首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
2.
Structurally abnormal type I collagen was identified in the dermis, bone, and cultured fibroblasts obtained from a baby with lethal perinatal osteogenesis imperfecta. Two-dimensional gel electrophoresis of the CNBr peptides demonstrated that the alpha 1(I)CB7 peptide from the alpha 1(I)-chain of type I collagen existed in a normal form and a mutant form with a more basic charge distribution. This heterozygous peptide defect was not detected in the collagens from either parent. The defect was localized to a 224-residue region at the NH2 terminus of the alpha 1(I)CB7 peptide by mammalian collagenase digestion. Analysis of unhydroxylated collagens produced in cell culture indicated that the mutant alpha 1(I)CB7 migrated faster on electrophoresis suggesting that the abnormality may be a small deletion or a mutation that alters sodium dodecyl sulfate binding. The post-translational hydroxylation of lysine residues was increased in the CB7 peptide and also in peptides CB3 and CB8 which are toward the NH2 terminus of the alpha 1(I)-chain. The COOH-terminal CB6 peptide was normally hydroxylated. These findings support the proposal that the lysine overhydroxylation resulted from a perturbation of helix propagation from the COOH to NH2 terminus of the collagen trimer caused by the structural defect in alpha 1(I)CB7.  相似文献   

3.
To understand more directly the tissue defect in osteogenesis imperfecta (OI), bone matrix was analyzed from an infant with lethal OI (type II) of defined mutation (collagen alpha 2(I)Gly580-->Asp). Pepsin-solubilized alpha 1(I) and alpha 2(I) chains and derived CNBr-peptides migrated more slowly on sodium dodecyl sulfate-polyacrylamide gel electrophoresis compared with normal human controls. The peptide alpha 2(I)CB3,5, predicted to contain the mutation site, ran as a retarded doublet band and was purified by high performance liquid chromatography and digested with V8 protease. Two peptides with amino-terminal sequences beginning at residue 576 of the alpha 2(I) chain were isolated. One had the normal sequence. The other differed in that aspartic acid replaced glycine at residue 580 as predicted from cDNA analysis, and in having an unhydroxylated proline at residue 579. From yields on microsequencing and the relative intensities of the two forms of alpha 2(I)CB3,5 on SDS-polyacrylamide gel electrophoresis, the ratio of mutant to normal alpha 2(I) chains in the infant's bone matrix was 0.7/1. Although the effects of an efficient incorporation of mutant chains on the properties of the bone matrix are unknown, it may be that in this OI case the tissue abnormalities result more from the presence of mutant protein than from an underexpression of matrix.  相似文献   

4.
Cultured fibroblasts from a patient affected with a moderate form of osteogenesis imperfecta were defective for the synthesis of type I collagen molecules; about half of the alpha 1(I) chains contained a cysteine residue in the triple helical domain and a disulfide link formed when two mutant alpha 1(I) chains were incorporated into a type I collagen heterotrimer. The proband's parents were clinically and biochemically normal. The cysteine was localized within peptide alpha 1(I)CB8 between residues 170 and 200 of the triple helical domain using a chemical procedure with 2-nitro-5-thiocyanobenzoic acid (Tenni, R., Rossi, A., Valli, M., Mottes, M., Pignatti, P. F., and Cetta, G. (1990) Matrix 10, 20-26). Type I procollagen heterotrimers containing either one or two mutant chains showed (i) a slight abnormality in secretion from cells; (ii) a low degree of post-translational overmodifications; (iii) the same, but lower than normal, thermal stability. Total RNA was isolated from the proband's dermal fibroblast cultures, and cDNAs for pro-alpha 1(I) were prepared d using total RNA. A portion of cDNA, coding for the region encompassing residues 119-193 of alpha 1(I) triple helical domain, was amplified by polymerase chain reaction. A single base pair mismatch was identified by chemical cleavage of DNA.DNA heteroduplexes, indicating a possible substitution of a guanine in the triplet coding for glycine 178 or 181. The same unique mismatch was detected by chemical cleavage in about one-half of the molecules in heteroduplexes formed between patient's pro-alpha 1(I) mRNAs and a normal cDNA probe. The amplified products were cloned and sequenced, confirming the heterozygous nature of the patient and demonstrating the presence and the location of a missense mutation; a single T for G substitution was found in the first base of the triplet coding for residue 178 of alpha 1(I) triple helical domain, leading to a cysteine for glycine substitution. Allele-specific oligonucleotide hybridization to amplified DNA confirmed a de novo point mutation in the proband's genome. The findings in this patient are in accord with the phenotypic gradient model, which correlates the localization of the structural defect with the clinical outcome of osteogenesis imperfecta. The mutant protein has some properties that differ from the caused by the cysteine for glycine 175 substitution, suggesting a direct influence of the neighboring amino acids on the effects of the mutation.  相似文献   

5.
Cultured skin fibroblasts from a proband with a lethal form of osteogenesis imperfecta produce two forms of type I collagen chains, with normal and delayed electrophoretic migration; collagen of the proband's mother was normal. Peptide mapping experiments localized the structural defect in the proband to alpha1(I) CB8 peptide in which residues 123 to 402 are spaned. Direct sequencing of amplified cDNA covering this region revealed a G to A single base change in one allele of the alpha1(I) chain, that converted glycine 388 to arginine. Restriction enzyme digestion of the RT-PCR product was consistent with a heterozygous COL1A1 mutation. The novel mutation conforms to the linear gradient of clinical severity for the alpha1(I) chain and results in reduced thermal stability by 3 degrees C and intracellular retention of abnormal molecules.  相似文献   

6.
We have identified a point mutation in one alpha 1(I) collagen allele (COL1A1) of a child with the type IV osteogenesis imperfecta phenotype. When compared to parental and control samples, skin fibroblasts of the proband synthesized two populations of type I collagen molecules. One population was normal; the other was delayed in secretion and electrophoretic migration due to post-translational overmodification. Two-dimensional gel electrophoresis of the CNBr peptides demonstrated a gradient of overmodification beginning near the carboxyl-terminal CB peptides. This predicts that the mutation delaying helix formation is near the carboxyl-terminal end of one of the component chains of type I collagen. The mRNA of the patient was probed with overlapping antisense riboprobes to type I collagen cDNA. Cleavage of a mismatch in RNA/RNA hybrids of RNase A allowed the location of the mutation to a 225-base pair region of alpha 1(I) cDNA. The mismatch was not present in RNA/RNA hybrids from either parent. This region of both alpha 1(I) alleles of the patient was isolated by screening a lambda ZAP cDNA library. Sequence determination of both alleles demonstrated a single nucleotide change, G----A, resulting in the substitution of a serine for a glycine at amino acid residue 832. This point mutation occurs in the coding region for alpha 1(I) CB6 and is concordant with the protein data. The finding of a glycine substitution in an alpha 1(I) chain of a patient with the milder type IV osteogenesis imperfecta phenotype requires modification of current molecular models for types II and IV osteogenesis imperfecta.  相似文献   

7.
A patient with Ehlers-Danlos syndrome Type VIIB was found to have an interstitial deletion of 18 amino acids in approximately half of the pro-alpha 2(I) chains of Type I procollagen. Analysis of pepsin-solubilized tissue and fibroblast collagen revealed an abnormal additional chain, alpha 2(I)', which migrated in sodium dodecyl sulfate-5% polyacrylamide gel electrophoresis between the normal alpha 1(I) and alpha 2(I) chains. The apparent ratio of normal alpha 1(I):mutant alpha 2(I)':normal alpha 2(I) was 4:1:1. Procollagen studies and enzyme digestion studies of native mutant collagen suggested defective removal of the amino propeptide. Sieve chromatography of CNBr peptides from purified alpha 2(I)' chains revealed the absence of the normal amino telopeptide fragment CB 1 and the appearance of a larger new peptide of approximately 60 residues (CB X). Compositional and sequencing studies of this peptide identified normal amino propeptide sequences. However, the most carboxyl-terminal tryptic peptide of CB X differed substantially in composition and sequence from the expected and was found to have an interstitial deletion of 18 amino acids corresponding to the N-telopeptide of the pro-alpha 2(I) chain. This deletion removes the normal sites of cleavage of the N-proteinase and also removes a critical cross-linking lysine residue. The 18 amino acids deleted correspond exactly to the residues encoded by exon 6 of the pro-alpha 2(I) collagen gene (COL 1 A2), and, therefore, the protein defect may be due to a genomic deletion, or alternatively, an RNA splicing defect.  相似文献   

8.
Collagen defects in lethal perinatal osteogenesis imperfecta.   总被引:15,自引:3,他引:12       下载免费PDF全文
Quantitative and qualitative abnormalities of collagen were observed in tissues and fibroblast cultures from 17 consecutive cases of lethal perinatal osteogenesis imperfecta (OI). The content of type I collagen was reduced in OI dermis and bone and the content of type III collagen was also reduced in the dermis. Normal bone contained 99.3% type I and 0.7% type V collagen whereas OI bone contained a lower proportion of type I, a greater proportion of type V and a significant amount of type III collagen. The type III and V collagens appeared to be structurally normal. In contrast, abnormal type I collagen chains, which migrated slowly on electrophoresis, were observed in all babies with OI. Cultured fibroblasts from five babies produced a mixture of normal and abnormal type I collagens; the abnormal collagen was not secreted in two cases and was slowly secreted in the others. Fibroblasts from 12 babies produced only abnormal type I collagens and they were also secreted slowly. The slower electrophoretic migration of the abnormal chains was due to enzymic overmodification of the lysine residues. The distribution of the cyanogen bromide peptides containing the overmodified residues was used to localize the underlying structural abnormalities to three regions of the type I procollagen chains. These regions included the carboxy-propeptide of the pro alpha 1(I)-chain, the helical alpha 1(I) CB7 peptide and the helical alpha 1(I) CB8 and CB3 peptides. In one baby a basic charge mutation was observed in the alpha 1(I) CB7 peptide and in another baby a basic charge mutation was observed in the alpha 1(I) CB8 peptide. The primary defects in lethal perinatal OI appear to reside in the type I collagen chains. Type III and V collagens did not appear to compensate for the deficiency of type I collagen in the tissues.  相似文献   

9.
A child with the type VII form of the Ehlers-Danlos syndrome was shown to have a structural defect in the amino terminus of the pro-alpha 1(I) chain of type I procollagen. Normal and mutant amino-terminal cyanogen bromide peptides (pN-alpha 1(I) CB0,1 peptides) were purified from the medium of the patient's cultured fibroblasts. Amino acid sequencing of tryptic peptides derived from the mutant pN-alpha 1(I) CB0,1 peptide showed that an expected sequence of 24 amino acids (positions 136-159 of the normal pN-alpha 1(I) CB0,1 peptide) was deleted. The segment deleted from the mutant pro-alpha 1(I) chain contains the small globular region of the NH2-propeptide, the procollagen N-proteinase cleavage site, the NH2-telopeptide, and first triplet of the helix of the alpha I(I) collagen chain (Chu, M.-L., de Wet, W., Bernard, M., Ding, J.F., Morabito, M., Myers, J., Williams, C., and Ramirez, F. (1984) Nature 310, 337-340). Loss of the procollagen N-proteinase cleavage site from the mutant pro-alpha 1(I) chain accounted for the persistence of its NH2-propeptide despite normal production of the N-proteinase by cultured mutant fibroblasts. Collagen production by mutant fibroblasts was doubled possibly due to reduced feedback inhibition by the NH2-propeptides. The child appeared to be heterozygous for the peptide deletion and, as the parents did not show any evidence of the deletion, it is likely that the child had a new mutation of one allele of the pro-alpha 1(I) gene. The deleted peptide corresponds precisely to the sequence coded by exon 46 of the normal pro-alpha 1(I) gene (Chu, M.-L., de Wet, W., Bernard, M., Ding, J.F., Morabito, M., Myers, J., Williams, C., and Ramirez, F. (1984) Nature 310, 337-340).  相似文献   

10.
Recent reports have demonstrated that a series of probands with severe osteogenesis imperfecta had single base mutations in one of the two structural genes for type I procollagen that substituted amino acids with bulkier side chains for glycine residues and decreased the melting temperature of the triple helix. Here we demonstrate that the type I procollagen synthesized by cultured fibroblasts from a proband with a severe form of osteogenesis imperfecta consisted of normal molecules and molecules over-modified by post-translational reactions. The thermal stability of the intact type I collagen was normal as assayed by protease digestion under conditions in which a decrease in thermal stability was previously observed with eight other substitutions for glycine in the alpha 1(I) chain. In contrast, the thermal stability of the one-quarter length B fragment generated by digestion with vertebrate collagenase was decreased by 2-3 degrees C under the same conditions. Nucleotide sequencing of cDNAs and genomic DNA established that the proband had a substitution of A for G in one allele of the pro alpha 1(I) gene that converted the codon for alpha 1-glycine 844 to a codon for serine. The results also established that the alpha 1-serine 844 was the only mutation that could account for the decrease in thermal stability of the collagenase B fragment. There are at least two possible explanations for the failure of the alpha 1-serine 844 substitution to decrease the thermal stability of the collagen molecule whereas eight similar mutations decreased the melting temperature. One possibility is that the effects of glycine substitutions are position specific because not all glycine residues make equivalent contributions to cooperative blocks of the triple helix that unfold in the predenaturation range of temperatures. A second possible explanation is that substitutions of glycine by serine have much less effect on the stability of protein than the substitutions by arginine, cysteine, and aspartate previously studied.  相似文献   

11.
Synthesis of procollagen was examined in skin fibroblasts from a patient with a moderately severe autosomal dominant form of osteogenesis imperfecta. Proteolytic removal of the propeptide regions of newly synthesized procollagen, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, revealed the presence of type I collagen in which two alpha 1(I) chains were linked through interchain disulfide bonds. Fragmentation of the disulfide-bonded alpha 1(I) dimers with vertebrate collagenase and cyanogen bromide demonstrated the presence of a cysteine residue in alpha 1(I)CB8, a fragment containing amino acid residues 124-402 of the alpha 1(I) collagen chain. Cysteine residues are not normally found in the triple-helical domain of type I collagen chains. The heterozygous nature of the molecular defect resulted in the formation of three kinds of type I trimers: a normal type with normal pro-alpha(I) chains, a type I trimer with one mutant pro-alpha 1(I) chain and two normal chains, and a type I trimer containing two mutant pro-alpha 1(I) chains and one normal pro-alpha 2(I) chain. The presence of one or two mutant pro-alpha 1(I) chains in trimers of type I procollagen was found to reduce the thermal stability of the protein by 2.5 and 1 degree C, respectively. In addition to post-translational overmodification, procollagen containing one mutant pro-alpha 1(I) chain was also cleared more slowly from cultured fibroblasts. The most likely explanation for these disruptive changes in the physical stability and secretion of the mutant procollagen is that a cysteine residue is substituted for a glycine in half of the pro-alpha 1(I) chains synthesized by the patient's fibroblasts.  相似文献   

12.
Human hypoxanthine-guanine phosphoribosyltransferase   总被引:6,自引:0,他引:6  
A mutant form of human hypoxanthine-guanine phosphoribosyltransferase (HPRTToronto) was isolated from erythrocytes of a male patient with gout due to a partial deficiency of enzyme activity. The tryptic peptides of HPRTToronto were mapped by reverse-phase high pressure liquid chromatography in an attempt to define the precise abnormality in its primary structure. Sequence analysis of the single aberrant peptide in HPRTToronto revealed an arginine to glycine amino acid substitution at position 50. A single nucleotide change in the codon for arginine 50 (CGA leads to GGA) could explain this substitution.  相似文献   

13.
We studied tissue and cultured skin fibroblasts from a newborn with the lethal perinatal form of osteogenesis imperfecta born to a mother with the Marfan syndrome and her unrelated husband. Dermis from the infant was thinner and fibril diameter smaller than control; dermal fibroblastic cells had dilated endoplasmic reticulum. His fibroblasts in culture synthesized two different species of pro alpha 1(I) chains in about equal quantity. One chain was normal, the other contained cysteine within the triple-helical portion of the COOH-terminal cyanogen bromide peptide alpha 1(I)CB6. Molecules which contained two copies of the mutant chain formed alpha 1(I)-dimers linked through interchain disulfide bonds. Molecules which contained either one or two mutant chains were delayed in secretion and underwent excessive lysyl hydroxylation and hydroxylysyl glycosylation of all chains in the molecule, probably as a result of delayed triple-helix formation. Molecules containing either one or two copies of the mutant chain melted at 38 degrees C instead of 41 degrees C. The most likely explanation for these findings is that a cysteine is substituted for a glycine in the triple-helical domain of the products of one of the alpha 1(I) alleles. Such a substitution would interfere with triple-helix formation and stability and thus explain 1) the decreased melting temperature, 2) the increased post-translational modification, 3) the altered rate of secretion and accumulation of intracellular material, 4) the increased intracellular degradation of newly synthesized collagen, and 5) the decreased collagen production. Since neither parental cell strain produced the same mutant chain, the findings are best explained by a new mutation in one of the alpha 1(I) genes. The role of the uncharacterized "Marfan" gene in modifying the phenotype in this patient is unclear.  相似文献   

14.
The heterogeneity of the CNBr-cleavage peptides of human types I, II, III and V collagens were studied by using two-dimensional electrophoresis combining non-equilibrium pH-gradient-gel electrophoresis and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Specific 'maps' were produced by the peptides obtained from the chains of each type of collagen, and most peptides had at least three charged forms of the same molecular weight. Specific 'maps' were also produced by the peptides of types I, III and V collagens from insoluble dermis and the peptides of types I and V collagens from decalcified bone. The alpha 1(I) CB7 and alpha 1(I) CB8 and the alpha 2 CB4 peptides obtained from the type I collagens of these tissues contained the same number of charged components, but there was a relative increase in the more basic components in bone. Some aspects of the involvement of the alpha 1(I) CB6 and the alpha 1(III) CB9 peptides in cross-linkages were also studied. The recovery of the alpha 1(I) CB6 peptide from bone and dermis was decreased and the alpha 1(III) CB9 peptide was not detected in dermis. Additional peptides, which were probably cross-linked peptides involving the alpha 1(I) CB6 peptide, were also observed.  相似文献   

15.
The complete amino acid sequence of the 279-residue CNBr peptide CB8 from the alpha 1 chain of type I calf skin collagen is presented. It was determined by sequencing overlapping fragments of CB8 produced by Staphylococcus aureus V8 proteinase, trypsin, Endoproteinase Arg-C and hydroxylamine. Tryptic cleavages were also made specific for lysine by blocking arginine residues with cyclohexane-1,2-dione. This completes the amino acid sequence analysis of the 1054-residues-long alpha (I) chain of calf skin collagen.  相似文献   

16.
The present study was designed to investigate the effects of aging on preferential sites of glucose adduct formation on type I collagen chains. Two CNBr peptides, one from each type of chain in the type I tropocollagen molecule, were investigated in detail: alpha 1(I)CB3 and alpha 2CB3-5. Together these peptides comprise approximately 25% of the total tropocollagen molecule. The CNBr peptides were purified from rat tail tendon, obtained from animals aged 6, 18, and 36 months, by ion exchange chromatography, gel filtration, and high-performance liquid chromatography (HPLC). Sugar adducts were radiolabeled by reduction with NaB3H4. Glycated tryptic peptides were prepared from tryptic digests of alpha 2CB3-5 and alpha 1(I)CB3 by boronate affinity chromatography and HPLC. Peptides were identified by sequencing and by compositional analysis. Preferential sites of glycation were observed in both CB3 and alpha 2CB3-5. Of the 5 lysine residues in CB3, Lys-434 was the favored glycation site. Of the 18 lysine residues and 1 hydroxylysine residue in alpha 2CB3-5, 3 residues (Lys-453, Lys-479, and Lys-924) contained more than 80% of the glucose adducts on the peptide. Preferential glycation sites were highly conserved with aging. In collagen that had been glycated in vitro, the relative distribution of glucose adducts in old animals differed from that of young animals. In vitro experiments suggest that primary structure is the major determinant of preferential glycation sites but that higher order structure may influence the relative distribution of glucose adducts among these preferred sites.  相似文献   

17.
A large kindred with adult-type X-linked Alport syndrome was studied with regard to a defect in the recently described COL4A5 collagen gene. Southern blot analysis with COL4A5 cDNA probes showed loss of a MspI restriction site. Direct sequencing of cDNA amplified from lymphoblast mRNA demonstrated a single-base substitution converting a glycine codon to arginine at position 325 in the alpha 5 chain of type IV collagen. The triple-helical collagenous domain of alpha 5(IV), characterized by a Gly-X-Y repeat sequence, is interrupted 22 times by noncollagenous sequences. The mutation creates an additional interruption in the Gly-X-Y repeat motif, between interruptions 4 and 5. It is interesting that such glycine substitutions inside the COL1A1 or COL1A2 genes have been associated with many cases of osteogenesis imperfecta. This gly325-to-arg substitution presumably alters the triple-helix formation, and, in turn, modifies the ultrastructural and functional characteristics of the type IV collagen network inside the glomerular basement membrane.  相似文献   

18.
Oxidative functions of polymorphonuclear neutrophils (PMNs), which play a deciding role in the phagocytosis process, are stimulated by extracellular matrix proteins such as type I collagen. Previous studies have demonstrated the involvement of a DGGRYY sequence located within the alpha(1) chain C-terminal telopeptide in type I collagen-induced PMN activation, but so far the mechanism has not been completely elucidated. We have recently demonstrated that collagen carbamylation (i.e. post-translational binding of cyanate to lysine epsilon-NH(2) groups) impairs PMN oxidative functions, suggesting the potential involvement of lysine residues in this process. The present study was devoted to the identification of lysine residues involved in the collagen-induced activation of PMNs. The inhibition of PMN activation by collagen in the presence of 6-amino-hexanoic acid, a structural analogue of lysine residues, confirmed the involvement of specific lysine residues. Modification of lysine residues by carbamylation demonstrated that only one residue, located within the alpha(1)CB6 collagen peptide, was involved in this mechanism. A recombinant alpha(1)CB6 peptide, designed for the substitution of lysine 1047 by glycine, exhibited decreased activity, demonstrating that the lysine residue at position 1047 within the collagen molecule played a significant role in the mechanism of activation. These results help to understand in more detail the collagen-mediated PMN activation mechanism and confirm the prominent involvement of lysine residues in interactions between extracellular matrix proteins and inflammatory cells.  相似文献   

19.
Bovine type I collagen: A study of cross-linking in various mature tissues   总被引:1,自引:0,他引:1  
The cyanogen bromide peptides from insoluble and pepsin solubilised type I collagen of bovine bone, dentine, meniscus, tendon, skin and cornea were compared by SDS-polyacrylamide gel electrophoresis. In each case alpha 1CB6 was shown to be the only peptide of molecular weight greater than 10 000 involved in cross-linking. The major helical peptides alpha 1CB3, alpha 1CB8, alpha 1CB7 and alpha 2CB4 were not implicated in cross-linking in any tissue either by end overlap or helix-helix interaction. The C-terminal alpha 2 chain peptide alpha 2CB3,5, which contains a large helical region, was not involved in cross-linking to any large peptides, although a slight increase in molecular weight in all tissues examined did suggest a possible interaction(s) with a very small peptide of molecular weight 4--5000.  相似文献   

20.
M Yamauchi  E P Katz  G L Mechanic 《Biochemistry》1986,25(17):4907-4913
A trypsin digest of denatured NaB3H4-reduced native bovine periodontal ligament was prepared and fractionated by gel filtration and cellulose ion-exchange column chromatography. Prior to trypsin digestion, a complete acid hydrolysate was subjected to analyses for nonreducible stable and reducible intermolecular cross-links. Minute amounts of the former and significant amounts of the reduced cross-links dihydroxylysinonorleucine (1.1 mol/mol of collagen), hydroxylysinonorleucine (0.9 mol/mol of collagen), and histidinohydroxymerodesmosine (0.6 mol/mol of collagen) were found. The covalent intermolecular cross-linked two-chained peptides that were isolated were subjected to amino acid and sequence analyses. The structures for the different two-chained linked peptides were alpha 1CB4-5(76-90)[Hyl-87] X alpha 1CB6-(993-22c)[Lysald-16c], alpha 1CB4-5(76-90)[Hyl-87] X alpha 1CB6(993-22c)[Hylald-16c], alpha 2CB4(76-90)[Hyl-87] X alpha 1CB6(993-22c)[Lysald-16c], and alpha 2CB4(76-90)[Hyl-87] X alpha 1CB6(993-22c)[Hylald-16c]. The cross-link in each peptide was glycosylated. This is the first characterization by sequence analysis of a cross-link involving Hyl-87 in an alpha 2 chain in collagen. A stoichiometric conversion of residue 16c aldehyde to an intermolecular cross-link in each of the COOH-terminal nonhelical peptide regions of both alpha 1 chains in a molecule of type I collagen was found. The ratio of alpha 1 to alpha 2 intermolecularly cross-linked chains involved was 3.3:1, indicating a stereospecific three-dimensional molecular packing of type I collagen molecules in bovine periodontal ligament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号