首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA recognition by a Staufen double-stranded RNA-binding domain   总被引:23,自引:6,他引:17       下载免费PDF全文
The double-stranded RNA-binding domain (dsRBD) is a common RNA-binding motif found in many proteins involved in RNA maturation and localization. To determine how this domain recognizes RNA, we have studied the third dsRBD from Drosophila Staufen. The domain binds optimally to RNA stem–loops containing 12 uninterrupted base pairs, and we have identified the amino acids required for this interaction. By mutating these residues in a staufen transgene, we show that the RNA-binding activity of dsRBD3 is required in vivo for Staufen-dependent localization of bicoid and oskar mRNAs. Using high-resolution NMR, we have determined the structure of the complex between dsRBD3 and an RNA stem–loop. The dsRBD recognizes the shape of A-form dsRNA through interactions between conserved residues within loop 2 and the minor groove, and between loop 4 and the phosphodiester backbone across the adjacent major groove. In addition, helix α1 interacts with the single-stranded loop that caps the RNA helix. Interactions between helix α1 and single-stranded RNA may be important determinants of the specificity of dsRBD proteins.  相似文献   

2.
The key step in bacterial translation is formation of the pre-initiation complex. This requires initial contacts between mRNA, fMet-tRNA and the 30S subunit of the ribosome, steps that limit the initiation of translation. Here we report a method for improving translational initiation, which allows expression of several previously non-expressible genes. This method has potential applications in heterologous protein synthesis and high-throughput expression systems. We introduced a synthetic RNA stem–loop (stem length, 7 bp; ΔG0 = –9.9 kcal/mol) in front of various gene sequences. In each case, the stem–loop was inserted 15 nt downstream from the start codon. Insertion of the stem–loop allowed in vitro expression of five previously non-expressible genes and enhanced the expression of all other genes investigated. Analysis of the RNA structure proved that the stem–loop was formed in vitro, and demonstrated that stabilization of the ribosome binding site is due to stem–loop introduction. By theoretical RNA structure analysis we showed that the inserted RNA stem–loop suppresses long-range interactions between the translation initiation domain and gene-specific mRNA sequences. Thus the inserted RNA stem–loop supports the formation of a separate translational initiation domain, which is more accessible to ribosome binding.  相似文献   

3.
Dicer is a member of the ribonuclease III enzyme family and processes double‐stranded RNA into small functional RNAs. The variation in the domain architecture of Dicer among different species whilst preserving its biological dicing function is intriguing. Here, we describe the structure and function of a novel catalytically active RNase III protein, a non‐canonical Dicer (PsDCR1), found in budding yeast Pichia stipitis. The structure of the catalytically active region (the catalytic RNase III domain and double‐stranded RNA‐binding domain 1 [dsRBD1]) of DCR1 showed that RNaseIII domain is structurally similar to yeast RNase III (Rnt1p) but uniquely presents dsRBD1 in a diagonal orientation, forming a catalytic core made of homodimer and large RNA‐binding surface. The second dsRNA binding domain at C‐terminus, which is absent in Rnt1, enhances the RNA cleavage activity. Although the cleavage pattern of PsDCR1 anchors an apical loop similar to Rnt1, the cleavage activity depended on the sequence motif at the lower stem, not the apical loop, of hairpin RNA. Through RNA sequencing and RNA mutations, we showed that RNA cleavage by PsDCR1 is determined by the stem‐loop structure of the RNA substrate, suggesting the possibility that stem‐loop RNA‐guided gene silencing pathway exists in budding yeast.  相似文献   

4.
Polyadenylation of RNA molecules in bacteria and chloroplasts has been implicated as part of the RNA degradation pathway. The polyadenylation reaction is performed in Escherichia coli mainly by the enzyme poly(A) polymerase I (PAP I). In order to understand the molecular mechanism of RNA polyadenylation in bacteria, we characterized the biochemical properties of this reaction in vitro using the purified enzyme. Unlike the PAP from yeast nucleus, which is specific for ATP, E.coli PAP I can use all four nucleotide triphosphates as substrates for addition of long ribohomopolymers to RNA. PAP I displays a high binding activity to poly(U), poly(C) and poly(A) ribohomopolymers, but not to poly(G). The 3′-ends of most of the mRNA molecules in bacteria are characterized by a stem–loop structure. We show here that in vitro PAP I activity is inhibited by a stem–loop structure. A tail of two to six nucleotides located 3′ to the stem–loop structure is sufficient to overcome this inhibition. These results suggest that the stem–loop structure located in most of the mRNA 3′-ends may function as an inhibitor of polyadenylation and degradation of the corresponding RNA molecule. However, RNA 3′-ends produced by endonucleolytic cleavage by RNase E in single-strand regions of mRNA molecules may serve as efficient substrates for polyadenylation that direct these molecules for rapid exonucleolytic degradation.  相似文献   

5.
Many well-characterized examples of antisense RNAs from prokaryotic systems involve hybridization of the looped regions of stem–loop RNAs, presumably due to the high thermodynamic stability of the resulting loop–loop and loop–linear interactions. In this study, the identification of RNA stem–loops that inhibit U1A protein binding to the hpII RNA through RNA–RNA interactions was attempted using a bacterial reporter system based on phage λ N-mediated antitermination. As a result, loop sequences possessing 7–8 base complementarity to the 5′ region of the boxA element important for functional antitermination complex formation, but not the U1 hpII loop, were identified. In vitro and in vivo mutational analysis strongly suggested that the selected loop sequences were binding to the boxA region, and that the structure of the antisense stem–loop was important for optimal inhibitory activity. Next, in an attempt to demonstrate the ability to inhibit the interaction between the U1A protein and the hpII RNA, the rational design of an RNA stem–loop that inhibits U1A-binding to a modified hpII was carried out. Moderate inhibitory activity was observed, showing that it is possible to design and select antisense RNA stem–loops that disrupt various types of RNA–protein interactions.  相似文献   

6.
Many questions regarding the initiation of replication and translation of the segmented, double-stranded RNA genome of infectious bursal disease virus (IBDV) remain to be solved. Computer analysis shows that the non-polyadenylated extreme 3′-untranslated regions (UTRs) of the coding strand of both genomic segments are able to fold into a single stem–loop structure. To assess the determinants for a functional 3′-UTR, we mutagenized the 3′-UTR stem–loop structure of the B-segment. Rescue of infectious virus from mutagenized cDNA plasmids was impaired in all cases. However, after one passage, the replication kinetics of these viruses were restored. Sequence analysis revealed that additional mutations had been acquired in most of the stem–loop structures, which compensated the introduced ones. A rescued virus with a modified stem–loop structure containing four nucleotide substitutions, but preserving its overall secondary structure, was phenotypically indistinguishable from wild-type virus, both in vitro (cell culture) and in vivo (chickens, natural host). Sequence analysis showed that the modified stem–loop structure of this virus was fully preserved after four serial passages. Apparently, it is the stem–loop structure and not the primary sequence that is the functional determinant in the 3′-UTRs of IBDV.  相似文献   

7.
8.
Anderson E  Cole JL 《Biochemistry》2008,47(17):4887-4897
PKR (protein kinase R) is induced by interferon and is a key component of the innate immunity antiviral pathway. Upon binding dsRNA, PKR undergoes autophosphorylation reactions that activate the kinase, leading it to phosphorylate eIF2alpha, thus inhibiting protein synthesis in virally infected cells. PKR contains a dsRNA-binding domain (dsRBD) and a kinase domain. The dsRBD is composed of two tandem dsRNA-binding motifs. An autoinhibition model for PKR has been proposed, whereby dsRNA binding activates the enzyme by inducing a conformational change that relieves the latent enzyme of the inhibition that is mediated by the interaction of the dsRBD with the kinase. However, recent biophysical data support an open conformation for the latent enzyme, where activation is mediated by dimerization of PKR induced upon binding dsRNA. We have probed the importance of interdomain contacts by comparing the relative stabilities of isolated domains with the same domain in the context of the intact enzyme using equilibrium chemical denaturation experiments. The two dsRNA-binding motifs fold independently, with the C-terminal motif exhibiting greater stability. The kinase domain is stabilized by about 1.5 kcal/mol in the context of the holenzyme, and we detect low-affinity binding of the kinase and dsRBD constructs in solution, indicating that these domains interact weakly. Limited proteolysis measurements confirm the expected domain boundaries and reveal that the activation loop in the kinase is accessible to cleavage and unstructured. Autophosphorylation induces a conformation change that blocks proteolysis of the activation loop.  相似文献   

9.
Tok JB  Cho J  Rando RR 《Nucleic acids research》2000,28(15):2902-2910
RNA–RNA recognition is a critical process in controlling many key biological events, such as translation and ribozyme functions. The recognition process governing RNA–RNA interactions can involve complementary Watson–Crick (WC) base pair binding, or can involve binding through tertiary structural interaction. Hence, it is of interest to determine which of the RNA–RNA binding events might emerge through an in vitro selection process. The A-site of the 16S rRNA decoding region was chosen as the target, both because it possesses several different RNA structural motifs, and because it is the rRNA site where codon/anticodon recognition occurs requiring recognition of both mRNA and tRNA. It is shown here that a single family of RNA molecules can be readily selected from two different sizes of RNA library. The tightest binding aptamer to the A-site 16S rRNA construct, 109.2-3, has its consensus sequences confined to a stem–loop region, which contains three nucleotides complementary to three of the four nucleotides in the stem–loop region of the A-site 16S rRNA. Point mutations on each of the three nucleotides on the stem–loop of the aptamer abolish its binding capacity. These studies suggest that the RNA aptamer 109.2-3 interacts with the simple 27 nt A-site decoding region of 16S rRNA through their respective stem–loops. The most probable mode of interaction is through complementary WC base pairing, commonly referred to as a loop–loop ‘kissing’ motif. High affinity binding to the other structural motifs in the decoding region were not observed.  相似文献   

10.
The RNA-dependent protein kinase (PKR) is an interferon-induced, RNA-activated enzyme that phosphorylates the α-subunit of eukaryotic initiation factor 2 (eIF2α), inhibiting the function of the eIF2 complex and continued initiation of translation. When bound to an activating RNA and ATP, PKR undergoes autophosphorylation reactions at multiple serine and threonine residues. This autophosphorylation reaction stimulates the eIF2α kinase activity of PKR. The binding of certain viral RNAs inhibits the activation of PKR. Wild-type PKR is obtained as a highly phosphorylated protein when overexpressed in Escherichia coli. We report here that treatment of the isolated phosphoprotein with the catalytic subunit of protein phosphatase 1 dephosphorylates the enzyme. The in vitro autophosphorylation and eIF2α kinase activities of the dephosphorylated enzyme are stimulated by addition of RNA. Thus, inactivation by phosphatase treatment of autophosphorylated PKR obtained from overexpression in bacteria generates PKR in a form suitable for in vitro analysis of the RNA-induced activation mechanism. Furthermore, we used gel mobility shift assays, methidiumpropyl-EDTA·Fe footprinting and affinity chromatography to demonstrate differences in the RNA-binding properties of phospho- and dephosphoPKR. We found that dephosphorylation of PKR increases binding affinity of the enzyme for both kinase activating and inhibiting RNAs. These results are consistent with an activation mechanism that includes release of the activating RNA upon autophosphorylation of PKR prior to phosphorylation of eIF2α.  相似文献   

11.
Hepatitis C virus (HCV) RNA is recognized and cleaved in vitro by RNase P enzyme near the AUG start codon. Because RNase P identifies transfer RNA (tRNA) precursors, it has been proposed that HCV RNA adopts structural similarities to tRNA. Here, we present experimental evidence of RNase P sensitivity conservation in natural RNA variant sequences, including a mutant sequence (A368–G) selected in vitro because it presented changes in the RNA structure of the relevant motif. The variation did not abrogate the original RNase P cleavage, but instead, it allowed a second cleavage at least 10 times more efficient, 4 nt downstream from the original one. The minimal RNA fragment that confers sensitivity to human RNase P enzyme was located between positions 299 and 408 (110 nt). Therefore, most of the tRNA-like domain resides within the viral internal ribosome entry site (IRES) element. In the variant, in which the mutation stabilizes a 4 nt stem–loop, the second cleavage required a shorter (60 nt) substrate, internal to the minimal fragment substrate, conforming a second tRNA-like structure with similarities to a ‘Russian-doll’ toy. This new structure did not impair IRES activity, albeit slightly reduced the efficiency of translation both in vitro and in transfected cells. Conservation of the original tRNA-like conformation together with preservation of IRES activity points to an essential role for this motif. This conservation is compatible with the presence of RNA structures with different complexity around the AUG start codon within a single viral population (quasispecies).  相似文献   

12.
The stability of collagen α1(I) mRNA is regulated by its 5′ stem–loop, which binds a cytoplasmic protein in a cap-dependent manner, and its 3′-untranslated region (UTR), which binds αCP. When cultured in a three-dimensional gel composed of type I collagen, mouse fibroblasts had decreased collagen α1(I) mRNA steady-state levels, which resulted from a decreased mRNA half-life. In cells cultured in gel, hybrid mousehuman collagen α1(I) mRNA with a wild-type 5′ stemloop decayed faster than the same mRNA with a mutated stem–loop. When the 5′ stem–loop was placed in a heterologous mRNA, the mRNA accumulated to a lower level in cells grown in gel than in cells grown on plastic. This suggests that the 5′ stem–loop down-regulates collagen α1(I) mRNA. Protein binding to the 5′ stem–loop was reduced in cells grown in gel, which was associated with destabilization of the collagen α1(I) mRNA. In addition to the binding of a cytoplasmic protein, there was also a nuclear binding activity directed to the collagen α1(I) 5′ stem–loop. The nuclear binding was increased in cells grown in gel, suggesting that it may negatively regulate expression of collagen α1(I) mRNA. Binding of αCP, a protein involved in stabilization of collagen α1(I) mRNA, was unchanged by the culture conditions.  相似文献   

13.
Responding to viral infection, the interferon-induced, double-stranded RNA (dsRNA)–activated protein kinase PKR phosphorylates translation initiation factor eIF2α to inhibit cellular and viral protein synthesis. To overcome this host defense mechanism, many poxviruses express the protein E3L, containing an N-terminal Z-DNA binding (Zα) domain and a C-terminal dsRNA-binding domain (dsRBD). While E3L is thought to inhibit PKR activation by sequestering dsRNA activators and by directly binding the kinase, the role of the Zα domain in PKR inhibition remains unclear. Here, we show that the E3L Zα domain is required to suppress the growth-inhibitory properties associated with expression of human PKR in yeast, to inhibit PKR kinase activity in vitro, and to reverse the inhibitory effects of PKR on reporter gene expression in mammalian cells treated with dsRNA. Whereas previous studies revealed that the Z-DNA binding activity of E3L is critical for viral pathogenesis, we identified point mutations in E3L that functionally uncouple Z-DNA binding and PKR inhibition. Thus, our studies reveal a molecular distinction between the nucleic acid binding and PKR inhibitory functions of the E3L Zα domain, and they support the notion that E3L contributes to viral pathogenesis by targeting PKR and other components of the cellular anti-viral defense pathway.  相似文献   

14.
Initiation of retroviral genomic RNA dimerisation is mediated by the mutual interaction of the dimerisation initiation site (DIS) stem–loops near to the 5′ end of the RNA. This process is thought to involve formation of a transient ‘kissing’ complex over the self-complementary loop bases, which then refolds into a more stable extended interaction. We have developed a novel experimental system that allows us to clearly detect the extended duplex in vitro. Ribozyme sequences were incorporated into or adjacent to the type 1 human immunodeficiency virus DIS stem, leading to the formation of a functional ribozyme only in the extended duplex conformer. Here we show that extended duplex formation results in ribozyme cleavage, thus demonstrating the double-stranded nature of the extended complex and confirming that refolding occurs via melting of the DIS stems. Loop complementarity is essential for extended duplex formation but no sequence requirements for the loops were observed. Efficiency of extended duplex formation is dependent on the strength of the loop–loop interaction, temperature, the magnesium concentration and is strongly accelerated by the viral nucleocapsid protein NCp7. Our ribozyme-coupled approach should be applicable to the analyses of other refolding processes involving RNA loop–loop interactions.  相似文献   

15.
16.
In metazoans, cell-cycle-dependent histones are produced from poly(A)-lacking mRNAs. The 3′ end of histone mRNAs is formed by an endonucleolytic cleavage of longer precursors between a conserved stem–loop structure and a purine-rich histone downstream element (HDE). The cleavage requires at least two trans-acting factors: the stem–loop binding protein (SLBP), which binds to the stem–loop and the U7 snRNP, which anchors to histone pre-mRNAs by annealing to the HDE. Using RNA structure-probing techniques, we determined the secondary structure of the 3′-untranslated region (3′-UTR) of mouse histone pre-mRNAs H4–12, H1t and H2a–614. Surprisingly, the HDE is embedded in hairpin structures and is therefore not easily accessible for U7 snRNP anchoring. Probing of the 3′-UTR in complex with SLBP revealed structural rearrangements leading to an overall opening of the structure especially at the level of the HDE. Electrophoretic mobility shift assays demonstrated that the SLBP-induced opening of HDE actually facilitates U7 snRNA anchoring on the histone H4–12 pre-mRNAs 3′ end. These results suggest that initial binding of the SLBP functions in making the HDE more accessible for U7 snRNA anchoring.  相似文献   

17.
Kim YG  Maas S  Rich A 《Nucleic acids research》2001,29(5):1125-1131
Human immunodeficiency virus type 1 (HIV-1) and human T cell leukemia virus type II (HTLV-2) use a similar mechanism for –1 translational frameshifting to overcome the termination codon in viral RNA at the end of the gag gene. Previous studies have identified two important RNA signals for frameshifting, the slippery sequence and a downstream stem–loop structure. However, there have been somewhat conflicting reports concerning the individual contributions of these sequences. In this study we have performed a comprehensive mutational analysis of the cis-acting RNA sequences involved in HIV-1 gagpol and HTLV-2 gagpro frameshifting. Using an in vitro translation system we determined frameshifting efficiencies for shuffled HIV-1/HTLV-2 RNA elements in a background of HIV-1 or HTLV-2 sequences. We show that the ability of the slippery sequence and stem–loop to promote ribosomal frameshifting is influenced by the flanking upstream sequence and the nucleotides in the spacer element. A wide range of frameshift efficiency rates was observed for both viruses when shuffling single sequence elements. The results for HIV-1/HTLV-2 chimeric constructs represent strong evidence supporting the notion that the viral wild-type sequences are not designed for maximal frameshifting activity but are optimized to a level suited to efficient viral replication.  相似文献   

18.
Spanggord RJ  Vuyisich M  Beal PA 《Biochemistry》2002,41(14):4511-4520
The RNA-dependent protein kinase (PKR) is an interferon-induced, RNA-activated enzyme that phosphorylates and inhibits the function of the translation initiation factor eIF-2. PKR has a double-stranded RNA-binding domain (dsRBD) composed of two copies of the dsRNA binding motif (dsRBM). PKR's dsRBD is involved in the regulation of the enzyme as dsRNAs of cellular and viral origins bind to the dsRBD, leading to either activation or inhibition of PKR's kinase activity. In this study, we site-specifically modified each of the dsRBMs of PKR's dsRBD with the hydroxyl radical generator EDTA small middle dotFe and performed cleavage studies on kinase-activating and kinase-inhibiting RNAs. These experiments led to the identification of binding sites for the individual dsRBMs on various RNA ligands including a viral activating RNA (TAR from HIV-1), a viral inhibiting RNA (VA(I) RNA from adenovirus), an aptamer RNA that activates PKR, and a small synthetic inhibiting RNA. These results indicate that some RNAs interact only with one dsRBM, while others can bind both dsRBMs of PKR. In addition, EDTA small middle dotFe modification coupled with site-directed mutagenesis was used to assess the extent of cooperativity in the binding of the two dsRBMs. These experiments support the hypothesis that simultaneous binding of both dsRBMs of PKR occurs on kinase activating RNA ligands.  相似文献   

19.
In humans, the double-stranded RNA (dsRNA)-activated protein kinase (PKR) is expressed in late stages of the innate immune response to viral infection by the interferon pathway. PKR consists of tandem dsRNA binding motifs (dsRBMs) connected via a flexible linker to a Ser/Thr kinase domain. Upon interaction with viral dsRNA, PKR is converted into a catalytically active enzyme capable of phosphorylating a number of target proteins that often results in host cell translational repression. A number of high-resolution structural studies involving individual dsRBMs from proteins other than PKR have highlighted the key features required for interaction with perfectly duplexed RNA substrates. However, viral dsRNA molecules are highly structured and often contain deviations from perfect A-form RNA helices. By use of small-angle X-ray scattering (SAXS), we present solution conformations of the tandem dsRBMs of PKR in complex with two imperfectly base-paired viral dsRNA stem–loops; HIV-1 TAR and adenovirus VAI-AS. Both individual components and complexes were purified by size exclusion chromatography and characterized by dynamic light scattering at multiple concentrations to ensure monodispersity. SAXS ab initio solution conformations of the individual components and RNA–protein complexes were determined and highlight the potential of PKR to interact with both stem and loop regions of the RNA. Excellent agreement between experimental and model-based hydrodynamic parameter determination heightens our confidence in the obtained models. Taken together, these data support and provide a framework for the existing biochemical data regarding the tolerance of imperfectly base-paired viral dsRNA by PKR.  相似文献   

20.
Kissing loops are tertiary structure elements that often play key roles in functional RNAs. In the Neurospora VS ribozyme, a kissing-loop interaction between the stem–loop I (SLI) substrate and stem–loop V (SLV) of the catalytic domain is known to play an important role in substrate recognition. In addition, this I/V kissing-loop interaction is associated with a helix shift in SLI that activates the substrate for catalysis. To better understand the role of this kissing-loop interaction in substrate recognition and activation by the VS ribozyme, we performed a thermodynamic characterization by isothermal titration calorimetry using isolated SLI and SLV stem–loops. We demonstrate that preshifted SLI variants have higher affinity for SLV than shiftable SLI variants, with an energetic cost of 1.8–3 kcal/mol for the helix shift in SLI. The affinity of the preshifted SLI for SLV is remarkably high, the interaction being more stable by 7–8 kcal/mol than predicted for a comparable duplex containing three Watson–Crick base pairs. The structural basis of this remarkable stability is discussed in light of previous NMR studies. Comparative thermodynamic studies reveal that kissing-loop complexes containing 6–7 Watson–Crick base pairs are as stable as predicted from comparable RNA duplexes; however, those with 2–3 Watson–Crick base pairs are more stable than predicted. Interestingly, the stability of SLI/ribozyme complexes is similar to that of SLI/SLV complexes. Thus, the I/V kissing loop interaction represents the predominant energetic contribution to substrate recognition by the trans-cleaving VS ribozyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号