首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Akt signaling plays a central role in T cell functions, such as proliferation, apoptosis, and regulatory T cell development. Phosphorylation at Ser473 in the hydrophobic motif, along with Thr308 in its activation loop, is considered necessary for Akt function. It is widely accepted that phosphoinositide-dependent kinase 1 (PDK-1) phosphorylates Akt at Thr308, but the kinase(s) responsible for phosphorylating Akt at Ser473 (PDK-2) remains elusive. The existence of PDK-2 is considered to be specific to cell type and stimulus. PDK-2 in T cells in response to TCR stimulation has not been clearly defined. In this study, we found that conventional PKC positively regulated TCR-induced Akt Ser473 phosphorylation. PKC-alpha purified from T cells can phosphorylate Akt at Ser473 in vitro upon TCR stimulation. Knockdown of PKC-alpha in T-cell-line Jurkat cells reduced TCR-induced phosphorylation of Akt as well as its downstream targets. Thus our results suggest that PKC-alpha is a candidate for PDK-2 in T cells upon TCR stimulation.  相似文献   

2.
In vascular smooth muscle cells, exposed to hyperglycemia and insulin-like growth factor-I (IGF-I), SHPS-1 functions as a scaffold protein, and a signaling complex is assembled that leads to AKT activation. However, the underlying mechanism by which formation of this complex activates the kinase that phosphorylates AKT (Thr308) is unknown. Therefore, we investigated the mechanism of PDK1 recruitment to the SHPS-1 signaling complex and the consequences of disrupting PDK1 recruitment for downstream signaling. Our results show that following IGF-I stimulation, PDK1 is recruited to SHPS-1, and its recruitment is mediated by Grb2, which associates with SHPS-1 via its interaction with Pyk2, a component of the SHPS-1-associated complex. A proline-rich sequence in PDK1 bound to an Src homology 3 domain in Grb2 in response to IGF-I. Disruption of Grb2-PDK1 by expression of either a Grb2 Src homology 3 domain or a PDK1 proline to alanine mutant inhibited PDK1 recruitment to SHPS-1, leading to impaired IGF-I-stimulated AKT Thr308 phosphorylation. Following its recruitment to SHPS-1, PDK1 was further activated via Tyr373/376 phosphorylation, and this was required for a maximal increase in PDK1 kinase activity and AKT-mediated FOXO3a Thr32 phosphorylation. PDK1 recruitment was also required for IGF-I to prevent apoptosis that occurred in response to hyperglycemia. Assembly of the Grb2-PDK1 complex on SHPS-1 was specific for IGF-I signaling because inhibiting PDK1 recruitment to SHPS-1 had no effect on EGF-stimulated AKT Thr308 phosphorylation. These findings reveal a novel mechanism for recruitment of PDK1 to the SHPS-1 signaling complex, which is required for IGF-I-stimulated AKT Thr308 phosphorylation and inhibition of apoptosis.  相似文献   

3.
The PI3K/PTEN/Akt pathway has been established as a core signaling pathway that is crucial for the integration of neurons into neuronal circuits and the maintenance of the architecture and function of neurons in the adult brain. Akt1–3 kinases are specifically activated by two phosphorylation events on residues Thr308 and Ser473 upon growth factor signaling, which subsequently phosphorylate a vast cohort of downstream targets. However, we still lack a clear understanding of the complexity and regulation of isoform specificity within the PI3K/PTEN/Akt pathway. We utilized a capillary-based isoelectric focusing method to study dynamics of Akt phosphorylation in neuronal cells and the developing brain and identify previously undescribed features of Akt phosphorylation and activation. First, we show that the accumulation of multiple phosphorylation events on Akt forms occur concurrently with Ser473 and Thr308 phosphorylation upon acute PI3K activation and provide evidence for uncoupling of Ser473 and Thr308 phosphorylation, as well as differential sensitivities of Akt1 forms upon PI3K inhibition. Second, we detect a transient shift in Akt isoform phosphorylation and activation pattern during early postnatal brain development, at stages corresponding to synapse development and maturation. Third, we show differential sensitivities of Ser473-Akt species to PTEN deletion in mature neurons, which suggests inherent differences in the Akt pools that are accessible to growth factors as compared with the pools that are controlled by PTEN. Our study demonstrates the presence of complex phosphorylation events of Akt in a time- and signal-dependent manner in neurons.  相似文献   

4.
p70 S6 kinase plays an important role in growth factor-induced translational control and in cell cycle progression. Although the mechanism of p70 S6 kinase regulation is not fully understood, phosphorylation of serine and threonine residues of the enzyme is essential for its activation. The possible role of the serine-threonine kinase Akt in the activation of p70 S6 kinase induced by exposure of cells to heat has now been investigated. Overexpression of a mutant Akt1 (Akt-AA) in which the phosphorylation sites (Thr308and Ser473) targeted by growth factors are replaced by alanine was shown to exert a dominant negative effect on Akt activation induced by platelet-derived growth factor (PDGF) or by heat treatment in CHO cells. Akt-AA also inhibited p70 S6 kinase activation induced by these stimuli. However, Akt-AA had no effect on the activation of p70 S6 kinase induced by 12-O-tetradecanoylphorbol 13-acetate, which did not stimulate Akt activity in these cells. These data suggest that Akt is required for heat treatment-induced activation of p70 S6 kinase.  相似文献   

5.
Cell survival and death-inducing signals are tightly associated with each other, and the decision as to whether a cell survives or dies is determined by controlling the relationship between these signals. However, the mechanism underlying the reciprocal regulation of such signals remains unclear. In this study, we reveal a functional association between PDK1 (3-phosphoinositide-dependent protein kinase 1), a critical mediator of cell survival, and ASK1 (apoptosis signal-regulating kinase 1), an apoptotic stress-activated MAPKKK. The physical association between PDK1 and ASK1 is mediated through the pleckstrin homology domain of PDK1 and the C-terminal regulatory domain of ASK1 and is decreased by ASK1-activating stimuli, such as H2O2, tumor necrosis factor α, thapsigargin, and ionomycin, as well as insulin, a PDK1 stimulator. Wild-type PDK1, but not kinase-dead PDK1, negatively regulates ASK1 activity by phosphorylating Ser967, a binding site for 14-3-3 protein, on ASK1. PDK1 functionally suppresses ASK1-mediated AP-1 transactivation and H2O2-mediated apoptosis in a kinase-dependent manner. On the other hand, ASK1 has been shown to inhibit PDK1 functions, including PDK1-mediated regulation of apoptosis and cell growth, by phosphorylating PDK1 at Ser394 and Ser398, indicating that these putative phosphorylation sites are involved in the negative regulation of PDK1 activity. These results provide evidence that PDK1 and ASK1 directly interact and phosphorylate each other and act as negative regulators of their respective kinases in resting cells.  相似文献   

6.
The protein kinase Akt plays a critical role in heart function and is activated by phosphorylation of threonine 308 (T308) and serine 473 (S473). While phosphoinositide-dependent kinase 1 (PDK1) is responsible for Akt T308 phosphorylation, the identities of the kinases for Akt S473 phosphorylation in the heart remain controversial. Here, we disrupted mTOR complex 2 (mTORC2) through deletion of Rictor in the heart and found normal heart growth and function. Rictor deletion caused significant reduction of Akt S473 phosphorylation but enhanced Akt T308 phosphorylation, suggesting that a high level of Akt T308 phosphorylation maintains Akt activity and heart function. Deletion of Pdk1 in the heart caused significantly enhanced Akt S473 phosphorylation that was suppressed by removal of Rictor, leading to worsened dilated cardiomyopathy (DCM) and accelerated heart failure in Pdk1-deficient mice. In addition, we found that increasing Akt S473 phosphorylation through deletion of Pten or chemical inhibition of PTEN reversed DCM and heart failure in Pdk1-deficient mice. Investigation of heart samples from human DCM patients revealed changes similar to those in the mouse models. These results demonstrated that PDK1 and mTORC2 synergistically promote postnatal heart growth and maintain heart function in postnatal mice.  相似文献   

7.
Niacin has been demonstrated to activate a PI3K/Akt signaling cascade to prevent brain damage after stroke and UV-induced skin damage; however, the underlying molecular mechanisms for HCA2-induced Akt activation remain to be elucidated. Using CHO-K1 cells stably expressing HCA2 and A431 cells, a human epidermoid cell line with high levels of endogenous expression of functional HCA2 receptors, we first demonstrated that niacin induced a robust Akt phosphorylation at both Thr308 and Ser473 in a time-dependent fashion, with a maximal activation at 5 min and a subsequent reduction to baseline by 30 min through HCA2, and that the activation was significantly blocked by pertussis toxin. The HCA2-mediated activation of Akt was also significantly inhibited by the PKC inhibitors GF109203x and Go6983 in both cell lines, by the PDGFR-selective inhibitor tyrphostin A9 in CHO-HCA2 cells and by the MMP inhibitor GM6001 and EGFR-specific inhibitor AG1478 in A431 cells. These results suggest that the PKC pathway and PDGFR/EGFR transactivation pathway play important roles in HCA2-mediated Akt activation. Further investigation indicated that PI3K and the Gβγ subunit were likely to play an essential role in HCA2-induced Akt activation. Moreover, Immunobloting analyses using an antibody that recognizes p70S6K1 phosphorylated at Thr389 showed that niacin evoked p70S6K1 activation via the PI3K/Akt pathway. The results of our study provide new insight into the signaling pathways involved in HCA2 activation.  相似文献   

8.
Increased cellular exposure to oxidants may contribute to the development of insulin resistance and type 2 diabetes. Skeletal muscle is the primary site of insulin-dependent glucose disposal in the body; however, the effects of oxidative stress on insulin signaling and glucose transport activity in mammalian skeletal muscle are not well understood. We therefore studied the effects of a low-level in vitro oxidant stress (30–40 μM H2O2) on basal and insulin-stimulated (5 mU/ml) glucose transport activity and insulin signaling at 2, 4, and 6 h in isolated rat soleus muscle. H2O2 increased basal glucose transport activity at 2 and 4 h, but not at 6 h. This low-level oxidant stress significantly impaired insulin-stimulated glucose transport activity at all time points, and was associated with inhibition of insulin-stimulated phosphorylation of Akt Ser473 and GSK-3β Ser9. In the presence of insulin, H2O2 decreased total protein expression of IRS-1 at 6 h and IRS-2 at 4 and 6 h. Phosphorylation of p38 MAPK Thr180/Tyr182 was transiently increased by H2O2 in the presence and absence of insulin at 2 and 4 h, but not at 6 h. Selective inhibition of p38 MAPK with A304000 partially rescued the H2O2-induced reduction in insulin-stimulated glucose transport activity. These results indicate that direct in vitro exposure of isolated mammalian skeletal muscle to a low-level oxidant stress impairs distal insulin signaling and insulin-stimulated glucose transport activity, at least in part, due to a p38 MAPK-dependent mechanism.  相似文献   

9.
Insulin-like growth factor-1 (IGF-1) signaling system exerts a broad antiapoptotic function and plays a crucial role in resistance to anticancer therapies. Exposure of MCF-7 breast cancer cells to IGF-1 rapidly and transiently induced tyrosine phosphorylation and activation of phosphoinositide-dependent kinase-1 (PDK1). This was paralleled by Akt/protein kinase B and protein kinase C-ζ phosphorylation, at Thr308 and Thr410, respectively. IGF-1 treatment also enhanced PDK1 interaction with IGF-1 receptor (IGF-1R) in intact MCF-7 cells. Pulldown assays revealed that PDK1 bound IGF-1R in vitro and that the region encompassing amino acids 51–359 of PDK1 was necessary for the interaction. Synthetic peptides corresponding to IGF-1R C terminus amino acids 1295–1337 (C43) and to PDK1 amino acids 114–141 reduced in vitro IGF-1R/PDK1 interaction in a concentration-dependent manner. Loading of fluoresceinated-C43 (fluorescein isothiocyanate (FITC)-C43) into MCF-7 cells significantly reduced IGF-1R/PDK1 interaction and phosphorylation of PDK1 substrates. Moreover, FITC-C43 intracellular loading reverted the protective effect of IGF-1 on growth factor deprivation-induced cell death. Finally, the inhibition of IGF-1R/PDK1 interaction and signaling by FITC-C43 was accompanied by 2-fold enhanced killing capacity of cetuximab in human GEO colon adenocarcinoma cells and was sufficient to restore cell death in cetuximab-resistant cell clones. Thus, disruption of PDK1 interaction with IGF-1R reduces IGF-1 survival effects in cancer cells and may enhance cell death by anticancer agents.  相似文献   

10.
Methylglyoxal is a typical 2-oxoaldehyde derived from glycolysis. We show here that methylglyoxal activates the Pkc1-Mpk1 mitogen-activated protein (MAP) kinase cascade in a target of rapamycin complex 2 (TORC2)-dependent manner in the budding yeast Saccharomyces cerevisiae. We demonstrate that TORC2 phosphorylates Pkc1 at Thr1125 and Ser1143. Methylglyoxal enhanced the phosphorylation of Pkc1 at Ser1143, which transmitted the signal to the downstream Mpk1 MAP kinase cascade. We found that the phosphorylation status of Pkc1T1125 affected the phosphorylation of Pkc1 at Ser1143, in addition to its protein levels. Methylglyoxal activated mammalian TORC2 signaling, which, in turn, phosphorylated Akt at Ser473. Our results suggest that methylglyoxal is a conserved initiator of TORC2 signaling among eukaryotes.  相似文献   

11.
Akt is a crucial phosphoinositide 3-kinase (PI(3)K) effector that regulates cell proliferation and survival. PI(3)K-generated signals, PtdIns(3,4,5)P3 and PtdIns(3,4)P2, direct Akt plasma membrane engagement. Pathological Akt plasma membrane association promotes oncogenesis. PtdIns(3,4)P2 is degraded by inositol polyphosphate 4-phosphatase-1 (4-ptase-1) forming PtdIns(3)P; however, the role of 4-ptase-1 in regulating the activation and function of Akt is unclear. In mouse embryonic fibroblasts lacking 4-ptase-1 (−/−MEFs), the Akt-pleckstrin homology (PH) domain was constitutively membrane-associated both in serum-starved and agonist-stimulated cells, in contrast to +/+MEFs, in which it was detected only at the plasma membrane following serum stimulation. Epidermal growth factor (EGF) stimulation resulted in increased Ser473 and Thr308-Akt phosphorylation and activation of Akt-dependent signalling in −/−MEFs, relative to +/+MEFs. Significantly, loss of 4-ptase-1 resulted in increased cell proliferation and decreased apoptosis. SV40-transformed −/−MEFs showed increased anchorage-independent cell growth and formed tumours in nude mice. This study provides the first evidence, to our knowledge, that 4-ptase-1 controls the activation of Akt and thereby cell proliferation, survival and tumorigenesis.  相似文献   

12.
Non-small cell lung carcinoma (NSCLC) is a major killer in cancer related human death. Its therapeutic intervention requires superior efficient molecule(s) as it often becomes resistant to present chemotherapy options. Here we report that vapor of volatile oil compounds obtained from Litsea cubeba seeds killed human NSCLC cells, A549, through the induction of apoptosis and cell cycle arrest. Vapor generated from the combined oils (VCO) deactivated Akt, a key player in cancer cell survival and proliferation. Interestingly VCO dephosphorylated Akt at both Ser473 and Thr308; through the suppression of mTOR and pPDK1 respectively. As a consequence of this, diminished phosphorylation of Bad occurred along with the decreased Bcl-xL expression. This subsequently enhanced Bax levels permitting the release of mitochondrial cytochrome c into the cytosol which concomitantly activated caspase 9 and caspase 3 resulting apoptotic cell death. Impairment of Akt activation by VCO also deactivated Mdm2 that effected overexpression of p53 which in turn upregulated p21 expression. This causes enhanced p21 binding to cyclin D1 that halted G1 to S phase progression. Taken together, VCO produces two prong effects on lung cancer cells, it induces apoptosis and blocked cancer cell proliferation, both occurred due to the deactivation of Akt. In addition, it has another crucial advantage: VCO could be directly delivered to lung cancer tissue through inhalation.  相似文献   

13.
Cystic fibrosis (CF) is due to a folding defect in the CF transmembrane conductance regulator (CFTR) protein. The most common mutation, ΔF508, prevents CFTR from trafficking to the apical plasma membrane. Here we show that activation of the PDK1/SGK1 signaling pathway with C4-ceramide (C4-CER), a non-toxic small molecule, functionally corrects the trafficking defect in both cultured CF cells and primary epithelial cell explants from CF patients. The mechanism of C4-CER action involves a series of mutual autophosphorylation and phosphorylation events between PDK1 and SGK1. Detailed mechanistic studies indicate that C4-CER initially induces autophosphorylation of SGK1 at Ser422. SGK1[Ser(P)422] and C4-CER coincidently bind PDK1 and permit PDK1 to autophosphorylate at Ser241. Then PDK1[Ser(P)241] phosphorylates SGK1[Ser(P)422] at Thr256 to generate fully activated SGK1[Ser422, Thr(P)256]. SGK1[Ser(P)422,Thr(P)256] phosphorylates and inactivates the E3 ubiquitin ligase Nedd4-2. ΔF508-CFTR is thus free to traffic to the plasma membrane. Importantly, C4-CER-mediated activation of both PDK1 and SGK1 is independent of the PI3K/Akt/mammalian target of rapamycin signaling pathway. Physiologically, C4-CER significantly increases maturation and stability of ΔF508-CFTR (t½ ∼10 h), enhances cAMP-activated chloride secretion, and suppresses hypersecretion of interleukin-8 (IL-8). We suggest that candidate drugs for CF directed against the PDK1/SGK1 signaling pathway, such as C4-CER, provide a novel therapeutic strategy for a life-limiting disorder that affects one child, on average, each day.  相似文献   

14.
The protein kinase AKT is a key regulator for cell growth, cell survival and metabolic insulin action. However, the mechanism of activation of AKT in vivo, which presumably involves membrane recruitment of the kinase, oligomerization, and multiple phosphorylation events, is not fully understood. In the present study, we have expressed and purified dimeric GST-fusion proteins of human protein kinase AKT2 (ΔPH-AKT2) in milligram quantities via the baculovirus expression system. Treatment of virus-infected insect cells with the phosphatase inhibitor okadaic acid (OA) led to phosphorylation of the two regulatory phosphorylation sites, Thr309 and Ser474, and to activation of the kinase. Likewise, phosphorylation of Thr309 in vitro by recombinant PDK1 or mutation of Thr309 and Ser474 to acidic residues rendered the kinase constitutively active. However, even though the specific activity of our AKT2 was increased 15-fold compared to previous reports, GST-mediated dimerization alone did not lead to an activation of the kinase. Whereas both mutagenesis and phosphorylation led to an increase in the turnover number of the enzyme, only the latter resulted in a marked reduction (20-fold) of the apparent Km value for the exogenous substrate Crosstide, indicating that this widely used mutagenesis only partially mimics phosphorylation. Kinetic analysis of GST-AKT2 demonstrates that phosphorylation of Thr309 in the activation loop of the kinase is largely responsible for the observed reduction in Km and for a subsequent 150-fold increase in the catalytic efficiency (kcat/Km) of the enzyme. Highly active AKT2 constructs were used in autophosphorylation reactions in vitro, where inactive AKT2 kinases served as substrates. As a matter of fact, we found evidence for a minor autophosphorylation activity of AKT2 but no significant autophosphorylation of any of the two regulatory sites, Thr309 or Ser474.  相似文献   

15.
Plants have a sensitive system that detects various pathogen-derived molecules to protect against infection. Flagellin, a main component of the bacterial flagellum, from the rice avirulent N1141 strain of the Gram-negative phytopathogenic bacterium Acidovorax avenae induces plant immune responses including H2O2 generation, whereas flagellin from the rice virulent K1 strain of A. avenae does not induce these immune responses. To clarify the molecular mechanism that leads to these differing responses between the K1 and N1141 flagellins, recombinant K1 and N1141 flagellins were generated using an Escherichia coli expression system. When cultured rice cells were treated with recombinant K1 or N1141 flagellin, both flagellins equally induced H2O2 generation, suggesting that post-translational modifications of the flagellins are involved in the specific induction of immune responses. Mass spectrometry analyses using glycosyltransferase-deficient mutants showed that 1,600- and 2,150-Da glycans were present on the flagellins from N1141 and K1, respectively. A deglycosylated K1 flagellin induced immune responses in the same manner as N1141 flagellin. Site-directed mutagenesis revealed that glycans were attached to four amino acid residues (Ser178, Ser183, Ser212, and Thr351) in K1 flagellin. Among mutant K1 flagellins in which each glycan-attached amino acid residue was changed to alanine, S178A and S183A, K1 flagellin induced a strong immune response in cultured rice cells, indicating that the glycans at Ser178 and Ser183 in K1 flagellin prevent epitope recognition in rice.  相似文献   

16.
17.
Glucose triggers posttranslational modifications that increase the activity of the Saccharomyces cerevisiae plasma membrane H+-ATPase (Pma1). Glucose activation of yeast H+-ATPase results from the change in two kinetic parameters: an increase in the affinity of the enzyme for ATP, depending on Ser899, and an increase in the Vmax involving Thr912. Our previous studies suggested that Ptk2 mediates the Ser899-dependent part of the activation. In this study we find that Ptk2 localized to the plasma membrane in a Triton X-100 insoluble fraction. In vitro phosphorylation assays using a recombinant GST-fusion protein comprising 30 C-terminal amino acids of Pma1 suggest that Ser899 is phosphorylated by Ptk2. Furthermore, we show that the Ptk2 carboxyl terminus is essential for glucose-dependent Pma1 activation and for the phosphorylation of Ser899.  相似文献   

18.
Angiotensin II activates a variety of signaling pathways in vascular smooth muscle cells (VSMCs), including the MAPKs and Akt, both of which are required for hypertrophy. However, little is known about the relationship between these kinases or about the upstream activators of Akt. In this study, we tested the hypothesis that the reactive oxygen species (ROS)-sensitive kinase p38 MAPK and its substrate MAPKAPK-2 mediate Akt activation in VSMCs. In unstimulated VSMCs, Akt and p38 MAPK are constitutively associated and remain so after angiotensin II stimulation. Inhibition of p38 MAPK activity with SB-203580 dose-dependently inhibits Akt phosphorylation on Ser473, but not Thr308. Angiotensin II-induced phosphorylation of MAPKAPK-2 is also attenuated by SB-203580, as well as by inhibitors of ROS. In addition, angiotensin II stimulates the association of MAPKAPK-2 with the Akt-p38 MAPK complex, and an in vitro kinase assay shows that MAPKAPK-2 immunoprecipitates of VSMC lysates phosphorylate recombinant Akt in an angiotensin II-inducible manner. Finally, intracellular delivery of a MAPKAPK-2 peptide inhibitor blocks Akt phosphorylation on Ser473. These results suggest that the p38 MAPK-MAPKAPK-2 pathway mediates Akt activation by angiotensin II in these cells by recruiting active MAPKAPK-2 to a signaling complex that includes both Akt and p38 MAPK. Through this mechanism, p38 MAPK confers ROS sensitivity to Akt and facilitates downstream signaling. These results provide evidence for a novel signaling complex that may help to spatially organize hypertrophy-related, ROS-sensitive signaling in VSMCs. mitogen-activated protein kinase; reactive oxygen species  相似文献   

19.
Statins activate phosphatidylinositol-3-kinase, which activates ecto-5'-nucleotidase and phosphorylates 3-phosphoinositide-dependent kinase-1 (PDK-1). Phosphorylated (P-)PDK-1 phosphorylates Akt, which phosphorylates endothelial nitric oxide synthase (eNOS). We asked if the blockade of adenosine receptors (A(1), A(2A), A(2B), or A(3) receptors) could attenuate the induction of Akt and eNOS by atorvastatin (ATV) and whether ERK1/2 is involved in the ATV regulation of Akt and eNOS. In protocol 1, mice received intraperitoneal ATV, theophylline (TH), ATV + TH, or vehicle. In protocol 2, mice received intraperitoneal injections of ATV, U0126 (an ERK1/2 inhibitor), ATV + U0126, or vehicle; 8 h later, hearts were assessed by immunoblot analysis. In protocol 3, mice received intraperitoneal ATV alone or with 8-sulfophenyltheophylline (SPT); 1, 3, and 6 h after injection, hearts were assessed by immunoblot analysis. In protocol 4, mice received intraperitoneal ATV alone or with SPT, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), alloxazine, or MRS-1523; 3 h after injection, hearts were assessed by immunoblot analysis. ATV increased P-ERK, P-PDK-1, Ser(473) P-Akt, Thr(308) P-Akt, and P-eNOS levels. TH blocked ATV-induced increases in P-ERK, Ser(473) P-Akt, Thr(308) P-Akt, and P-eNOS levels without affecting the induction of P-PDK-1 by ATV. U0126 blocked the ATV induction of Ser(473) P-Akt and Thr(308) P-Akt while attenuating the induction of P-eNOS. A detectable increase in P-ERK, Ser(473) P-Akt and P-eNOS was seen 3 and 6 h after injection but not at 1 h. DPCPX, CSC, and alloxazine partially blocked the ATV induction of P-ERK, Ser(473) P-Akt, and P-eNOS. In conclusion, blockade of adenosine A(1), A(2A), and A(2B) receptors but not A(3) receptors inhibited the induction of Akt and eNOS by statins. Adenosine was required for ERK1/2 activation by statins, which resulted in Akt and eNOS phosphorylation.  相似文献   

20.
Stromal interaction molecule 1 (STIM1) plays a pivotal role in store-operated Ca2+ entry (SOCE), an essential mechanism in cellular calcium signaling and in maintaining cellular calcium balance. Because O-GlcNAcylation plays pivotal roles in various cellular function, we examined the effect of fluctuation in STIM1 O-GlcNAcylation on SOCE activity. We found that both increase and decrease in STIM1 O-GlcNAcylation impaired SOCE activity. To determine the molecular basis, we established STIM1-knockout HEK293 (STIM1-KO-HEK) cells using the CRISPR/Cas9 system and transfected STIM1 WT (STIM1-KO-WT-HEK), S621A (STIM1-KO-S621A-HEK), or T626A (STIM1-KO-T626A-HEK) cells. Using these cells, we examined the possible O-GlcNAcylation sites of STIM1 to determine whether the sites were O-GlcNAcylated. Co-immunoprecipitation analysis revealed that Ser621 and Thr626 were O-GlcNAcylated and that Thr626 was O-GlcNAcylated in the steady state but Ser621 was not. The SOCE activity in STIM1-KO-S621A-HEK and STIM1-KO-T626A-HEK cells was lower than that in STIM1-KO-WT-HEK cells because of reduced phosphorylation at Ser621. Treatment with the O-GlcNAcase inhibitor Thiamet G or O-GlcNAc transferase (OGT) transfection, which increases O-GlcNAcylation, reduced SOCE activity, whereas treatment with the OGT inhibitor ST045849 or siOGT transfection, which decreases O-GlcNAcylation, also reduced SOCE activity. Decrease in SOCE activity due to increase and decrease in O-GlcNAcylation was attributable to reduced phosphorylation at Ser621. These data suggest that both decrease in O-GlcNAcylation at Thr626 and increase in O-GlcNAcylation at Ser621 in STIM1 lead to impairment of SOCE activity through decrease in Ser621 phosphorylation. Targeting STIM1 O-GlcNAcylation could provide a promising treatment option for the related diseases, such as neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号