首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
The terrestrial overwintering larvae of the cranefly Tipula trivittata were freeze tolerant (able to survive the freezing of their extracellular body fluids) throughout the winter and spring of 1982–1983 until they pupated in mid-May. The larvae were most cold tolerant (24 h lower lethal temperatures of ?25 to ?30°C) in late January and early February. Sorbitol, at a maximal concentration of ~0.4 M, was the only polyol determined to be present at high levels and sorbitol accounted for most of the seasonal fluctuation in osmotic concentration. Haemolymph inorganic ion (Na+, K+, Ca2+, Mg2+, Cl?) concentrations did not vary seasonally.The supercooling points of the larvae remained constant at ?6 to ?7°C over the study period because of the presence of haemolymph ice nucleating factors. These ice nucleating factors consist not only of haemolymph proteins, as had been demonstrated previously in other insect species, but also lipoproteins.  相似文献   

2.
Alpine Patrobus septentrionis and Calathus melanocephalus (Col., Carabidae) were found to be susceptible to freezing. In the summer, the supercooling points were about ?5 to ?6°C. They were lowered during acclimation in the field and in the laboratory at 0 or ?3°C. Cold hardiness was correlated to, but not determined by, haemolymph osmolality. Thermal hysteresis was not detected. Increase in cold hardiness was concluded to be mainly a result of the influence of acclimation conditions on ice-nucleating compounds. In P. septentrionis, the results indicate that different compounds with ice-nucleation activity at different temperatures determine the limit of supercooling at different times. The haemolymph of both species supercooled well below the intact beetles at all seasons. Changes in haemolymph supercooling points could be ascribed to inactivation of ice nucleators in early autumn and to the effect of changes in solute concentration. In P. septentrionis, myo-inositol increased during cold-acclimation to 80–120 mMol concentrations, whereas C. melanocephalus produced 40–60 mMol trehalose.  相似文献   

3.
Freeze-avoiding fire-colored beetle larvae, Dendroides canadensis, were monitored seasonally to explore the role of endogenous hemolymph ice nucleators and antifreeze proteins on the maintenance of supercooling. In preparation for overwintering, D. canadensis depressed hemolymph ice nucleator activity and increased thermal hysteresis activity [mean value circa 0. 5 °C (summer) versus circa 5 °C (midwinter)] resulting in decreased larval and hemolymph supercooling points [−7 °C (summer) versus −20 °C (midwinter)]. Results of gel filtration chromatography, flotation ultracentifugation and quantitative investigation of ice nucleator activity using hemolymph from summer and winter collected larvae strongly suggest that highly active protein and lipoprotein ice nucleators are removed in preparation for overwintering. Additions of either purified antifreeze proteins or midwinter hemolymph with high antifreeze protein activity to a mixture of protein or lipoprotein ice nucleators isolated from D. canadensis hemolymph inhibited the activity of these nucleators. This suggests that in addition to seasonal removal, inhibition of hemolymph ice nucleators by antifreeze proteins contributes to seasonal increases in hemolymph supercooling capacity. Accepted: 8 August 1996  相似文献   

4.
Summary Overwintering larvae and adults of the stag beetle,Ceruchus piceus, are freeze sensitive (i.e. cannot survive internal freezing). The most commonly described cold adaptation of freeze susceptible insects involves the production of antifreezes to promote supercooling, butCeruchus piceus larvae produced only low levels of antifreezes in the winter. However, by removing ice nucleators from the gut and hemolymph in the winter the larvae were able to depress their supercooling points from approximately –7°C in the summer to near –25°C in mid-winter. The ice nucleators present in the non-winter hemolymph were identified as lipoproteins. One of these lipoproteins with ice nucleator activity was purified using flotation ultracentrifugation and anion exchange (DEAE-Sephadex) chromatography.Removal of ice nucleators to promote supercooling in winter may be energetically preferable to costly production and maintenance of high, of-ten molar, concentrations of antifreeze. Obviously the ice nucleator must normally perform a function which the insect can spare over the winter. Hemolymph lipoproteins, which generally function in lipid transport, may fit this criterion during the winter period of reduced metabolic activity.Abbreviations LP I very low density lipoprotein - LP II low density lipoprotein - PAGE polyacrylamide gel electrophoresis - SCP supercooling point  相似文献   

5.
The relationship between the concentration of insect hemolymph ice nucleators in samples of 0.9% NaCl solution and the supercooling points of the samples was determined by using a dilution technique. The supercooling points were only moderately reduced following dilution by a factor of up to 103, whereas dilution beyond this point caused a marked drop in the supercooling points. The dilution factor corresponding to a 50% reduction in the nucleating activity of native hemolymph is taken as a measure of the concentration of ice nucleators in native hemolymph.This method was used to determine the concentration of ice nucleators in the hemolymph of Eurosta solidaginis larvae from Minnesota and Texas, acclimated to different temperatures. Significant levels of nucleators were found only in larvae from Minnesota, and +5 °C was found to be the optimal temperature for nucleator formation. This comparatively high temperature optimum is interpreted as a physiological adaptation, ensuring sufficient nucleator levels in the hemolymph by the time of the first exposure to freezing temperatures in the winter.  相似文献   

6.
Larvae of the Siberian timberman beetle Acanthocinus aedilis display a number of unique features, which may have important implications for the field of cold hardiness in general. Their supercooling points are scattered over a wide temperature range, and some individuals have supercooling points in the low range of other longhorn beetles. However, they differ from other longhorn beetles in being tolerant to freezing, and in the frozen state they tolerate cooling to below −37°C. In this respect they also differ from the European timberman beetles, which have moderate supercooling capacity and die if they freeze. The combination of freezing tolerance and low supercooling points is unusual and shows that freezing at a high subzero temperature is not an absolute requirement for freezing tolerance. Like other longhorn beetles, but in contrast to other freeze-tolerant insects, the larvae of the Siberian timberman have a low cuticular water permeability and can thus stay supercooled for long periods without a great water loss. This suggests that a major function of the extracellular ice nucleators of some freeze-tolerant insects may be to prevent intolerable water loss in insects with high cuticular water permeability, rather than to create a protective extracellular freezing as has generally been assumed. The freezing tolerance of the Siberian timberman larvae is likely to be an adaptation to the extreme winter cold of Siberia.  相似文献   

7.
Bud primordia of Picea abies, despite a frozen shoot, stay ice free down to ?50 °C by a mechanism termed supercooling whose biophysical and biochemical requirements are poorly understood. Bud architecture was assessed by 3D—reconstruction, supercooling and freezing patterns by infrared video thermography, freeze dehydration and extraorgan freezing by water potential measurements, and cell‐specific chemical patterns by Raman microscopy and mass spectrometry imaging. A bowl‐like ice barrier tissue insulates primordia from entrance by intrinsic ice. Water repellent and densely packed bud scales prevent extrinsic ice penetration. At ?18 °C, break‐down of supercooling was triggered by intrinsic ice nucleators whereas the ice barrier remained active. Temperature‐dependent freeze dehydration (?0.1 MPa K?1) caused accumulation of extraorgan ice masses that by rupture of the shoot, pith tissue are accommodated in large voids. The barrier tissue has exceptionally pectin‐rich cell walls and intercellular spaces, and the cell lumina were lined or filled with proteins, especially near the primordium. Primordial cells close to the barrier accumulate di, tri and tetrasaccharides. Bud architecture efficiently prevents ice penetration, but ice nucleators become active inside the primordium below a temperature threshold. Biochemical patterns indicate a complex cellular interplay enabling supercooling and the necessity for cell‐specific biochemical analysis.  相似文献   

8.
Centrifuged extracts from subtidally cultivated and intertidal blue mussels have higher supercooling points (up to -5.5°C) in winter than in summer (up to -12.5°C). The concentration of nucleators (as estimated by the dilution factor) is greater in winter than in summer in both groups. The nucleator concentration in the extracts of winter mussels is one to two orders of magnitude higher than that in the haemolymph of Norwegian mussels. Although these extracts show spilule-like growth of ice crystals, they caused no thermal hystersis. The seasonal variation of these cryoprotective mechanisms is similar for intertidal and cultivated mussels. However, in the spring, cultivated mussels have a lower supercooling point and a lower concentration of nucleators than their intertidal counterparts. This suggests that cultivated mussels decrease their cryoprotective capacity earlier than intertidal mussels.  相似文献   

9.
The winter-active Diamesa mendotae Muttkowski (Diptera: Chironomidae) is freeze intolerant in the adult stage with a low mean supercooling point (SCP) of ~−20 °C. However, cold-hardiness strategies for immatures of this species are unknown. In this study, we measured SCP values for D. mendotae larvae, pupae and adults using surface-contact thermometry. In addition, the lower lethal temperature (LLT) was determined for the larval stage. The mean SCPs for larvae (−7.4 °C) and pupae (−9.1 °C) were relatively high compared to adults (−19.7 °C). Our results indicate that the larvae of D. mendotae are freeze tolerant with a LLT99 (−25.4 °C), ~−10 °C lower than their minimum SCP (−15.6 °C). Freeze tolerance in these larvae may be a strategy to provide protection from short-term exposures to ice crystals or to permit diapause within frozen substrates. The change in cold-hardiness strategy from freeze tolerant to freeze intolerant between the larval and adult stages of this species is likely a result of the different habitats occupied by these two life stages.  相似文献   

10.
The cold tolerance mechanism of the Antarctic terrestrial mite Alaskozetes antarcticus (Michael) was investigated in cultured animals. Freezing is fatal in this species and winter survival occurs by means of supercooling, which is enhanced by the presence of glycerol in the body. There is an inverse, linear relationship between the concentration of glycerol and the supercooling point, which may be as low as ?30°C. Feeding detracts from supercooling ability by providing ice nucleators in the gut which initiate freezing at relatively high sub-zero temperatures. Experiments on the effects of various environmental factors showed that low temperature acclimation gave rise to increased glycerol concentrations and suppressed feeding, while desiccation also stimulated glycerol production. Photoperiod had no effect on cold tolerance in this species. The juvenile instars of A. antarcticus were found to possess a greater degree of low temperature tolerance than adults.  相似文献   

11.
Abstract. Eretmocerus eremicus is a parasitoid wasp that is not native to Britain. It is a biological control agent of glasshouse whitefly and has recently been released under licence in Britain for the first time. This study assessed the effect of low temperature on the outdoor establishment potential of E. eremicus in Britain. The developmental threshold calculated by three linear methods was between 6.1° and 11.6 °C, with a degree‐day requirement per generation between 256.3 and 366.8° day?1. The supercooling points of non‐acclimated and acclimated larvae were similar (approximately ?25 °C). Non‐acclimated and acclimated larvae were subject to considerable pre‐freeze mortality, with lethal temperature (LTemp50) values of ?16.3 and ?21.3 °C, respectively. Lethal time experiments indicated a similar lack of cold tolerance with 50% mortality of both non‐acclimated and acclimated larvae after 7 days at ?5 °C, 10 days at 0 °C and 13 days at 5 °C. Field trials showed that neither non‐acclimated nor acclimated larvae survived longer than 1 month when exposed to naturally fluctuating winter temperatures. These results suggest that releasing E. eremicus into British greenhouses would pose minimal risk because typical British winter temperatures would be an effective barrier against establishment in the wild.  相似文献   

12.
The arctic beetle, Pytho americanus Kirby, is frost tolerant in both larval and adult stages. This is the first demonstration that an insect can tolerate freezing in more than one life stage, a situation which would be congruous with its northern distribution and allow it to spread its life cycle over a number of growing seasons. The main biochemical correlates during the cold hardening process of low temperature acclimation are increasing glycerol and decreasing glycogen concentrations. Glycerol is the only polyol to be synthesized during acclimation, and it accumulates to a maximum of 8.2 and 12.2% of the fresh body weight in larvae and adults respectively. This coincides with the peak of frost tolerance. In addition to its normally assumed roles in cryoprotection it is suggested that glycerol may further serve to minimize dehydration in the overwintering insect by increasing the level of ‘bound’ water. Evidence is presented that indicates that glycerol is synthesized mainly from carbohydrate reserves, especially glycogen, but it does not rule out the possibility that a proportion of free glycerol comes from glyceride sources.P. americanus larvae and adults have low supercooling potential and maintain their supercooling points in the region of ?4° to ?8°C. It is hypothesized that these elevated supercooling points are a result of the presence in the haemolymph of nucleating agents which ensure ice formation at high sub-zero temperatures. It is believed that this beetle overwinters in a frozen state within its microhabitat, which is under bark of fallen spruce which is, in turn, covered by an insulating blanket of snow. The advantages of this overwintering strategy are discussed.  相似文献   

13.
Two populations of the gall fly Eurosta solidaginsis utilize different strategies to endure seasonal exposure to temperatures below freezing. Both populations are freezing tolerant. In north temperate populations, supercooling points rise from ?10.2°C to ?6.2°C following exposures to temperatures below freezing. This level is maintained throughout winter and ensures frequent and prolonged periods of tissue freezing. South temperate populations depress the supercooling point to ?14.2°C during autumn and early winter, and this depression precludes extracellular ice formation during periods of supra-optimal temperature fluctuations. During mid-winter, supercooling points rise to the same level as in northern groups.Both populations accumulate three principal cryoprotective agents following first frost exposures (glycerol, sorbitol and trehalose). Cryoprotectants levels do not peak in northern populations until 4–6 weeks after first frost. In southern populations the accumulation profile is characterized by a high initial rate of synthesis, a protective overshoot and pronounced seasonal fluctuations. The relative survival advantages of each strategy are discussed.  相似文献   

14.
In most freeze tolerant insects, the tolerance of the formation of internal body ice is arrived at by a two‐step process: (S‐1) a period of supercooling of the body fluids that is followed by (S‐2) the freezing event. To date, the necessity of S‐1 remains to be questioned seriously. The present study reports evidence that S‐1 may be almost completely substituted or superseded in large‐bodied insects by integumental buffering. In the New Zealand alpine grasshopper Sigaus australis Hutton, there is a substantial difference between external and body core temperatures at the moment when internal ice nucleation is registered. Using the invagination of the pleural suture as a nondetrimental proxy for the core and the sclerotized postnotum as a measure of surface temperature, comparisons of the temperature of crystallization (Tc) show a highly significant difference (P < 0.001; Kolmogorov–Smirnov test). Proxy core Tc values are in the range from ?0.11 to ?4.78 °C compared with the range of ?4.1 to ?14.2 °C in external proxy Tc values. Although a thermal lag may sometimes be quietly assumed in measurements of Tc, a temperature differential of this size (approximately 6 °C), which is equivalent to the entire supercooling potential of many freeze tolerant insects, is of particular note. These findings have wider application to other large‐bodied insects with similarly well‐developed integumental protection.  相似文献   

15.
  The effect of gut fluid ice nucleators and antifreeze proteins on maintenance of supercooling was explored in fire-colored beetle larvae, Dendroides canadensis, via seasonal monitoring of supercooling points, antifreeze protein activity and ice nucleator activity of gut fluid and/or larvae. During cold hardening in the field, freeze-avoiding larvae evacuated their guts and depressed larval supercooling points. Analysis of gut fluid indicated supercooling points and ice nucleator activity decreased, whereas antifreeze protein activity increased as winter approached. Suspensions of bacteria isolated from guts of feeding larvae collected in spring/summer had higher supercooling points than those from midwinter-collected non-feeding larvae, suggesting bacterial ice nucleators are removed from midwinter gut fluid. The ice nucleation active bacterium Pseudomonas fluorescens was isolated from gut fluid of feeding larvae but was absent in winter. When mixed with purified D.␣canadensis hemolymph antifreeze proteins (structurally similar and/or identical to those in gut fluid), the cumulative ice nucleus spectra of P. fluorescens suspensions were shifted to lower temperatures indicating an inhibitory effect on the bacteria's ice-nucleating phenotype. By extending larval supercooling capacity, both gut clearing and masking of bacterial ice nucleators by antifreeze proteins may contribute to overwintering survival in supercooled insects. Accepted: 8 August 1996  相似文献   

16.
Abstract. Investigations of the responses to acclimation of upper and lower lethal limits and limits to activity in insects have focused primarily on Drosophila. In the present study, Halmaeusa atriceps (Staphylinidae) is examined for thermal tolerance responses to acclimation, and seasonal acclimatization. In summer and winter, lower lethal temperatures of adults and larvae are approximately −7.6 ± 0.03 and −11.1 ± 0.06 °C, respectively. Supercooling points (SCPs) are more variable, with winter SCPs of −5.4 ± 0.4 °C in larvae and −6.3 ± 0.8 °C in adults. The species appears to be chill susceptible in summer and moderately freeze tolerant in winter, thus showing seasonal acclimatization. Similar changes cannot be induced solely by acclimation to low temperatures in the laboratory. Upper lethal temperatures show a weaker response to acclimation. There are also significant responses to acclimation of critical thermal limits. Critical thermal minima vary between −3.6 ± 0.2 and −0.6 ± 0.2 °C in larvae, and from −4.1 ± 0.1 to −0.8 ± 0.2 °C in adults. By contrast, critical thermal maxima vary much less within adults and larvae. These findings are in keeping with the general pattern found in insects, although this species differs in several respects from others found on Marion Island.  相似文献   

17.
Freezing-susceptible adult Ips acuminatus hibernate underneath bark of Scots pine. The beetles lower their supercooling points from ?20 to ?34°C due to accumulation of low molecular weight antifreezes. The capability of specimens to supercool to about ?20°C in the absence of cryoprotective solutes during winter, seemed to be at least partially attributable to the presence of a thermal hysteresis factor at 3–4°C.Using a GC-MS-COM technique, a unique combination of accumulated solutes present only in specimens demonstrating supercooling points below ?20°C was identified as ethylene glycol, mannitol, sorbitol and dulcitol. Not previously found in nature, ethylene glycol was the major solute (90%) synthesized at sub-zero temperatures. Exposure to ?10°C was an effective cue to accumulation of ethylene glycol and nearly 5 times as effective in promoting sorbitol synthesis than was ?5°C. When low molecular weight substances were lost at high temperatures, they were not re-synthesized in beetles re-exposed to sub-zero temperature. The supercooling point was closely related to both the concentration of ethylene glycol and to the haemolymph melting point. Attempts to correlate changes in sorbitol concentrations to changes in supercooling points were not conclusive.Proliferation of thermal hysteresis was observed in the beginning of November. A melting-hysteresis freezing point differential of about 3.6°C was demonstrated in the haemolymph of beetles during December. No thermal hysteresis was demonstrated in the haemolymph of positive phototactic beetles or in the outdoor beetles in May. The combination of high temperature and long photoperiod appeared to be a more effective cue to the final loss of thermal hysteresis than was high temperature alone.  相似文献   

18.
细菌冰核提高印度谷螟过冷却点的研究   总被引:4,自引:0,他引:4  
印度谷螟(Plodia interpunctella)是一种不耐结冰的昆虫,在冬季它通过降低过冷却 点以避免结冰。现已查明,冰核活性细菌能显著提高植物的过冷却点,导致许多作物在较高 的温度下发生霜冻害。本文也证明细菌冰核能显著提高印度谷螟虫的过冷却点。对照的平均过冷却点是-17.6℃;分别用0.1g和1g细菌冰核与1kg面粉混合后进行处理,平均过冷却点分别比对照提高了12.8℃和13.6℃。研究结果支持这样的观点:细菌冰核有可能成为一种在冬季使用的、杀灭不耐结冰害虫的生物制剂。  相似文献   

19.
Although the biochemical correlates of freeze tolerance in insects are becoming well-known, the process of ice formation in vivo is subject to speculation. We used synchrotron x-rays to directly visualise real-time ice formation at 3.3 Hz in intact insects. We observed freezing in diapausing 3rd instar larvae of Chymomyza amoena (Diptera: Drosophilidae), which survive freezing if it occurs above −14°C, and non-diapausing 3rd instar larvae of C. amoena and Drosophila melanogaster (Diptera: Drosophilidae), neither of which survive freezing. Freezing was readily observed in all larvae, and on one occasion the gut was seen to freeze separately from the haemocoel. There were no apparent qualitative differences in ice formation between freeze tolerant and non-freeze tolerant larvae. The time to complete freezing was positively related to temperature of nucleation (supercooling point, SCP), and SCP declined with decreasing body size, although this relationship was less strong in diapausing C. amoena. Nucleation generally occurred at a contact point with the thermocouple or chamber wall in non-diapausing larvae, but at random in diapausing larvae, suggesting that the latter have some control over ice nucleation. There were no apparent differences between freeze tolerant and non-freeze tolerant larvae in tracheal displacement or distension of the body during freezing, although there was markedly more distension in D. melanogaster than in C. amoena regardless of diapause state. We conclude that although control of ice nucleation appears to be important in freeze tolerant individuals, the physical ice formation process itself does not differ among larvae that can and cannot survive freezing. This suggests that a focus on cellular and biochemical mechanisms is appropriate and may reveal the primary adaptations allowing freeze tolerance in insects.  相似文献   

20.
The mature larvae of the soybean pod borer Leguminivora glycinivorella, spend over 9 months (October-next August) in the inactive state until pupation down to 3 cm below the surface in soil. Trehalose content of inactive larvae increases in early winter, attaining a maximum (ca 30 mg/g), and decreases in spring, with a concomitant decrease and increase of glycogen. The median supercooling points seasonally change from ?19.8°C (October) to ?25.0°C (February), and to ?17.0°C (June). The lower supercooling points in winter are in part due to the absence of unusually high values (> ?18°C). The increase in trehalose does not seem to be effective in depressing the supercooling points. The larvae are freeze-intolerant, but ambient temperatures in outdoor conditions are always above the supercooling points. The survival rates are very high throughout the inactive period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号