首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dilated cardiomyopathy (DCM) is a disease with no specific treatment, poor prognosis and high mortality. During DCM development, there is apoptosis, mitochondrial dynamics imbalance and changes in cristae structure. Optic atrophy 1 (OPA1) appears at high frequency in these three aspects. DCM LMNA (LaminA/C) gene mutation can activate TP53, and the study of P53 shows that P53 affects OPA1 through Bak/Bax and OMA1 (a metalloprotease). OPA1 can be considered the missing link between DCMp53 and DCM apoptosis, mitochondrial dynamics imbalance and changes in cristae structure. OPA1 regulates apoptosis by regulating the release of cytochrome c from the mitochondrial matrix through CJs (crisp linkages, located in the inner mitochondrial membrane) and unbalances mitochondrial fusion and fission by affecting mitochondrial inner membrane (IM) fusion. OPA1 is also associated with the formation and maintenance of mitochondrial cristae. OPA1 is not the root cause of DCM, but it is an essential mediator in P53 mediating the occurrence and development of DCM, so OPA1 also becomes a molecular regulator of DCM. This review discusses the implication of OPA1 for DCM from three aspects: apoptosis, mitochondrial dynamics and ridge structure.  相似文献   

2.
Mitochondria are important participants in apoptosis, releasing cytochrome c into the cytoplasm and undergoing extensive fragmentation. However, mechanisms underlying these processes remain unclear. Here, we demonstrate that cytochrome c release during apoptosis precedes mitochondrial fragmentation. Unexpectedly, OPA1, a dynamin-like GTPase of the mitochondrial intermembrane space important for maintaining cristae structure, is co-released with cytochrome c. To mimic the loss of OPA1 occurring after its release, we knocked down OPA1 expression using RNA interference. This triggered structural changes in the mitochondrial cristae and caused increased fragmentation by blocking mitochondrial fusion. Because cytochrome c is mostly sequestered within cristae folds but released rapidly and completely during apoptosis, we examined the effect of OPA1 loss on cytochrome c release, demonstrating that it is accelerated. Thus, our results suggest that an initial mitochondrial leak of OPA1 leads to cristae structural alterations and exposure of previously sequestered protein pools, permitting continued release in a feed-forward manner to completion. Moreover, our findings indicate that the resulting OPA1 depletion causes a block in mitochondrial fusion, providing a compelling mechanism for the prominent increase in mitochondrial fragmentation seen during apoptosis.  相似文献   

3.
The role of the mitochondrial permeability transition (MPT) in apoptosis and necrosis is controversial. Here we show that the MPT regulates the release of cytochrome c for apoptosis during endoplasmic reticulum (ER) stress by remodeling the cristae junction (CJ). CEM cells, HCT116 colon cancer cells, and murine embryo fibroblast cells were treated with the ER stressor thapsigargin (THG), which led to cyclophilin D-dependent mitochondrial release of the profusion GTPase optic atrophy 1 (OPA1), which controls CJ integrity, and cytochrome c, leading to apoptosis. Interference RNA knockdown of Bax blocked OPA1 and cytochrome c release after THG treatment but did not prevent the MPT, showing that Bax was essential for the release of cytochrome c by MPT. In isolated mitochondria, MPT led to OPA1 and cytochrome c release independently of voltage-dependent anion channel and the outer membrane, indicating that the MPT is an inner membrane phenomenon. Last, the MPT was regulated by the electron transport chain but not mitochondrial reactive oxygen species, since THG-induced cell death was not blocked by antioxidants and did not occur in cells lacking mitochondrial DNA. Our results show that the MPT regulates CJ remodeling for cytochrome c-dependent apoptosis induced by ER stress and that mitochondrial electron transport is indispensable for this process.  相似文献   

4.
Rhomboids, evolutionarily conserved integral membrane proteases, participate in crucial signaling pathways. Presenilin-associated rhomboid-like (PARL) is an inner mitochondrial membrane rhomboid of unknown function, whose yeast ortholog is involved in mitochondrial fusion. Parl-/- mice display normal intrauterine development but from the fourth postnatal week undergo progressive multisystemic atrophy leading to cachectic death. Atrophy is sustained by increased apoptosis, both in and ex vivo. Parl-/- cells display normal mitochondrial morphology and function but are no longer protected against intrinsic apoptotic death stimuli by the dynamin-related mitochondrial protein OPA1. Parl-/- mitochondria display reduced levels of a soluble, intermembrane space (IMS) form of OPA1, and OPA1 specifically targeted to IMS complements Parl-/- cells, substantiating the importance of PARL in OPA1 processing. Parl-/- mitochondria undergo faster apoptotic cristae remodeling and cytochrome c release. These findings implicate regulated intramembrane proteolysis in controlling apoptosis.  相似文献   

5.
OPA1 encodes a large GTPase related to dynamins, anchored to the mitochondrial cristae inner membrane, facing the intermembrane space. OPA1 haplo-insufficiency is responsible for the most common form of autosomal dominant optic atrophy (ADOA, MIM165500), a neuropathy resulting from degeneration of the retinal ganglion cells and optic nerve atrophy. Here we show that down-regulation of OPA1 in HeLa cells using specific small interfering RNA (siRNA) leads to fragmentation of the mitochondrial network concomitantly to the dissipation of the mitochondrial membrane potential and to a drastic disorganization of the cristae. These events are followed by cytochrome c release and caspase-dependent apoptotic nuclear events. Similarly, in NIH-OVCAR-3 cells, the OPA1 siRNA induces mitochondrial fragmentation and apoptosis, the latter being inhibited by Bcl2 overexpression. These results suggest that OPA1 is a major organizer of the mitochondrial inner membrane from which the maintenance of the cristae integrity depends. As loss of OPA1 commits cells to apoptosis without any other stimulus, we propose that OPA1 is involved in the cytochrome c sequestration and might be a target for mitochondrial apoptotic effectors. Our results also suggest that abnormal apoptosis is a possible pathophysiological process leading to the retinal ganglion cells degeneration in ADOA patients.  相似文献   

6.
The mechanism during apoptosis by which cytochrome c is rapidly and completely released in the absence of mitochondrial swelling is uncertain. Here, we show that two distinct pathways are involved. One mediates release of cytochrome c across the outer mitochondrial membrane, and another, characterized in this study, is responsible for the redistribution of cytochrome c stored in intramitochondrial cristae. We have found that the "BH3-only" molecule tBID induces a striking remodeling of mitochondrial structure with mobilization of the cytochrome c stores (approximately 85%) in cristae. This reorganization does not require tBID's BH3 domain and is independent of BAK, but is inhibited by CsA. During this process, individual cristae become fused and the junctions between the cristae and the intermembrane space are opened.  相似文献   

7.
Most cell death stimuli trigger the mitochondrial release of cytochrome c and other cofactors that induce caspase activation and ensuing apoptosis. Apoptosis is also associated with massive mitochondrial fragmentation and cristae remodeling. Dynamin-related protein 1 (Drp1), a protein of the mitochondrial fission machinery, has been reported to participate in apoptotic mitochondrial fragmentation. Several theories explaining the mechanisms of cytochrome c release have been proposed. One suggests that it relies on the activation of Drp1-mediated mitochondrial fission. Here, we report that downregulation of Drp1 inhibits fragmentation of the mitochondrial network and partially prevents the release of cytochrome c but fails to prevent the release of other mitochondrial factors such as second mitochondria-derived activator of caspase/direct IAP-binding protein with low pI, Omi/HtrA2, adenylate kinase 2 and deafness dystonia peptide/TIMM8a. An explanation for the prevention of cytochrome c release is provided by our observation that inhibiting Drp1-mediated mitochondrial fission prevents the mitochondrial release of soluble OPA1 that was proposed to regulate cristae remodeling and complete cytochrome c release during apoptosis. Finally, we observed that downregulation of Drp1 delays but does not inhibit apoptosis, suggesting that mitochondrial fragmentation is not a prerequisite for apoptosis.  相似文献   

8.
This review summarizes recent findings from electron tomography about the three-dimensional shape of mitochondrial membranes and its possible influence on a range of mitochondrial functions. The inner membrane invaginations called cristae are pleomorphic, typically connected by narrow tubular junctions of variable length to the inner boundary membrane. This design may restrict intra-mitochondrial diffusion of metabolites such as ADP, and of soluble proteins such as cytochrome c. Tomographic images of a variety of mitochondria suggest that inner membrane topology reflects a balance between membrane fusion and fission. Proteins that can affect cristae morphology include tBid, which triggers cytochrome c release in apoptosis, and the dynamin-like protein Mgm1, involved in inter-mitochondrial membrane fusion. In frozen-hydrated rat-liver mitochondria, the space between the inner and outer membranes contains 10-15 nm particles that may represent macromolecular complexes involved in activities that span the two membranes.  相似文献   

9.
Mitochondrial fission facilitates cytochrome c release from the intracristae space into the cytoplasm during intrinsic apoptosis, although how the mitochondrial fission factor Drp1 and its mitochondrial receptors Mff, MiD49, and MiD51 are involved in this reaction remains elusive. Here, we analyzed the functional division of these receptors with their knockout (KO) cell lines. In marked contrast to Mff-KO cells, MiD49/MiD51-KO and Drp1-KO cells completely resisted cristae remodeling and cytochrome c release during apoptosis. This phenotype in MiD49/51-KO cells, but not Drp1-KO cells, was completely abolished by treatments disrupting cristae structure such as OPA1 depletion. Unexpectedly, OPA1 oligomers generally thought to resist cytochrome c release by stabilizing the cristae structure were similarly disassembled in Drp1-KO and MiD49/51-KO cells, indicating that disassembly of OPA1 oligomers is not directly linked to cristae remodeling for cytochrome c release. Together, these results indicate that Drp1-dependent mitochondrial fission through MiD49/MiD51 regulates cristae remodeling during intrinsic apoptosis.  相似文献   

10.
Mitochondria are double-membrane enclosed eukaryotic organelles with a central role in numerous cellular functions. The ultrastructure of mitochondria varies considerably between tissues, organisms, and the physiological state of cells. Alterations and remodeling of inner membrane structures are evident in numerous human disorders and during apoptosis. The inner membrane is composed of two subcompartments, the cristae membrane and the inner boundary membrane. Recent advances in electron tomography led to the current view that these membrane domains are connected by rather small tubular structures, termed crista junctions. They have been proposed to regulate the dynamic distribution of proteins and lipids as well as of soluble metabolites between individual mitochondrial subcompartments. One example is the release of cytochrome c upon induction of apoptosis. However, only little is known on the molecular mechanisms mediating the formation and maintenance of cristae and crista junctions. Here we review the current knowledge of the factors that determine cristae morphology and how the latter is linked to mitochondrial function. Further, we formulate several theoretical models which could account for the de novo formation of cristae as well as their propagation from existing cristae.  相似文献   

11.
Mitochondrial morphology dynamically changes in a balance of membrane fusion and fission in response to the environment, cell cycle, and apoptotic stimuli. Here, we report that a novel mitochondrial protein, MICS1, is involved in mitochondrial morphology in specific cristae structures and the apoptotic release of cytochrome c from the mitochondria. MICS1 is an inner membrane protein with a cleavable presequence and multiple transmembrane segments and belongs to the Bi-1 super family. MICS1 down-regulation causes mitochondrial fragmentation and cristae disorganization and stimulates the release of proapoptotic proteins. Expression of the anti-apoptotic protein Bcl-XL does not prevent morphological changes of mitochondria caused by MICS1 down-regulation, indicating that MICS1 plays a role in maintaining mitochondrial morphology separately from the function in apoptotic pathways. MICS1 overproduction induces mitochondrial aggregation and partially inhibits cytochrome c release during apoptosis, regardless of the occurrence of Bax targeting. MICS1 is cross-linked to cytochrome c without disrupting membrane integrity. Thus, MICS1 facilitates the tight association of cytochrome c with the inner membrane. Furthermore, under low-serum condition, the delay in apoptotic release of cytochrome c correlates with MICS1 up-regulation without significant changes in mitochondrial morphology, suggesting that MICS1 individually functions in mitochondrial morphology and cytochrome c release.  相似文献   

12.
The goal of this review is to highlight recent developments in the field of mitochondrial membrane processes, which provide new insights into the relation between mitochondrial fission/fusion events and the mitochondrial permeability transition (MPT). First, we distinguish between pore opening events at the inner and outer mitochondrial membranes. Inner membrane pore opening, or iMPT, leads to membrane depolarization, release of low molecular weight compounds, cristae reorganization and matrix swelling. Outer membrane pore opening, or oMPT, allows partial release of apoptotic proteins, while complete release requires additional remodeling of inner membrane cristae. Second, we summarize recent data that supports a similar temporal and physical separation between inner and outer mitochondrial membrane fusion events. Finally, we focus on cristae remodeling, which may be the intersection between oMPT and iMPT events. Interestingly, components of fusion machinery, such as mitofusin 2 and OPA1, appear to play a role in cristae remodeling as well. Special issue dedicated to John P. Blass.  相似文献   

13.
OPA1 and PARL keep a lid on apoptosis   总被引:4,自引:0,他引:4  
Gottlieb E 《Cell》2006,126(1):27-29
A change in the shape of mitochondrial cristae must take place to attain rapid and complete release of cytochrome c during apoptosis. In this issue of Cell, Cipolat et al. and Frezza et al. (2006) show that a rhomboid intramembrane protease PARL and a dynamin-related protein OPA1 are critical regulators of cristae remodeling.  相似文献   

14.
Controversy surrounds the role and mechanism of mitochondrial cristae remodeling in apoptosis. Here we show that the proapoptotic BH3-only proteins Bid and Bim induced full cytochrome c release but only a subtle alteration of crista junctions, which involved the disassembly of Opa1 complexes. Both mitochondrial outer membrane permeabilization (MOMP) and crista junction opening (CJO) were caspase independent and required a functional BH3 domain and Bax/Bak. However, MOMP and CJO were experimentally separable. Pharmacological blockade of MOMP did not prevent Opa1 disassembly and CJO; moreover, expression of a disassembly-resistant mutant Opa1 (Q297V) blocked cytochrome c release and apoptosis but not Bax activation. Thus, apoptosis requires a subtle form of Opa1-dependent crista remodeling that is induced by BH3-only proteins and Bax/Bak but independent of MOMP.  相似文献   

15.
Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1''s role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation-induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein-dependent manner.  相似文献   

16.
In addition to their role in providing ATP for cellular functions via oxidative phosphorylation, mitochondria also play a critical role in initiating and/or regulating apoptosis through the release of proteins such as cytochrome c from intermembrane and intracristal compartments. The mechanism by which these proteins are able to cross the outer mitochondrial membrane has been a subject of controversy. This paper will review some recent results that demonstrate that inner mitochondrial membrane remodeling does occur during apoptosis in HeLa cells but does not appear to be a requirement for release of cytochrome c from intracristal compartments. Inner membrane remodeling does appear to be related to fragmentation of the mitochondrial matrix, and the form of the remodeling suggests a topological mechanism for inner membrane fission and fusion.  相似文献   

17.
Zhang Y  Chan DC 《FEBS letters》2007,581(11):2168-2173
Fusion controls mitochondrial morphology and is important for normal mitochondrial function, including roles in respiration, development, and apoptosis. Key components of the mitochondrial fusion machinery have been identified, allowing an initial dissection of its molecular mechanism. Outer and inner membrane fusion events are coordinately coupled but are mechanistically distinct. Mitofusins are mitochondrial GTPases that likely mediate outer membrane fusion. The dynamin-related protein OPA1/Mgm1p is required for inner membrane fusion and maintenance of normal cristae structure. We highlight recent findings that have advanced our understanding of the mechanism, function, and regulation of mitochondrial fusion.  相似文献   

18.
During apoptosis, mitochondria undergo multiple changes that culminate in the release of cytochrome c and other proapoptotic cofactors. Recently, a role for previously overlooked morphological changes, fission of the mitochondrial reticulum and remodeling of mitochondrial cristae, has been suggested in mammalian cells and in developmental apoptosis of C. elegans. Mitochondrial morphology is determined by fusion and fission processes, controlled by a growing set of “mitochondria-shaping” proteins, whose levels and function appear to regulate the mitochondrial pathways of cell death. Expression of pro-fusion proteins, as well as of inhibition of pro-fission molecules reduces apoptosis, suggesting a linear relationship between fragmentation and death. Mechanisms by which mitochondrial fragmentation promotes apoptosis and interactions between fragmentation and remodeling of the inner membrane are largely unclear. A tempting, unifying hypothesis suggests that fission is coupled to cristae remodeling to maximize cytochrome c release.  相似文献   

19.
We showed earlier that 15 deoxy Δ12,14 prostaglandin J2 (15d-PGJ2) inactivates Drp1 and induces mitochondrial fusion [1]. However, prolonged incubation of cells with 15d-PGJ2 resulted in remodeling of fused mitochondria into large swollen mitochondria with irregular cristae structure. While initial fusion of mitochondria by 15d-PGJ2 required the presence of both outer (Mfn1 and Mfn2) and inner (OPA1) mitochondrial membrane fusion proteins, later mitochondrial changes involved increased degradation of the fusion protein OPA1 and ubiquitination of newly synthesized OPA1 along with decreased expression of Mfn1 and Mfn2, which likely contributed to the loss of tubular rigidity, disorganization of cristae, and formation of large swollen degenerated dysfunctional mitochondria. Similar to inhibition of Drp1 by 15d-PGJ2, decreased expression of fission protein Drp1 by siRNA also resulted in the loss of fusion proteins. Prevention of 15d-PGJ2 induced mitochondrial elongation by thiol antioxidants prevented not only loss of OPA1 isoforms but also its ubiquitination. These findings provide novel insights into unforeseen complexity of molecular events that modulate mitochondrial plasticity.  相似文献   

20.
In recent years, electron tomography has provided detailed three-dimensional models of mitochondria that have redefined our concept of mitochondrial structure. The models reveal an inner membrane consisting of two components, the inner boundary membrane (IBM) closely apposed to the outer membrane and the cristae membrane that projects into the matrix compartment. These two components are connected by tubular structures of relatively uniform size called crista junctions. The distribution of crista junction sizes and shapes is predicted by a thermodynamic model based upon the energy of membrane bending, but proteins likely also play a role in determining the conformation of the inner membrane. Results of structural studies of mitochondria during apoptosis demonstrate that cytochrome c is released without detectable disruption of the outer membrane or extensive swelling of the mitochondrial matrix, suggesting the formation of an outer membrane pore large enough to allow passage of holo-cytochrome c. The possible compartmentation of inner membrane function between the IBM and the cristae membrane is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号