which was dependent on Ca2+ and phosphatidylserine and further activated by diacylglycerol or tumor-promoting phorbol ester. With antibody 8/1, the kinetic parameters with respect to Km for ATP and histone and K alpha for phosphatidylserine and phorbol 12,13-dibutyrate were not significantly influenced. However, the antibody causes variable effects on the K alpha for Ca2+ under different assay conditions. When determined in the presence of phosphatidylserine, the K alpha for Ca2+ was reduced by an order of magnitude (37 +/- 8 to 2.0 +/- 1.8 microM); in the presence of phosphatidylserine and phorbol 12,13-dibutyrate, the K alpha for Ca2+ was not significantly altered; and in the presence of phosphatidylserine and dioleoylglycerol, the kinase became an apparently Ca2+-independent enzyme. The effects of antibody 8/1 on the kinetic parameters of the enzyme for phorbol ester binding were different from those for kinase activity. This antibody causes a 20-30% reduction in phorbol ester binding and a 2-fold increase (1.9 +/- 0.2 to 3.9 +/- 0.3 micrograms/ml) in the concentration of phosphatidylserine required for half-maximal binding, but is without significant influence on those parameters for Ca2+ and phorbol 12,13-dibutyrate. The differential effects of antibody 8/1 on kinase activity and phorbol ester binding with respect to the kinetic parameter of phosphatidylserine suggest that the roles of this phospholipid in supporting phorbol ester binding and kinase activation are different. In the presence of the antibody, the autophosphorylations of the phospholipid/phorbol ester-binding domain and the kinase domain were reduced; the reduction was more pronounced for the former than for the latter. These results suggest that the epitope for antibody 8/1 is localized within the phospholipid/phorbol ester-binding domain at the region adjacent to the kinase domain so that the autophosphorylations of both domains are affected.  相似文献   

2.
Three lipid A derivatives (hexaacyl monophosphoryl lipid A, hexaacyl diphosphoryl lipid A, and disaccharide precursor IVA) were shown to activate protein kinase C from rabbit brain. These derivatives substituted for phosphatidylserine in a concentration-dependent manner and did not compete for binding of [3H]phorbol dibutyrate to its receptor site. Instead, phorbol dibutyrate binding was increased on raising the concentration of the derivatives in a similar manner to phosphatidylserine. The phorbol ester 12-0-tetra-decanol 13-acetate augmented the activation of protein kinase C by the lipid A derivatives.  相似文献   

3.
Biochemical characterization of rat brain protein kinase C isozymes   总被引:18,自引:0,他引:18  
Biochemical characteristics of three rat brain protein kinase C isozymes, types I, II, and III, were compared with respect to their protein kinase and phorbol ester-binding activities. All three isozymes appeared to be alike in their phorbol ester-binding activities as evidenced by their similar Kd for phorbol 12,13-dibutyrate and requirements for Ca2+ and phospholipids. However, differences with respect to the effector-mediated stimulation of protein kinase activity were detectable among these isozymes. The type I enzyme could be stimulated by cardiolipin to a greater extent than those of the type II and III enzymes. In the presence of cardiolipin, the concentrations of dioleoylglycerol or phorbol 12,13-dibutyrate required for half-maximal activation (A1/2) of the type I enzyme were nearly an order of magnitude lower than those for the type II and III enzymes. In the presence of phosphatidylserine, differences in the A1/2 of dioleoylglycerol and phorbol 12,13-dibutyrate for the three isozymes of protein kinase C were less significant than those measured in the presence of cardiolipin. Nevertheless, the A1/2 of these two activators for the type I enzyme were lower than those for the type II and III enzymes. At high levels of phosphatidylserine (greater than 15 mol %), binding of phorbol 12,13-dibutyrate to the type I enzyme evoked a corresponding stimulation of the kinase activity, whereas binding of this phorbol ester to the type II and III enzymes produced a lesser degree of kinase stimulation. For all three isozymes, the concentrations of phosphatidylserine required for half-maximum [3H]phorbol 12,13-dibutyrate binding were almost an order of magnitude less than those for kinase stimulation. Consequently, neither isozyme exhibited a significant kinase activity at lower levels of phosphatidylserine (less than 5 mol %) and phorbol 12,13-dibutyrate (50 nM), a condition sufficient to promote near maximal phorbol ester binding. In addition to their different responses to the various activators, the three protein kinase C isozymes also have different Km values for protein substrates. The type I enzyme appeared to have lower Km values for histone IIIS, myelin basic protein, poly(lysine, serine) (3:1) polymer, and protamine than those for the type II and III enzymes. These results documented that the three protein kinase C isozymes were distinguishable in their biochemical properties. In particular, the type I enzyme, which is a brain-specific isozyme, is distinct from the type II and III enzymes, both have a widespread distribution among different tissues.  相似文献   

4.
A mixed micellar assay for the binding of phorbol-esters to protein kinase C was developed to investigate the specificity and stoichiometry of phospholipid cofactor dependence and oligomeric state of protein kinase C (Ca2+/phospholipid-dependent enzyme) required for phorbol ester binding. [3H]Phorbol dibutyrate was bound to protein kinase C in the presence of Triton X-100 mixed micelles containing 20 mol % phosphatidylserine (PS) in a calcium-dependent manner with a Kd of 5 X 10(-9) M. The [3H]phorbol dibutyrate X protein kinase C . Triton X-100 . PS mixed micellar complex eluted on a Sephacryl S-200 molecular sieve at an Mr of approximately 200,000; this demonstrates that monomeric protein kinase C binds phorbol dibutyrate. This conclusion was supported by molecular sieve chromatography of a similar complex where Triton X-100 was replaced with beta-octylglucoside. Phorbol dibutyrate activation of protein kinase C in Triton X-100/PS mixed micelles occurred and was dependent on calcium. The PS dependence of both phorbol ester activation and binding to protein kinase C lagged initially and then was highly cooperative. The minimal mole per cent PS required was strongly dependent on the concentration of phorbol dibutyrate or phorbol myristic acetate employed. Even at the highest concentration of phorbol ester tested, a minimum of 3 mol % PS was required; this indicates that approximately four molecules of PS are required. [3H]Phorbol dibutyrate binding was independent of micelle number at 20 mol % PS. The phospholipid dependencies of phorbol ester binding and activation were similar, with PS being the most effective; anionic phospholipids (cardiolipin, phosphatidic acid, and phosphatidylglycerol were less effective, whereas phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin did not support binding or activation. sn-1,2-Dioleoylglycerol displaced [3H]phorbol dibutyrate quantitatively and competitively. The data are discussed in relation to a molecular model of protein kinase C activation.  相似文献   

5.
Phospholipid and Ca++ dependency of phorbol ester receptors   总被引:2,自引:0,他引:2  
The phospholipid and Ca++ dependency of a partially purified phorbol ester apo-receptor from the soluble fraction of mouse brain homogenates was studied. This apo-receptor is believed to be identical with the Ca++ and phospholipid-dependent protein kinase C. Binding of phorbol esters to the receptor/kinase C was shown to be entirely dependent on phospholipids. The negatively charged phospholipids phosphatidylserine, phosphatidylinositol, and phosphatidic acid all fully reconstituted binding. The neutral phospholipids were inactive. Among active phospholipids and mixtures of phospholipids, substantial differences (greater than 100-fold) were observed in the amounts required to achieve reconstitution. Although Ca++ was not required for reconstitution of binding activity, it dramatically (up to 100-fold) increased the potency of phospholipids for reconstitution. The phospholipids not only permitted reconstitution of the apo-receptor but also played a major role in determining the binding characteristics of the complex. The KD values of [3H]phorbol 12,13-dibutyrate were in the range of 0.8 nM for the complex with phosphatidylserine to 30 nM for the complex with dioleoyl-phosphatidic acid. Like the binding affinity, the stimulation of protein kinase C activity by phorbol esters was dependent on the phospholipid into which the receptor/kinase C was reconstituted. The importance of the lipid domain for controlling the receptor/kinase C activity and for modulation of cellular sensitivity to phorbol esters is discussed.  相似文献   

6.
Tryptic fragments of protein kinase C containing the kinase (45 KDa) and phorbol ester-binding activity (38 KDa) were separated by Mono O column chromatography. The purified phorbol ester-binding fragment exhibits a higher affinity for phosphatidylserine than the native enzyme but comparable Kd for [3H]phorbol 12,13-dibutyrate as the native enzyme. This proteolytic fragment binds phorbol ester equally efficient either in the presence or absence of Ca2+ and the addition of the kinase fragment did not restore the Ca2+-requirement for the binding. These results indicate that protein kinase C is composed of two functionally distinct units which can be expressed independently after limited proteolysis with trypsin.  相似文献   

7.
1. Fatty acids can be substituted or phosphatidylserine in a reconstitution of phorbol ester binding to protein kinase C. 2. Phorbol ester, however, does not seem to be effectively utilized for the activation of the enzyme. 3. It is suggested that fatty acids play a role on the activation of protein kinase C in the abnormal conditions such as ischemia, while the phospholipid-dependent activation has a physiological significance in normal conditions.  相似文献   

8.
Putative binding sites for zinc are present in the regulatory domain of protein kinase C but a distinct role for zinc has not yet been proposed. Here we show that micromolar concentrations of zinc chloride cause pure rat brain protein kinase C to localize in a detergent-insoluble, cytoskeletal fraction of red cell membranes and to bind to isolated cytoskeleton in the presence of phosphatidylserine. Attachment of protein kinase C to cytoskeleton was accompanied by enhanced expression of binding sites for 3H-phorbol ester, a regulatory ligand of protein kinase C. The active factor in the cytoskeleton was labile to protease suggesting that protein kinase C binds to a cytoskeletal protein.  相似文献   

9.
Calcium phospholipid dependent protein kinase C (PKC) is activated by diacylglycerol (DG) and by phorbol esters and is recognized to be the phorbol ester receptor of cells; DG displaces phorbol ester competitively from PKC. A phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2), can also activate PKC in the presence of phosphatidylserine (PS) and Ca2+ with a KPIP2 of 0.04 mol %. Preliminary experiments have suggested a common binding site for PIP2 and DG on PKC. Here, we investigate the effect of PIP2 on phorbol ester binding to PKC in a mixed micellar assay. In the presence of 20 mol % PS, PIP2 inhibited specific binding of [3H]phorbol 12,13-dibutyrate (PDBu) in a dose-dependent fashion up to 85% at 1 mol %. Inhibition of binding was more pronounced with PIP2 than with DG. Scatchard analysis indicated that the decrease in binding of PDBu in the presence of PIP2 is the result of an altered affinity for the phorbol ester rather than of a change in maximal binding. The plot of apparent dissociation constants (Kd') against PIP2 concentration was linear over a range of 0.01-1 mol % with a Ki of 0.043 mol % and confirmed the competitive nature of inhibition between PDBu and PIP2. Competition between PIP2 and phorbol ester could be demonstrated in a liposomal assay system also. These results indicate that PIP2, DG, and phorbol ester all compete for the same activator-receiving region on the regulatory moiety of protein kinase C, and they lend support to the suggestion that PIP2 is a primary activator of the enzyme.  相似文献   

10.
Phorbol ester binding was studied in protein kinase C-containing extracts obtained from Trypanosoma cruzi epimastigote forms. Specific 12-O-tetradecanoyl phorbol 13-acetate, [3H]PMA, or 12,13-O-dibutyryl phorbol, [3H]PDBu, binding activities, determined in T. cruzi epimastigote membranes, were dependent on ester concentration with a Kd of 9x10(-8) M and 11.3x10(-8) M, respectively. The soluble form of T. cruzi protein kinase C was purified through DEAE-cellulose chromatography. Both protein kinase C and phorbol ester binding activities co-eluted in a single peak. The DEAE-cellulose fraction was further purified into three subtypes by hydroxylapatite chromatography. These kinase activity peaks were dependent on Ca2+ and phospholipids and eluted at 40 mM (PKC I), 90 mM (PKC II) and 150 mM (PKC III) phosphate buffer, respectively. Western blot analysis of the DEAE-cellulose fractions, using antibodies against different isoforms of mammalian protein kinase C enzymes, revealed that the parasite expresses high levels of the alpha-PKC isoform. Immunoaffinity purified T. cruzi protein kinase C, isolated with an anti-protein kinase C antibody-sepharose column, were subjected to phosphorylation in the absence of exogenous phosphate acceptor. A phosphorylated 80 kDa band was observed in the presence of Ca2+, phosphatidylserine and diacylglycerol.  相似文献   

11.
In the present report, we demonstrate that Tb3+ binds to protein kinase C and serves as a luminescent reporter of certain cationic metal-binding sites. Tb3+ titration of 50 nM protein kinase C results in a 20-fold enhancement of Tb3+ luminescence which is half-maximal at 12 microM Tb3+. A Kd of approximately 145 nM was determined for Tb3+ binding to the enzyme. The excitation spectrum of bound Tb3+ exhibits a peak at 280 nm characteristic of energy transfer from protein tryptophan or tyrosine residues. The luminescence of this complex can be markedly decreased by other metals, including Pb2+ (IC50 = 25 microM), La3+ (IC50 = 50 microM), Hg2+ (IC50 = 300 microM), Ca2+ (IC50 = 6 mM), and Zn2+ (IC50 greater than 10 mM), and chelation of Tb3+ by 2 mM EGTA. Tb3+ binding to protein kinase C is correlated with its inhibition of protein kinase activity (IC50 = 8 microM), r = 0.99) and phorbol ester binding (IC50 = 15 microM, r = 0.98). Tb3+ inhibition of protein kinase C activity cannot be overcome by excess Ca2+, but can be partially overcome with excess phosphatidylserine or by chelation of Tb3+ with EGTA. Tb3+ noncompetitively inhibits phorbol ester binding by decreasing the maximal extent of binding without significantly altering binding affinity. The results suggest that the Tb3(+)-binding site is at or allosterically related to the enzyme's phosphatidylserine-binding site, but is distinct from the phorbol ester-binding domain and the Ca2(+)-binding site that regulates enzyme activity.  相似文献   

12.
Differential down-regulation of protein kinase C isozymes   总被引:23,自引:0,他引:23  
Types I, II, and III protein kinase C have been shown to be products of, respectively, gamma, beta, and alpha genes of this enzyme family (Huang, F. L., Yoshida, Y., Nakabayashi, H., Knopf, J. L., Young, W. S., III, and Huang, K.-P. (1987) Biochem. Biophys. Res. Commun. 149, 946-952). Incubation of the highly purified rat brain protein kinase C isozymes with trypsin (kinase/trypsin (w/w) = 100) under identical conditions results in a preferential degradation of types I and II enzymes, whereas the type III enzyme was relatively resistant to tryptic proteolysis. Degradation of the type III enzyme by trypsin could be facilitated with the addition of Ca2+, phosphatidylserine, and dioleoylglycerol; none of these components alone was effective. Limited proteolysis of the three protein kinase C isozymes generated distinctive fragments for each isozyme, indicating that each isozyme has different trypsin-sensitive sites. Tryptic digestion of the type III protein kinase C was used as a model to determine the effects of various modulators on protein kinase C degradation. While Ca2+ and phosphatidylserine together were sufficient to convert the type III protein kinase C from a trypsin-insensitive to a -sensitive form, addition of dioleoylglycerol greatly reduced the Ca2+ requirement for such a conversion. Among the various phospholipids tested, in the presence of either dioleoylglycerol or phorbol ester, phosphatidylserine, cardiolipin, and phosphatidic acid were the most effective, and phosphatidylcholine and phosphatidylethanolamine were the least effective in supporting the digestion of type III protein kinase. Other acidic phospholipids, such as lysophosphatidylserine and phosphatidylinositol, were also effective in supporting the degradation in the presence of phorbol ester but not in the presence of dioleoylglycerol. The relevance of these proteolytic reactions to physiological responses was assessed with phorbol ester on rat basophilic leukemia RBL-2H3 cells, which contained both types II and III protein kinase C. Immunoblot analysis with the isozyme-specific antibodies revealed that phorbol ester induced a faster degradation of type II than that of type III isozyme in these cells. The results demonstrate that the various protein kinase C isozymes have different susceptibilities to proteolysis in vitro, when tested with trypsin, as well as to endogenous proteases in intact cells.  相似文献   

13.
Embryonic rat neurons cultured in defined medium, essentially in the absence of glia, were highly enriched in phorbol ester receptors. The neurons displayed a single class of phorbol 12,13-dibutyrate binding sites with a maximum binding capacity, after 10 d in culture, of 18.6 pmol/mg protein and an apparent dissociation constant of 7.1 nM. Phorbol ester binding sites were associated with protein kinase C, which represented a major protein kinase activity in primary neuronal cultures. Ca2+-phosphatidylserine-sensitive phosphorylation of endogenous substrates was more marked than that observed in the presence of cyclic AMP or Ca2+ and calmodulin. Phorbol ester receptors and protein kinase C levels were critically dependent on the culture age. Thus, about a 20-fold increase in binding sites occurred during the first week in culture and was accompanied by a corresponding increase in Ca2+-phosphatidylserine-sensitive protein phosphorylation in soluble neuronal extracts. These changes largely paralleled a similar rise in phorbol ester binding during fetal development in vivo. The apparent induction of phorbol ester receptors was specific relative to other cellular proteins and could be inhibited by cycloheximide or Actinomycin D. Phosphorylation of endogenous substrates in intact cultured neurons paralleled the age-dependent increase in protein kinase C. Furthermore, 32P incorporation into several major phosphoproteins was markedly augmented by treating the neuronal cultures with phorbol esters. Such phosphorylation events may provide a clue to the significance of protein kinase C in developing neurons.  相似文献   

14.
We describe two factors in human placenta that modulate the interaction of phorbol ester tumor promoters with cell membranes or with protein kinase C. One, phorbol ester binding inhibitory factor, can inhibit binding of [3H]phorbol-12,13-dibutyrate to cultured cells or to a membrane fraction but does not inhibit its binding to a homogeneous C kinase preparation (phorbol ester binding sites). The other, C kinase activating factor, stimulates C kinase activity in a calcium-dependent manner. We separated these two biochemical activities from a crude human placental fraction by gel filtration.  相似文献   

15.
Cholesterylphosphoryldimethylethanolamine is a zwitterionic compound which is a good bilayer stabilizer. As has been found with many other compounds having these properties, cholesterylphosphoryldimethylethanolamine is found to be a potent inhibitor of protein kinase C in both vesicle and micelle assay systems. The kinetics of the inhibition in Triton X-100 micelles was non-competitive with respect to ATP, histone, diolein, phorbol ester and Ca2+. It has a Ki of about 30 m. The inhibition kinetics as a function of phosphatidylserine concentration is more complex but suggestive of competitive inhibition. Cholesterylphosphoryldimethylethanolamine does not prevent the partitioning of protein kinase C into the membrane. This inhibitor lowers the Ca2+-phosphatidylserine-independent phosphorylation of protamine sulfate by protein kinase C and directly affects the catalytic segment of the enzyme generated by tryptic hydrolysis. Thus, this zwitterionic bilayer stabilizing inhibitor of protein kinase C both competes with the binding of phosphatidylserine as well as affects the active site of protein kinase C.Abbreviation CPD cholesterylphosphoryldimethylethanolamine  相似文献   

16.
Stoichiometric binding of diacylglycerol to the phorbol ester receptor   总被引:1,自引:0,他引:1  
The major phorbol ester receptor is the Ca++-activated, phospholipid-dependent protein kinase C. Diacylglycerol stimulates protein kinase C in a fashion similar to the phorbol esters. Likewise, it inhibits phorbol ester binding competitively. Both results suggest that diacylglycerol is the/an endogenous phorbol ester analogue. Alternatively, the diacylglycerol might simply be acting to modify the phospholipid environment of the protein. If diacylglycerol were indeed functioning as an analogue, it should interact with the receptor stoichiometrically. This interaction can be quantitated by measuring the perturbation in apparent diacylglycerol binding affinity as a function of the ratio of diacylglycerol to receptor. We report here that 1,2-dioleoylglycerol interacts with the receptor with the predicted stoichiometry.  相似文献   

17.
Protein kinase C (PKC) comprises a family of distinct isoenzymes that are involved in signal transduction pathways linking the cell to triggers perceived via membrane receptors. These isoenzymes differ in their tissue distribution, activation requirements, and substrate specificity. One common denominator among different PKC subspecies is their activation by phorbol esters. We have developed a sensitive method permitting the measurement of phorbol ester binding sites, their quantitation, as well as their dissociation kinetics, by performing cytofluorometric analyses on intact cells or on isolated PKC associated to phosphatidylserine vesicles incubated in the presence of fluorochrome-labeled phorbol ester. Both PKC isozymes beta I/beta II and alpha from brain and spleen after incorporation into phosphatidylserine vesicles, display affinities with apparent Kd of 120 and 50 nM, respectively; although PKC gamma from brain exhibits a Kd of 210 nM. In addition to these receptors, on PKC isozymes from spleen, an intermediate affinity phorbol ester receptor (Kd of 3 nM) and an additional high affinity phorbol ester binding site with a Kd of 0.1 to 0.5 nM were also detected. This latter receptor comigrates with high m.w. PKC isoforms. In different cell lines, the phorbol ester binding patterns, as well as the expression of individual PKC isoenzymes, could be positively correlated.  相似文献   

18.
An affinity column, prepared by immobilizing phosphatidylserine and cholesterol in polyacrylamide, was utilized in the purification of protein kinase C. Protein kinase activity and phorbol ester binding were monitored by assaying Ca2+ plus phosphatidylserine-dependent phosphorylation of histone H1 and [3H]phorbol dibutyrate binding, respectively. Both activities were present in a cytosolic extract of rabbit renal cortex, eluted together from a DEAE-cellulose column, bound to the affinity column in the presence of Ca2+, and eluted symmetrically upon application of EGTA. Recovery from the affinity column was high (30-50%) and resulted in as much as a 6000-7700-fold purification, depending on the region of the DEAE-cellulose peak that was applied. Following affinity column purification, protein kinase and phorbol ester binding activity eluted symmetrically upon gel filtration, with a molecular weight of approximately 80 kDa. A protein of the same size was present in silver-stained gels following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of affinity column purified samples from the DEAE-cellulose peak. From 2-4 other, smaller proteins were also present, their number and relative amounts depending on the region of the DEAE-cellulose peak used. These data indicate that Ca2+-dependent/binding to a polyacrylamide-immobilized phospholipid provides a useful technique for purification of protein kinase C as well as other, unidentified proteins exhibiting a Ca2+ plus phospholipid-dependent interaction.  相似文献   

19.
Membrane interactions of tetradecapeptide toxin mastoparan (MP) and analogues (MP-3, MP-X and polistes MP), as indicated by inhibition of various enzymatic and cellular activities, were investigated. MP-3 was found to be the least active in inhibiting protein kinase C (PKC; activated by phosphatidylserine vesicles, synaptosomal membranes or phorbol ester), synaptosomal membrane Na,K-ATPase and proliferation and viability of leukemia HL60 cells. MP-3, however, was as active as others in inhibiting PKC activated by arachidonate monomers and phorbol ester binding. The unique properties of MP-3, the [des-Ile1-Asn2]-analogue of MP, might be related to its low functional amphiphilicity compared to others and useful in further delineating biological activities associated with or regulated by membranes.  相似文献   

20.
The specificity of the phospholipid cofactor requirement of rat brain protein kinase C was investigated using Triton X-100 mixed micellar methods. Sixteen analogues of phosphatidylserine were prepared and tested for their ability to support protein kinase C activity, [3H]phorbol 12,13-dibutyrate binding, and protein kinase C binding to mixed micelles. Phosphatidylserinol, -L-serine methyl ester, -N-acetyl-L-serine, -2-hydroxyacetate, -3-hydroxypropionate, and -4-hydroxybutyrate did not activate protein kinase C in mixed micelles containing 2 mol % of sn-1,2-dioleoylglycerol. This indicates that both the carboxyl and amino moieties are important for activation. Phosphatidyl-D-serine and -L-homoserine were incapable of supporting full activation; this demonstrates stereospecificity and the importance of the distance between the phosphate and carboxyl and amino moieties. Since 1,2-rac-phosphatidyl-L-serine and 1,3-phosphatidyl-L-serine fully supported protein kinase C activity, the stereochemistry within the glycerol backbone at the interface was not necessary for maximal activation. Neither lysophosphatidyl-L-serine nor 1-oleoyl-2-acetyl-sn-glycero-3-phospho-L-serine supported protein kinase C activity implying that the interfacial conformation is critical to the activation process. The phospholipid dependencies of [3H]phorbol 12,13-dibutyrate binding and of protein kinase C binding to mixed micelles containing sn-1,2-dioleoylglycerol did not mirror those for activation. The data demonstrate that protein kinase C possesses a high degree of specificity with respect to phospholipid activation and implicate several functional groups within the phospho-L-serine polar head group in binding and activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号