首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In plants, lipoxygenase (LOX), facilitated by the LOX family genes is closely related to fruit ripening and senescence, but research on LOX in peach fruit is limited. To study the roles of LOX family genes in fruit ripening during storage, a comprehensive overview of the LOX gene family in peach is presented, including their phylogenetic relationships, gene structures and subcellular localizations. Additionally, the fruit quality, including fruit firmness, ethylene production and soluble solids content under different storage conditions, were assessed. Finally, 12 peach genes that encode LOX proteins have been identified, and comparisons of the PpaLOX gene expression levels under different postharvest treatments in peach fruit suggest that PpaLOX2.1, PpaLOX7.1, PpaLOX7.2, and especially PpaLOX2.2, may be required in peach fruit ripening during storage. The results will be useful to further analyze the functions of the LOX family of genes in plants.  相似文献   

2.
ADP ribosylation factors (ARFs), one group within the Ras superfamily of GTP-binding proteins, are ubiquitous within the eukaryotic kingdom. The functions of ARFs are extensive, and include regulatory roles in vesicular transportation, lipid metabolism, and microtubule dynamics, and the cellular processes related to these roles. Most ARFs have been identified from mammalian species and yeast; although little is known about the functional importance of ARFs in plants, it seems to be equally diverse and significant. We have been working on plant responses under heat stress, and showed that heat-shock can induce seed germination (Koo et al. in Plant Physiol 167:1030–1038, 2015). In the present study, we report nine ARF gene family members from tobacco (Nicotiana tabacum), all belonging to the same group (Class 1) in the phylogenetic analysis. One family member, NtARF1, was induced under high-temperature stress. To elucidate the biological function of NtARF1, we generated transgenic tobacco plants overexpressing NtARF1 and the seeds of these transgenic tobacco plants germinated earlier than the seeds of non-transgenic tobacco plants. We also classified ARF family genes in plant species through systematic genomic DNA sequence data-mining, focusing on the fully sequenced and extensively annotated genomes of Arabidopsis thaliana, Brachypodium distachyon, Medicago truncatula, Mimulus guttatus, Nicotiana benthamiana, Setaria italica, Solanum lycopercisum, and Solanum tuberosum, and of some major crops including rice, soybean, corn, and tobacco. The Class 1 of our phylogenetics analysis comprised the highest number of ARFs among the four groups obtained for all plant species analyzed, especially for crop plant species.  相似文献   

3.
Late embryogenesis abundant (LEA) proteins are identified as a large and highly diverse group of polypeptides accumulating in response to cellular dehydration in many organisms. However, there are only very limited reports of this protein family in maize until this study. In the present paper, we identified 32 LEA genes in maize. A total of 83 LEA proteins including 51 members in Arabidopsis and 32 putative members in maize were classified into nine groups. Gene organization and motif compositions of the LEA members are highly conserved in each of the groups, indicative of their functional conservation. The predicted ZmLEA genes were non-random distributed across chromosomes, and transposition event and segmental duplication contributed to the expansion of the LEA gene family in maize. Some abiotic stress-responsive cis-elements were also found in the promoters of ZmLEA genes. Microarray expression analyses revealed different accumulation patterns of ZmLEA family members. Moreover, some members of ZmLEAs were regulated under IAA and some abiotic stresses. This study will provide comprehensive information for maize LEA gene family and may pave the way for deciphering their functions in further studies.  相似文献   

4.
The genome mining of chickpea (Cicer arietinum L.) revealed a total of 37 putative Dof genes using NCBI BLAST search against the genome with a highly conserved Dof domain. The translated Dof proteins possessed 150–493 amino acid residues with molecular weight ranging from 16.9 to 54.4 kD and pI varied from 4.98 to 9.64 as revealed by ExPASy server ProtParam. The exon–intron organization showed predominance of intronless Dof genes in chickpea. The predicted Dof genes were distributed among the eight chromosomes with a maximum of 9 Dof genes present on chromosome 7 and a single Dof gene was found on chromosome 8.The predominance of segmental gene duplication as compared to tandem duplication was observed which might be the prime cause of Dof gene family expansion in chickpea. The cis-regulatory element analysis revealed the presence of light-responsive, hormone-responsive, endosperm-specific, meristem-specific and stress-responsive elements. Comprehensive phylogenetic analyses of Dof genes of chickpea with Arabidopsis, rice, soybean and pigeonpea revealed several orthologs and paralogs assisting in understanding the putative functions of CaDof genes. The functional divergence and site-specific selective pressures of chickpea Dof genes have been investigated. The bioinformatics-based genome-wide assessment of Dof gene family of chickpea attempted in the present study could be a significant step for deciphering novel Dof genes based on genome-wide expression profiling.  相似文献   

5.
6.
Lignin is a major component of stone cells in pear fruit, which significantly affects fruit quality. Hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT), a recently discovered enzyme in plants, is an important gene that participates in the formation of lignin. Although HCT gene cloning and expression patterns have been studied in several species, including pear, there is still no extensive genome-wide bioinformatics analysis on the whole gene family, and the evolutionary history of HCT gene family is still unknown. A total of 82 HCT genes were identified in pear, most of which have one or two exons, and all with the conserved HXXXD motif and transferase domains. Based on the structural characteristics and phylogenetic analysis of these sequences, the HCT gene family genes could be classified into four main groups. Structural analysis also revealed that 25 % of HCT genes share a MYB binding site. Expansion of the HCT gene family mostly occurred before the divergence between Arabidopsis and Rosaceae, with whole-genome duplication or segmental duplication events playing the most important role in the expansion of the HCT gene family in pear. At the same time, purifying selection also played a critical role in the evolution of HCT genes. Five of the 82 HCT genes were verified by qRT-PCR to correspond to the pattern of stone cell formation during pear fruit development. The genome-wide identification, chromosome localization, gene structures, synteny, and expression analyses of pear HCT genes provide an overall insight into HCT gene family and their potential involvement in growth and development of stone cells.  相似文献   

7.
IGT family genes share the highly conserved motif GφL-(A/T) IGT in domain II and play an essential role in plant form. The tree architecture of apple (Malus ×?domestica Borkh.) affects fruit quality and yield. However, little information is available regarding IGT family genes in apple. Apple cultivars of four ideotypes (columnar, tip bearer, spur, and standard) were selected to characterize IGT family genes. Four IGT family members named MdoTAC1a, MdoTAC1b, MdoLAZY1, and MdoLAZY2 were found in the apple genome, sharing four conserved domains. In addition, MdoLAZY1 and MdoLAZY2 contain a fifth domain (EAR motif) at the C-terminus. There was no difference in the coding sequences of each gene in the four cultivars, but several mutated sites were found in their promoters. The four genes displayed lower expression levels in all tested tissues and organs of the columnar cultivar than in the other three cultivars, while expression levels of MdoTAC1a and MdoTAC1b in shoot tips and vegetative buds were highest in the standard cultivar, followed by spur, tip bearing, and columnar cultivars in decreasing order. These results indicate that IGT gene promoters are of great importance in the development of apple tree architecture and lay a theoretical basis for developing gene-specific markers for marker-assisted selection in breeding programs.  相似文献   

8.
9.
10.
11.
12.
GDSL-type esterase/lipase (GELP) is mainly characterized by a conserved GDSL domain at N terminus, and is widely found in all living species, both prokaryotes and eukaryotes. GELP gene family consists of a wide range of members playing important roles in plant physiological processes, such as development, stress responses, and functional divergences. In our study, 597 GELP genes were identified from six Rosaceae genomes (i.e., Fragaria vesca, Prunus persica, Prunus avium, Prunus mume, Pyrus bretschneideri, and Malus domestica) by a comprehensive analysis. All GELP genes were further divided into ten subfamilies based on phylogenetic tree analysis. Subfamily D and subfamily E are the two largest subfamilies. Microcollinearity analysis suggested that WGD/segmental events contribute to the expansion of the GELP gene family in M. domestica and P. bretschneideri compared to F. vesca, P. persica, P. avium, and P. mume. Some PbGELPs were expressed during the fruit development of P. bretschneideri and pollen tubes, indicating their activity in these tissues. The expression divergence of PbGELP duplication gene pairs suggests that many mutations were allowed during evolution, although the structure of GELP genes was highly conserved. The current study results provided the feasibility to understand the expansion and evolution patterns of GELP in Rosaceae genomes, and highlight the function during P. bretschneideri fruits and pollen tubes development.  相似文献   

13.
Homeodomain-Leu zipper (HD-Zip) gene family performs important biological functions related to organ development, photomorphogenesis and abiotic stress response in higher plants. However, systematic analysis of HD-Zip genes in Brassica rapa has not been performed. In the present study, a bioinformatics approach was used to identify and characterize the BraHD-Zip gene family in B. rapa. A total of 88 members were identified. All putative BraHD-Zip proteins contained a clear HD and LZ combined domain. Eighty-seven BraHD-Zips were non-randomly located on ten chromosomes. This gene family was mainly expanded following the whole genome triplication event and was preferentially over-retained relative to its neighboring genes in B. rapa. On phylogenetic analysis, the BraHD-Zips could be categorized into four distinct major groups (I–IV). Each group exhibited variant gene structures and motif distributions. Some syntenic orthologous gene pairs presented diverse expression profiles, which indicate that these gene pairs may be involved in the development of new functions during evolution. In summary, our analysis provided genome-wide insights into the expansion, preferential retention, expression profiles and functional diversity of BraHD-Zip genes following whole genome triplication in B. rapa.  相似文献   

14.
15.
Dicer, Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) comprise the core components of RNA-induced silencing complexes, which trigger RNA silencing. Here, we performed a complete analysis of the cucumber Dicer-like, AGO, and RDR gene families including the gene structure, genomic localization, and phylogenetic relationships among family members. We identified seven CsAGO genes, five CsDCL genes, and eight CsRDR genes in cucumber. Based on phylogenetic analysis, each of these genes families was categorized into three or four clades. The orthologs of CsAGOs, CsDCLs, and CsRDRs were identified in apple, peach, wild strawberry, foxtail millet, and maize, and the evolutionary relationships among the orthologous gene pairs were investigated. We also investigated the expression levels of CsAGOs, CsDCLs, and CsRDRs in various cucumber tissues. All CsAGOs were relatively higher upregulated in leaves and tendrils than in other organs, especially CsAGO1c, CsAGO1d, and CsAGO7. All CsDCL genes were relatively higher upregulated in tendrils, with almost no expression detected for CsDCL1, CsDCL4a, or CsDCL4b in other organs. In addition, CsRDR1a, CsRDR2, CsRDR3, and CsRDR6 had relatively higher upregulation in tendrils, whereas almost all CsRDRs were downregulation in other organs. The results of this study will facilitate further studies of gene silencing pathways in cucumber.  相似文献   

16.
17.
18.
The dim1+ gene family is essential for G2/M transition during mitosis and encodes a small nuclear ribonucleoprotein that functions in the mRNA splicing machinery of eukaryotes. However, the plant homolog of DIM1 gene has not been defined yet. Here, we identified a gene named GmDim1 positioned on chromosome 9 of soybean (Glycine max (L.) Merr.) with 80% homology to other eukaryotic dim1+ family genes. A domain of soybean DIM1 protein was primarily conserved with U5 snRNP protein family and secondarily aligned with mitotic DIM1 protein family. The GmDim1 gene was expressed constitutively in all soybean organs. The transgenic Arabidopsis thaliana (L.) plants overexpressing GmDim1 showed early flowering and stem elongation, produced multiple shoots and continued flowering after the post-flowering stage. DIM1 proteins transiently expressed in onion cells were localized in the nucleus with dense deposition in the nucleolus. Therefore, we propose that the soybean GmDim1 gene is a component of plant U5 snRNP involved in mRNA splicing and normal progress of plant growth.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号