首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Cold stress is one of the major limitations to crop productivity worldwide. We investigated the effects of multiple gene expression from cold tolerant Capsella bursa-pastoris in transgenic tobacco (Nicotiana tabaccum) plants. We combined CblCE53 and CbCBF into a reconstruct vector by isocaudomers. Plant overexpression of CbICE53 under the stress inducible CbCOR15b promoter and CbCBF under a constitutive promoter showed increased tolerance to both chilling and freezing temperatures in comparison to wild-type plants, according to the electrolyte leakage and relative water content. The expressions of endogenous cold-responsive genes in transgenic tobacco (NtDREB1, NtDREB3, NtERD10a and NtERD10b) were obviously upregulated under normal and low temperature conditions. These results suggest that the CbICE53 + CbCBF transgenic plants showed a much greater cold tolerance as well as no dwarfism and delayed flowering. Thus they can be considered as a potential candidate for transgenic engineering for cold tolerant tobacco.  相似文献   

6.
The plastidic thioredoxin F-type (TrxF) protein plays an important role in plant saccharide metabolism. In this study, a gene encoding the TrxF protein, named SlTrxF, was isolated from tomato. The coding region of SlTrxF was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants exhibited increased starch accumulation compared to the wild-type (WT). Real-time quantitative PCR analysis showed that constitutive expression of SlTrxF up-regulated the expression of ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2) and soluble starch synthase (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses showed that the major enzymes (AGPase and SSS) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to WT. These results suggest that SlTrxF may improve starch content of Arabidopsis by regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis.  相似文献   

7.
Late embryogenesis abundant (LEA) proteins are closely related to abiotic stress tolerance of plants. In the present study, we identified a novel Em-like gene from lettuce, termed LsEm1, which could be classified into group 1 LEA proteins, and shared high homology with Cynara cardunculus Em protein. The LsEm1 protein contained three different 20-mer conserved elements (C-element, N-element, and M-element) in the C-termini, N-termini, and middle-region, respectively. The LsEm1 mRNAs were accumulated in all examined tissues during the flowering and mature stages, with a little accumulation in the roots and leaves during the seedling stage. Furthermore, the LsEm1 gene was also expressed in response to salt, dehydration, abscisic acid (ABA), and cold stresses in young seedlings. The LsEm1 protein could effectively reduce damage to the lactate dehydrogenase (LDH) and protect LDH activity under desiccation and salt treatments. The Escherichia coli cells overexpressing the LsEm1 gene showed a growth advantage over the control under drought and salt stresses. Moreover, LsEm1-overexpressing rice seeds were relatively sensitive to exogenously applied ABA, suggesting that the LsEm1 gene might depend on an ABA signaling pathway in response to environmental stresses. The transgenic rice plants overexpressing the LsEm1 gene showed higher tolerance to drought and salt stresses than did wild-type (WT) plants on the basis of the germination performances, higher survival rates, higher chlorophyll content, more accumulation of soluble sugar, lower relative electrolyte leakage, and higher superoxide dismutase activity under stress conditions. The LsEm1-overexpressing rice lines also showed less yield loss compared with WT rice under stress conditions. Furthermore, the LsEm1 gene had a positive effect on the expression of the OsCDPK9, OsCDPK13, OsCDPK15, OsCDPK25, and rab21 (rab16a) genes in transgenic rice under drought and salt stress conditions, implying that overexpression of these genes may be involved in the enhanced drought and salt tolerance of transgenic rice. Thus, this work paves the way for improvement in tolerance of crops by genetic engineering breeding.  相似文献   

8.
9.
10.
Glutathione transferases (GSTs) mainly catalyze the nucleophilic addition of glutathione to a large variety of hydrophobic molecules participating to the vacuole compartmentalization of many toxic compounds. In this work, the putative tolerance of transgenic tobacco plants over-expressing CsGSTU genes towards the chloroacetanilide herbicide alachlor was investigated. Our results show that the treatment with 0.0075 mg cm-3 of alachlor strongly affects the growth of both wild type and transformed tobacco seedlings with the sole exception of the transgenic lines overexpressing CsGSTU2 isoform that are barely influenced by herbicide treatment. In order to correlate the in planta studies with enzyme properties, recombinant CsGSTs were in vitro expressed and tested for GST activity using alachlor as substrate. The recombinant GSTU2 enzyme was twice more active than GSTU1 in conjugating alachlor to GSH thus indicating that CsGSTU2 might play a crucial role in the plant defense against the herbicide. Moreover, as a consequence of the infiltration with a bacterial suspension of the P. syringae pv. tabaci, transgenic tobacco plants but not wild type plants bestowed the capability to limit toxic metabolite diffusion through plant tissues as indicated by the absence of chlorotic halos formation. Consequently, the transgenic tobacco plants described in the present study might be utilized for phytoremediation of residual xenobiotics in the environment and might represent a model for engineering plants that resist to pathogen attack.  相似文献   

11.
Xanthine dehydrogenase (EC1.1.1.204; XDH) plays an important role in purine catabolism that catalyzes the oxidative hydroxylation of hypoxanthine to xanthine and of xanthine to uric acid. Long attributed to its role in recycling and remobilization of nitrogen, recently, XDH is implicated in plant stress responses and acclimation, such research efforts, however, have thus far been restricted to Arabidopsis XDH-knockdown/knockout studies. This study, using an ectopic overexpression approach, is expected to provide novel findings. In this study, a XDH gene from Vitis vinifera, named VvXDH, was synthesized and overexpressed in Arabidopsis, the transgenic Arabidopsis showed enhanced salt tolerance. The VvXDH gene was investigated and the results demonstrated the explicit role of VvXDH in conferring salt stress by increasing allantoin accumulation and activating ABA signaling pathway, enhancing ROS scavenging in transgenic Arabidopsis. In addition, the water loss and chlorophyll content loss were reduced in transgenic plants; the transgenic plants showed higher proline level and lower MDA content than that of wild-type Arabidopsis, respectively. In conclusion, the VvXDH gene has the potential to be applied in increasing allantoin accumulation and enhancing the tolerance to abiotic stresses in Arabidopsis and other plants.  相似文献   

12.
Superoxide dismutase (SOD) proteins, which are widely present in the plant kingdom, play vital roles in response to abiotic stress. However, the functions of cucumber SOD genes in response to environmental stresses remain poorly understood. In this study, a SOD gene CsCSD1 was identified and functionally characterized from cucumber (Cucumis sativus). The CsCSD1 protein was successfully expressed in E. coli, and its overexpression significantly improved the tolerance of host E. coli cells to salinity stress. Besides, overexpression of CsCSD1 enhanced salinity tolerance during germination and seedling development in transgenic Arabidopsis plants. Further analyses showed that the SOD and CAT (catalase) activities of transgenic plants were significantly higher than those of wild-type (WT) plants under normal growth conditions as well as under NaCl treatment. In addition, the expression of stress-response genes RD22, RD29B and LEA4-5 was significantly elevated in transgenic plants. Our results demonstrate that the CsCSD1 gene functions in defense against salinity stress and may be important for molecular breeding of salt-tolerant plants.  相似文献   

13.

Key message

Molecular analysis of a zeta subfamily GST gene from T. hispida involved in ABA and methyl viologen tolerance in transgenic Arabidopsis and Tamarix.

Abstract

Glutathione S-transferase (GST) genes are important for the improvement of plant abiotic stress tolerance, and our previous study demonstrated that the ThGSTZ1 gene from Tamarix hispida improves plant salt and drought tolerance. To further understand the role of ThGSTZ1 in the response of plants to abscisic acid (ABA) and oxidative stress, three ThGSTZ1-overexpressing transgenic Arabidopsis thaliana lines were analyzed in the current study. The results showed that the transgenic lines exhibited higher biomass accumulation, higher activities of GST and other protective enzymes, and less reactive oxygen species (ROS) and cell damage than wild-type (WT) plants under ABA and methyl viologen (MV) stress. In addition, the analysis of a transgenic T. hispida line transiently expressing ThGSTZ1 confirmed these results. The activities of GST, glutathione peroxidase, and superoxide dismutase were markedly higher in the ThGSTZ1-overexpressing lines compared with the control lines under both ABA and MV treatments, and the transgenic lines also exhibited a lower degree of electrolyte leakage (EL) and a decreased H2O2 content. All these results suggested that ThGSTZ1 can also improve plant ABA and oxidation tolerance by regulating ROS metabolism and that ThGSTZ1 represents an excellent candidate gene for molecular breeding to increase plant stress tolerance.
  相似文献   

14.

Key message

SpAQP1 was strongly induced by salt in an ABA-independent way, promoted seed germination and root growth in transgenic tobaccos and increased salt tolerance by increasing the activities of antioxidative enzymes.

Abstract

Aquaporin (AQP) plays crucial roles in the responses of plant to abiotic stresses such as drought, salt and cold. Compared to glycophytes, halophytes often have excellent salt and drought tolerances. To uncover the molecular mechanism of halophyte Sesuvium portulacastrum tolerance to salt, in this study, an AQP gene, SpAQP1, from S. portulacastrum was isolated and characterized. The amino acid sequence of SpAQP1 shared high homology with that of plant plasma membrane intrinsic proteins (PIPs) and contained the distinct molecular features of PIPs. In the phylogenic tree, SpAQP1 was evidently classified as the PIP2 subfamily. SpAQP1 is expressed in roots, stems and leaves, and was significantly induced by NaCl treatment and inhibited by abscisic acid (ABA) treatment. When heterologously expressed in yeast and tobacco, SpAQP1 enhanced the salt tolerance of yeast strains and tobacco plants and promoted seed germination and root growth under salt stress in transgenic plants. The activity of antioxidative enzymes including superoxide dismutase, peroxidase and catalase was increased in transgenic plants overexpressing SpAQP1. Taken together, our studies suggested that SpAQP1 functioned in the responses of S. portulacastrum to salt stress and could increase salt tolerance by enhancing the antioxidative activity of plants.
  相似文献   

15.
16.
Chalcone synthase (CHS) is one of the key enzymes in flavonoid biosynthesis pathway in plants. However, the roles of AeCHS gene from Abelmoschus esculentus in flavonoid accumulation and tolerance to abiotic stresses have not been studied. In this study, the AeCHS gene was cloned from Abelmoschus esculentus. The open reading frame contained 1170 nucleotides encoding 389 amino acids. The coding region of AeCHS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis to obtain transgenic plants. Overexpression of AeCHS increased the production of downstream flavonoids and the expression of related genes in the flavonoid biosynthesis pathway. It also improved resistance to salt and mannitol stresses during seed germination and root development. Further component and enzymatic analyses showed the decreased content of H2O2 and malondialdehyde and the increased activities of superoxide dismutase (SOD) and peroxidase (POD) in transgenic seedlings. Meanwhile, the expression level of AtSOD and AtPOD genes was up-regulated against salt and osmotic stresses. Together, our finding indicated that changing the expression level of AeCHS in plants alters the accumulation of flavonoids and regulates plantlet tolerance to abiotic stress by maintaining ROS homeostasis. The AeCHS gene has the potential to be used to increase the content of valuable flavonoids and improve the tolerance to abiotic stresses in plants.  相似文献   

17.
18.
Vacuolar-type H+-ATPase (V-ATPase), a multi-subunit endomembrane proton pump, plays an important role in plant growth and response to environmental stresses. In the present study, transgenic tobacco that overexpressed the V-ATPase c subunit gene from Iris lactea (IrlVHA-c) was used to determine the function of IrlVHA-c. Quantitative PCR analysis showed that IrlVHA-c expression was induced by salt stress in I. lactea roots and leaves. Subcellular localization of green fluorescent protein (GFP) as marker combined with FM4-64 staining showed that the IrlVHA-c-GFP was localized to the endosomal compartment in tobacco cells. Compared with the wild-type, the IrlVHA-c transgenic tobacco plants exhibited greater seed germination rates, root length, fresh weight, and higher relative water content (RWC) of leaves under salt stress. Furthermore, the IrlVHA-c transgenic tobacco leaves have lower stomatal densities and larger stomatal apertures than wild-type. Under salt stress, superoxide dismutase (SOD) activity in the transgenic tobacco was significantly enhanced. Moreover, the level of malondialdehyde (MDA) in the transgenic tobacco was significantly lower than that in wild-type plants under salt stress. Taken together, these results suggested that the IrlVHA-c plays an important role in salt tolerance in transgenic tobacco by influencing stomatal movement and physiological changes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号