首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
 To establish an efficient asparagus microspore culture system, experiments were conducted to investigate the effects of medium components, period of cold pretreatment for flower buds, and period of anther co-culture on culture response. All factors affected the frequency of asparagus microspore division and the yields of microspore-derived calli. The best results were obtained by pretreating genotype G459 flower buds at 4  °C for 7–9 days, co-culturing anthers with shed microspores for 14 days, and including 6% sucrose, 2 mg l–1α-naphthaleneacetic acid and 1 mg l–1 N6-benzylaminopurine in the culture medium. After 4 days of culture, most shed microspores contained starch-like bodies and died. The 2% of shed microspores lacking these structures divided to produce microcalli. For the best treatments in the different experiments, about 140 calli per 100 anthers were recovered. Cultured on four different regeneration media, 19.6–21% and 3.9–8.0% of microspore-derived calli produced shoots and embryos, respectively, and ultimately plantlets, among which 49% were haploid, 34% diploid, 4% triploid and 11% tetraploid. Received: 3 September 1998 / Revision received: 25 November 1998 / Accepted: 5 December 1998  相似文献   

2.
W. Tang 《Plant cell reports》2000,19(7):727-732
 The morphogenesis ability of light yellowish globular callus derived from cotyledons of mature zygotic embryos of Panax ginseng was investigated. The optimal media for somatic embryogenesis and shoot organogenesis were MS medium containing 0.5 mg l–1 2,4-dichlorophenoxyacetic acid, 0.1 mg l–1 6-benzyladenine (BA), and 500 mg l–1 lactoalbumin hydrolysate, and SH medium supplemented with 0.5 mg l–1 α-naphthaleneacetic acid, 0.1 mg l–1 BA, and 500 mg l–1casein hydrolysate. The influences of glucose, mannose, fructose, and sorbose in the media on somatic embryogenesis and shoot organogenesis were revealed as differences in the numbers of somatic embryos and adventitious shoots per gram of morphogenic callus. The best regeneration of somatic embryos was obtained on medium containing glucose, with a mean of 8.7 somatic embryos per gram of callus. The best regeneration of shoots was observed on medium containing fructose, with an average of 12.2 adventitious shoots per gram of callus. Of the somatic embryos 95% were converted into regenerated plantlets, and 100% of adventitious shoots rooted to form regenerated plantlets. Regenerated plants were successfully established in soil. Flowering was observed in 5.7% of the regenerated plants derived from shoot organogenesis and in 1.4% of the regenerated plants derived from somatic embryogenesis. Received: 1 December 1998 / Revision received: 13 September 1999 / Accepted: 20 September 1999  相似文献   

3.
Plant regeneration was obtained from cultured anthers and hypocotyl segments of caraway (Carum carvi L.). Microspore- and somatic tissue-derived embryos were compared by observation of the regeneration process under identical induction conditions. Fluorescent microscopy with DAPI staining showed initiation of cell divisions and formation of embryogenic callus and somatic embryos from anther sacs, with production of embryos of both microspore and somatic origin. Induction of somatic embryos from hypocotyl-derived callus was also demonstrated. Isozyme native polyacrylamide gel electrophoresis was used to identify haploids and doubled haploids, and to determine the frequency of spontaneous diploidization of regenerated plants of microspore origin. Donor plants (2n = 20) and their anther-derived derivative plants (n = 10, 2n = 20, 4n = 40) in callus stage or leafy rosette stage were compared. The esterase (EST) band patterns of regenerated plants differed from the heterozygous parental material, suggesting that the regenerated plants were microspore-derived haploid/doubled haploid plants. The similar profile of EST bands between the diploid anther-derived plants and a sample of the donor plants corresponded to a somatic regeneration pathway. Although the selected induction conditions revealed no preference for induction of microspore embryogenesis, the anther culture protocol established for caraway utilizing isozyme segregating EST loci markers is suitable for DH production.  相似文献   

4.
 Plantlet regeneration was achieved in blue pine (Pinus wallichiana A.B. Jacks) by organogenesis of mature zygotic embryos. The effect of various basal media and five cytokinins on adventitious bud induction, development and elongation was investigated. Half-strength Douglas fir cotyledon revised medium (DCR) supplemented with 2.5 μm N6-benzyladinine (BA) and 0.025 μM thidiazuron was found to be most effective in inducing adventitious buds. The effect of a BA pulse treatment was also tested, and the bud-forming capacity of each treatment was quantified. The elongation of adventitious buds was achieved on hormone-free half-strength DCR medium containing 2% sucrose and 0.05% activated charcoal. Rooting was induced in the elongated shoots with a 6-h treatment of indoleacetic acid and indolebutyric acid solutions (1 mM each). Rooted shoots were transplanted in the greenhouse for hardening and their survival percentage was 64.4 after 5 weeks and 45.7 after 6 months. Received: 11 September 1998 / Revision received: 10 February 1999 / Accepted: 26 February 1999  相似文献   

5.
Three Indian Brassica juncea cultivars were studied for embryogenic response of microspores, microspore embryo regeneration, ploidy assessment of microspore-derived plants and their diploidization. Genotype dependence for microspore totipotency was observed and a significant effect of genotype by bud size selection was established. The addition of activated charcoal in NLN medium containing 13% (w/v) sucrose and 10 μM silver nitrate resulted in a fourfold increase in microspore embryogenesis, ranging from 100 to 405 embryos per Petri dish corresponding to 2,700–10,935 embryos per 100 buds. Conversion/germination of embryos produced in presence or absence of activated charcoal was similar but air-drying of microspore embryos was essential. Incubation of microspore embryos at 4 ± 1°C for 10 days in dark resulted in 82.3% conversion. The majority of plants produced from these embryos was haploid. Treating microspore-derived plants at the 3–4 leaf growth stage with 0.34% colchicine for 2–3 h resulted in greatest survival (70%) and chromosome doubling (75%) frequencies. Doubled haploid plants were self-pollinated and grown to maturity under field conditions.  相似文献   

6.
  To study the somatic embryogenesis of Brassica oleracea var. botrytis L., hypocotyls were placed on Murashige and Skoog's medium (1962) with 1 mg.l–1 of 2,4-dichlorophenoxyacetic acid and 1 mg.l–1 of kinetin to induce callogenesis. After transfer of the calli to the maturation medium, somatic embryos appeared. They developed into plantlets and the potential of regeneration of the calli was maintained for more than 8 months. Thirty-five plantlets were produced after 2 months of culture, then transplanted into soil. Inter-simple sequence repeat markers generated by trinucleotidic and tetranucleotidic primers were tested for their ability to characterise genomic variations in the obtained plants. The absence of polymorphism between different regenerants from the same cultivar indicates the conformity of the regeneration protocol. Received: 4 February 2000 / Revision received: 22 May 2000 / Accepted: 23 May 2000  相似文献   

7.
Summary Wheat (Triticum aestivum L.) haploids and doubled haploids have been used in breeding programs and genetic studies. Wheat haploids and doubled haploids via anther culture are usually produced by a multiple step culture procedure. We improved a wheat haploid and doubled haploid production system via anther culture in which plants are produced from microspore-derived embryos using one medium and one culture environment. In the improved protocol, tillers of donor plants were pretreated at 4°C for 1–2 wk before anthers were plated on a modified 85D12 basal medium with phenylacetic acid (PAA) and zeatin and cultured at 30°C with a 12-h daylength (43 μEs−1m−2) in an incubator. Microspore-derived embryos developed in 2–3 wk and the plants were produced 3–4 wk after anther plating. In the improved system, as much as 53% of the anthers of Pavon 76 were responsive with multiple embryos. For plant regeneration, as many as 22 green and 25 albino plants were produced from 100 anthers. Sixty-five green plants were grown to maturity and 32 (49%) plants were fertile and produced seeds (indicating spontaneous chromosome doubling) while 33 plants did not produce seed. Of five Nebraska breeding lines tested using the protocol, NE96675 was very responsive and the other lines less so, indicating that the protocol is genotype-dependent.  相似文献   

8.
Summary Cermination of soybean [Glycine max (L.) Merrill] somatic embryos and conversion to whole plants are generally low. This study was conducted to investigate the effects of proliferation, maturation, and desiccation methods on conversion of soybean somatic embryos to plants. Soybean cv. Jack somatic embryos, proliferated on a solid medium containing 90.5 μM (20 mgl−1) 2.4-dichlorophenoxyacetic acid (2.4-D) (MSD20), showed a regeneration rate signficantly higher than those proliferated in a liquid medium containing 45.25 μM (10mgl−1) 2,4-D (FN Lite). When a liquid medium without 2,4-D and B5 vitamins (FN Superlite) was used for maturation, the duration of time necessary for embryo development could be shortened by more than a month compared to maturation on a standard solid medium (MSM6AC). An air-drying method, in which somatic embryos were desiccated in an empty sealed Petri dish for 3–5d, gave rise to the best germination efficiency among the four desiccation methods tested: fast, slow, air, and KCl methods. The final percentage of moisture seems important since embyros over-dried by the fast and slow methods did not convert well into plants.  相似文献   

9.
 An isolated microspore culture and green plant regeneration method for rye (Secale cereale L.) was established. Rye isolated microspore androgenesis was genotype-dependent. PG-96M medium supplemented with 6% maltose gave the highest microspore survival rate after 48 h of culture and the highest embryo/callus yield (930 embryos/calli per 100 anthers from cv. Florida 401). Osmotic pressure in the induction medium played an important role. Pretreatment of the anthers with mannitol was beneficial for the microspore culture. Embryos/calli of a relatively younger age and smaller size had a higher regeneration ability, with the best green plant regeneration rate being 6%. Over 150 microspore-derived green plants have been obtained so far. About 90% of the regenerated plants were spontaneous doubled haploids. This is the first report of isolated microspore culture in true rye resulting in androgenic embryogenesis and plant regeneration. Received: 26 April 1999 / Accepted: 23 November 1999  相似文献   

10.
 To improve plant regeneration from oat anther culture, the basic medium, hormonal supplements and genotype effect were studied. Six of the 14 genotypes tested regenerated plants. Cultivars Kolbu, Katri, Stout and naked oat Lisbeth produced green plants, cultivars Virma and line OT 257 only albinos. The total number of green plantlets regenerated was 22, of which 13 (11 haploid, 2 doubled haploid) survived into the greenhouse, and 37 albinos. Regenerable-type embryos were induced from heat-pretreated anthers on media containing 2, 3 or 5 mg l–1 2,4-dichlorophenoxyacetic acid and 0.2 or 0.5 mg l–1 kinetin as hormonal supplements. 6-Benzylaminopurine promoted albino plant regeneration especially in W14 medium. Colchicine treatment was applied successfully to haploid regenerants. Received: 12 April 1999 / Revision received: 19 August 1999 / Accepted: 8 September 1999  相似文献   

11.
 The development of a rapid protocol for high-efficiency somatic embryogenesis and plant regeneration from seed-derived embryogenic callus cultures of California poppy (Eschscholzia californica Cham.) is reported. The optimized procedure required less than 13 weeks from the initiation of seed cultures to the recovery of plantlets and involved the sequential transfer of cultures onto solid Murashige and Skoog basal medium containing three different combinations of growth regulators. All steps were performed at 25  °C. Friable primary callus was induced from seeds of E. californica cultured on medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxyacetic acid. The primary callus was transferred to medium containing 1.0 mg l−1 1-naphthaleneacetic acid and 0.5 mg l−1 6-benzylaminopurine to establish embryogenic callus and promote somatic embryogenesis. Regenerated plantlets were recovered after the conversion of somatic embryos on medium containing 0.05 mg l−1 6-benzylaminopurine and showed normal development. Embryogenic callus was induced at a frequency of 85%, an average of 45 somatic embryos were produced per callus, 90% of the somatic embryos converted, and about 70% of the plantlets were recovered in soil. The growth rate of somatic embryo-derived shoots could be increased by gibberellic acid treatment, but the resulting plantlets were hyperhydritic. Received: 14 February 1999 / Revision received: 27 April 1999 / Accepted: 14 May 1999  相似文献   

12.
A simple and efficient protocol is described for regeneration of wild sorghum (Sorghum dimidiatum) from cell suspension cultures. Fast-growing cell suspensions were established from shoot-meristem-derived callus. Plating of the suspension on Murashige and Skoog agar medium supplemented with 2.5 mg l–1 2,4-dichlorophenoxyacetic acid (2,4-D) resulted in the formation of embryogenic calli. High-frequency (80%) somatic embryogenesis from small cell clusters (300–400 μm) was observed when the cultures were initially maintained in liquid medium with reduced levels of 2,4-D (0.25 mg l–1), followed by transfer to regeneration medium. Direct plating of these small clusters on regeneration medium or transfer to liquid regeneration medium containing kinetin and 6-benzylaminopurine resulted in the development of mature somatic embryos and plantlets. The regenerants developed to maturity and were all phenotypically and cytologically normal. Received: 20 May 1998 / Revision received: 1 September 1998 / Accepted: 23 September 1998  相似文献   

13.
 A very efficient protocol for plant regeneration from two commercial Humulus lupulus L. (hop) cultivars, Brewers Gold and Nugget has been established, and the morphogenetic potential of explants cultured on Adams modified medium supplemented with several concentrations of cytokinins and auxins studied. Zeatin at 4.56 μm produced direct caulogenesis and caulogenic calli in both cultivars. Subculture of these calli on Adams modified medium supplemented with benzylaminopurine (4.4 μm) and indolebutyric acid (0.49 μm) promoted shoot regeneration which gradually increased up to the third subculture. Regeneration rates of 60 and 29% were achieved for Nugget and Brewers Gold, respectively. By selection of callus lines, it has been possible to maintain caulogenic potential for 14 months. Regenerated plants were successfully transferred to field conditions. Received: 10 March 1997 / Revision received: 12 November 1997 / Accepted: 22 November 1998  相似文献   

14.
 An efficient plant regeneration procedure has been established from hypocotyl explants of the common ice plant, Mesembryanthemum crystallinum L, a halophytic leaf succulent that exhibits a stress-induced switch from C3 photosynthesis to crassulacean acid metabolism (CAM). Somatic embryos were initiated and developed up to globular and heart stages in Murashige and Skoog (MS) media supplemented with 3% sucrose, 0.6% bacto-agar, 80 mM NaCl, 5 μM 2,4-D and 1 μM kinetin. High frequency regeneration occurred when somatic embryos were germinated on media that lacked 2,4-D. High cytokinin treatment suppressed normal growth of embryos and favored abnormal embryo proliferation. Without growth regulators, regenerated plants rooted on MS medium with 100% efficiency. Mature, regenerated plants were fertile and morphologically identical to seed-derived plants. Received: 29 April 1999 / Revision received: 2 July 1999 · Accepted: 12 July 1999  相似文献   

15.
Summary A protocol was developed for high frequency somatic embryogenesis and plant regeneration from cotyledon and hypocotyl explants of Eruca sativa. Explants grown on Murashige and Skoog (MS) medium supplemented with 4.52 μM 2,4-D formed embryogenic callus after 4 wk of culture. Secondary somatic embryos were also produced from primary somatic embryos on MS medium containing 0.56 μM 2,4-D. Somatic embryos developed into mature embryos on MS medium in the presence of 45 gl−1 polyethylene glycol. After desiccation, somatic embryos developed into plantlets by culturing the mature somatic embryos on 1/2 x MS medium containing 0.24 μM indole-3-butyric acid.  相似文献   

16.
 An efficient Agrobacterium-mediated protocol for the stable genetic transformation of Eschscholzia californica Cham. (California poppy) via somatic embryogenesis is reported. Excised cotyledons were co-cultivated with A. tumefaciens strain GV3101 carrying the pBI121 binary vector. Except for the co-cultivation medium, all formulations included 50 mg l−1 paromomycin as the selective agent and 200 mg l−1 timentin to eliminate the Agrobacterium. Four to five weeks after infection, paromomycin-resistant calli grew on 80% of explants in the presence of 2.0 mg l−1 1-naphthaleneacetic acid (NAA) and 0.1 mg l−1 6-benzylaminopurine (BAP). Calli were cultured on somatic embryogenesis induction medium containing 1.0 mg l−1 NAA and 0.5 mg l−1 BAP, and somatic embryos were visible on 30% of the paromomycin-resistant calli within 3–4 weeks. Three to four weeks after the somatic embryos were transferred to phytohormone-free plant regeneration medium, 32% converted to paromomycin-resistant plants. Detection of the neomycin phosphotransferase gene and high levels of β-glucuronidase (GUS) mRNA and enzyme activity, and the cytohistochemical localization of GUS activity in all plant tissues confirmed the integrative transformation of the regenerated plants. The normal alkaloid profile of California poppy was unaffected by the transformation process; thus, the reported protocol could serve as a valuable tool to investigate the molecular and metabolic regulation of the benzophenanthridine alkaloid pathway. Received: 27 October 1999 / Revision received: 6 December 1999 / Accepted: 11 January 2000  相似文献   

17.
A protocol has been developed for achieving somatic embryogenesis and plant regeneration from petiole-derived callus of Heracleum candicans Wall. Callus was initiated on MS medium supplemented with 0.5 mg l–1 2,4-D and 0.5 mg l–1 BAP and subcultured on a medium containing double strength MS macrosalts, 1 mg l–12,4-D and 0.25 mg l–1 Kn. Numerous globular embryos were formed on the surface of the callus upon transfer to auxin-rich MS medium that lacked cytokinins. The globular embryos differentiated into mature embryos only when 2,4-D was removed from the medium. Mature embryo formation was significantly influenced by the pH of the medium and the addition of AgNO3 and ABA. Eighty-five percent of the somatic embryos were converted into plantlets when transferred to a medium supplemented with 0.01 mg l–1 BAP and 0.01 mg l–1 IBA. The regenerated plants have been established in soil and appear to be identical to the parent plants in morphology and chromosome number. Received: 5 November 1997 / Revision received: 9 February 1998 / Accepted: 19 February 1998  相似文献   

18.
 A cryopreservation procedure using encapsulation/dehydration was established for shoot-tips obtained from in vitro-grown shoots of hop. After dissection, shoot-tips were encapsulated in medium with alginate and 0.5 M sucrose. Optimal conditions consisted of preculture for 2 days in solid medium with 0.75 M sucrose, or in increasing sucrose concentrations, desiccation for 4 h with silicagel in a flow cabinet (16% water content) followed by rapid freezing and slow thawing. Shoot recovery after freezing 60 min in liquid nitrogen was around 80%. No phenotypical changes were observed in the recovered plants from cryopreserved shoot-tips growing in the field. Received: 20 April 1997 / Revised: 20 February 1998 / Accepted: 1 Dezember 1998  相似文献   

19.
Four antibiotics were evaluated for their effects on eliminating the hypervirulent Agrobacterium tumefaciens strain C58C1 ATHV RifR (pEHA101)/p35-gus-intron from walnut somatic embryos and on the production of secondary somatic embryos and the transformed somatic embryos. Exposure to 100–1000 mg l−1 of ampicillin, carbenicillin or cefotaxime respectively for up to 60 days did not eliminate the A. tumefaciens while timentin at 500–1000 mg l−1 eradicated it from somatic embryos. One-hour acidified medium treatments and the addition of 100 mg l−1 kanamycin to 500 mg l−1 ampicillin, carbenicillin, cefotaxime or timentin were of little help in eliminating the Agrobacterium. All four antibiotics reduced somatic embryo production, carbenicillin minimally and cefotaxime maximally, especially at higher concentrations, in comparison with antibiotic-free medium. Putative transformed embryos were selected for continued proliferation on a 100 mg l−1 kanamycin-containing medium. Histochemical assessments indicated that more gus-positive somatic embryos, particularly fully gus-positive embryos, regenerated from timentin-containing medium than from other antibiotic-containing media under equivalent conditions. Transformed embryos have been grown and converted into plants and gus activity was observed in whole plants. Received: 13 July 1999 / Revision received: 2 December 1999 / Accepted: 6 December 1999  相似文献   

20.
A method employing isolated microspore culture was established for the androgenic embryogenesis of timothy (Phleum pratense L). Embryos/calli were obtained and green plants regenerated. The induction medium was PG-96 (1.0 mg l−1 2,4-D, 0.1 mg l−1 Kinetin) supplemented with 6% maltose monohydrate. Timothy microspore culture was genotype-dependent, among 12 genotypes, 6 produced embryos/calli and 4 produced green plants. Macerating the spikes with a blender and purifying the microspores at a mannitol/maltose monohydrate interface gave a relatively high percentage of cell vitality. The optimum microspore developmental stage was from the very late uninucleate stage to the binucleate stage. Heat shock promoted the initiation of microspore culture. Over 150 regenerated green plants were obtained; in a random sample of 32 of these 65.6% were doubled haploids (6n=42). Albinism was a problem in plant regeneration (9.3–22%). This paper is the first to describe timothy androgenic embryogenesis by isolated microspore culture. Received: 9 September 1999 / Revision received: 6 December 1999 / Accepted: 13 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号