首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolutionary implications of transposable element (TE) influences on gene regulation are explored here. An historical perspective is presented to underscore the importance of TE influences on gene regulation with respect to both the discovery of TEs and the early conceptualization of their potential impact on host genome evolution. Evidence that points to a role for TEs in host gene regulation is reviewed, and comparisons between genome sequences are used to demonstrate the fact that TEs are particularly lineage-specific components of their host genomes. Consistent with these two properties of TEs, regulatory effects and evolutionary specificity, human-mouse genome wide sequence comparisons reveal that the regulatory sequences that are contributed by TEs are exceptionally lineage specific. This suggests a particular mechanism by which TEs may drive the diversification of gene regulation between evolutionary lineages.  相似文献   

2.
3.
Sakai H  Tanaka T  Itoh T 《Gene》2007,392(1-2):59-63
Despite a wide distribution of transposable elements (TEs) in the genomes of higher eukaryotes, much of their evolutionary significance remains unclear. Recent studies have indicated that TEs are involved with biological processes such as gene regulation and the generation of new exons in mammals. In addition, the completion of the genome sequencings in Arabidopsis thaliana and Oryza sativa has permitted scientist to describe a genome-wide overview in plants. In this study, we examined the positions of TEs in the genome of O. sativa. Although we found that more than 10% of the structural genes contained TEs, they were underrepresented in exons compared with non-exonic regions. TEs also appeared to be inserted preferentially in 3'-untranslated regions in exons. These results suggested that purifying selection against TE insertion has played a major role during evolution. Moreover, our comparison of the numbers of TEs in the protein-coding regions between single copy genes and duplicate genes showed that TEs were more frequent in duplicate than single copy genes. This observation indicated that gene duplication events created a large number of functionally redundant genes. Subsequently, many of them were destroyed by TEs because the redundant copies were released from purifying selection. Another biological role of TEs was found to be the recruitment of new exons. We found that approximately 2% of protein-coding genes contained TEs in their coding regions. Insertion of TEs in genic regions may have the potential to be an evolutionary driving force for the creation of new biological functions.  相似文献   

4.
5.
6.
Transposable elements (TEs) are ubiquitous components of all living organisms, and in the course of their coexistence with their respective host geneomes, these parasitc DNAs have played important roles in the evolution of complex genetic networks. The interaction between mobile DNAs and their host genomes are quite diverse, ranging from modifications of gene structure and regulation to alterations in general genome architecture. Thus during evolutionary time these elements can be regarded as natural molecular tools in shaping the organization, structure, and function of eukaryotic genes and genomes. Based on their intrinsic properties and features, mobile DNAs are widely applied at present as a technical “toolbox”, essential for studying a diverse spectrum of biological questions. In this review, we aim to summarize both the evolutionary impact of TEs on geneome evolution and their valuable and diverse methodological applications as molecular tools.  相似文献   

7.
8.
B Chénais  A Caruso  S Hiard  N Casse 《Gene》2012,509(1):7-15
Transposable elements (TEs) are present in roughly all genomes. These mobile DNA sequences are able to invade genomes and their impact on genome evolution is substantial. The mobility of TEs can induce the appearance of deleterious mutations, gene disruption and chromosome rearrangements, but transposition activity also has positive aspects and the mutational activities of TEs contribute to the genetic diversity of organisms. This short review aims to give a brief overview of the impact TEs may have on animal and plant genome structure and expression, and the relationship between TEs and the stress response of organisms, including insecticide resistance.  相似文献   

9.
Transposable elements (TEs) are abundant in mammalian genomes and have potentially contributed to their hosts' evolution by providing novel regulatory or coding sequences. We surveyed different classes of regulatory region in the human genome to assess systematically the potential contribution of TEs to gene regulation. Almost 25% of the analyzed promoter regions contain TE-derived sequences, including many experimentally characterized cis-regulatory elements. Scaffold/matrix attachment regions (S/MARs) and locus control regions (LCRs) that are involved in the simultaneous regulation of multiple genes also contain numerous TE-derived sequences. Thus, TEs have probably contributed substantially to the evolution of both gene-specific and global patterns of human gene regulation.  相似文献   

10.

Background

Many genomes contain a substantial number of transposable elements (TEs), a few of which are known to be involved in regulating gene expression. However, recent observations suggest that TEs may have played a very important role in the evolution of gene expression because many conserved non-genic sequences, some of which are know to be involved in gene regulation, resemble TEs.

Results

Here we investigate whether new TE insertions affect gene expression profiles by testing whether gene expression divergence between mouse and rat is correlated to the numbers of new transposable elements inserted near genes. We show that expression divergence is significantly correlated to the number of new LTR and SINE elements, but not to the numbers of LINEs. We also show that expression divergence is not significantly correlated to the numbers of ancestral TEs in most cases, which suggests that the correlations between expression divergence and the numbers of new TEs are causal in nature. We quantify the effect and estimate that TE insertion has accounted for ∼20% (95% confidence interval: 12% to 26%) of all expression profile divergence in rodents.

Conclusions

We conclude that TE insertions may have had a major impact on the evolution of gene expression levels in rodents.  相似文献   

11.
12.
13.
14.
Retroviruses and primate evolution   总被引:9,自引:0,他引:9  
Human endogenous retroviruses (HERVs), probably representing footprints of ancient germ-cell retroviral infections, occupy about 1% of the human genome. HERVs can influence genome regulation through expression of retroviral genes, either via genomic rearrangements following HERV integrations or through the involvement of HERV LTRs in the regulation of gene expression. Some HERVs emerged in the genome over 30 MYr ago, while others have appeared rather recently, at about the time of hominid and ape lineages divergence. HERVs might have conferred antiviral resistance on early human ancestors, thus helping them to survive. Furthermore, newly integrated HERVs could have changed the pattern of gene expression and therefore played a significant role in the evolution and divergence of Hominoidea superfamily. Comparative analysis of HERVs, HERV LTRs, neighboring genes, and their regulatory interplay in the human and ape genomes will help us to understand the possible impact of HERVs on evolution and genome regulation in the primates. BioEssays 22:161-171, 2000.  相似文献   

15.
16.
To study the genome-wide impact of transposable elements (TEs) on the evolution of protein-coding regions, we examined 13 799 human genes and found 533 (approximately 4%) cases of TEs within protein-coding regions. The majority of these TEs (approximately 89.5%) reside within 'introns' and were recruited into coding regions as novel exons. We found that TE integration often has an effect on gene function. In particular, there were two mouse genes whose coding regions consist largely of TEs, suggesting that TE insertion might create new genes. Thus, there is increasing evidence for an important role of TEs in gene evolution. Because many TEs are taxon-specific, their integration into coding regions could accelerate species divergence.  相似文献   

17.
The distribution of transposable elements (TEs) in a genome reflects a balance between insertion rate and selection against new insertions. Understanding the distribution of TEs therefore provides insights into the forces shaping the organization of genomes. Past research has shown that TEs tend to accumulate in genomic regions with low gene density and low recombination rate. However, little is known about the factors modulating insertion rates across the genome and their evolutionary significance. One candidate factor is gene expression, which has been suggested to increase local insertion rate by rendering DNA more accessible. We test this hypothesis by comparing the TE density around germline- and soma-expressed genes in the euchromatin of Drosophila melanogaster. Because only insertions that occur in the germline are transmitted to the next generation, we predicted a higher density of TEs around germline-expressed genes than soma-expressed genes. We show that the rate of TE insertions is greater near germline- than soma-expressed genes. However, this effect is partly offset by stronger selection for genome compactness (against excess noncoding DNA) on germline-expressed genes. We also demonstrate that the local genome organization in clusters of coexpressed genes plays a fundamental role in the genomic distribution of TEs. Our analysis shows that—in addition to recombination rate—the distribution of TEs is shaped by the interaction of gene expression and genome organization. The important role of selection for compactness sheds a new light on the role of TEs in genome evolution. Instead of making genomes grow passively, TEs are controlled by the forces shaping genome compactness, most likely linked to the efficiency of gene expression or its complexity and possibly their interaction with mechanisms of TE silencing.  相似文献   

18.
Fablet M  Rebollo R  Biémont C  Vieira C 《Gene》2007,390(1-2):84-91
It has now been established that transposable elements (TEs) make up a variable, but significant proportion of the genomes of all organisms, from Bacteria to Vertebrates. However, in addition to their quantitative importance, there is increasing evidence that TEs also play a functional role within the genome. In particular, TE regulatory regions can be viewed as a large pool of potential promoter sequences for host genes. Studying the evolution of regulatory region of TEs in different genomic contexts is therefore a fundamental aspect of understanding how a genome works. In this paper, we first briefly describe what is currently known about the regulation of TE copy number and activity in genomes, and then focus on TE regulatory regions and their evolution. We restrict ourselves to retrotransposons, which are the most abundant class of eukaryotic TEs, and analyze their evolution and the subsequent consequences for host genomes. Particular attention is paid to much-studied representatives of the Vertebrates and Invertebrates, Homo sapiens and Drosophila melanogaster, respectively, for which high quality sequenced genomes are available.  相似文献   

19.
20.
Flowering plants have strikingly distinct genomes, although they contain a similar suite of expressed genes. The diversity of genome structures and organization is largely due to variation in transposable elements (TEs) and whole-genome duplication (WGD) events. We review evidence that chromatin modifications and epigenetic regulation are intimately associated with TEs and likely play a role in mediating the effects of WGDs. We hypothesize that the current structure of a genome is the result of various TE bursts and WGDs and it is likely that the silencing mechanisms and the chromatin structure of a genome have been shaped by these events. This suggests that the specific mechanisms targeting chromatin modifications and epigenomic patterns may vary among different species. Many crop species have likely evolved chromatin-based mechanisms to tolerate silenced TEs near actively expressed genes. These interactions of heterochromatin and euchromatin are likely to have important roles in modulating gene expression and variability within species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号