首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of the adenine nucleotide translocator is decreased at ischemia. Studies were undertaken to elucidate changes in the adenine nucleotide translocator by determining its content in mitochondria of ischemic rat kidney. After 60 min of ischemia, the content of the adenine nucleotide translocator amounted only to about 55%, of that measured in control mitochondria. At the same time, the flux control coefficient was increased. These changes paralled the well-known effects of ischemia: the decrease in oxidative phosphorylation and in adenine nucleotides. It is supposed that the decrease in the adenine nucleotide translocatar content accounts, at least partially, for the ischemia-induced impairment of mitochondria.  相似文献   

2.
The effect of acute hypoxia on adenine nucleotides, glutamate, aspartate, alanine and respiration of heart mitochondria was studied in rats. The losses of intramitochondrial adenine nucleotides (ATP+ADP+AMP) during hypoxia were related to depression of state 3 respiration supported by glutamate and malate, as well as decrease in uncoupled respiration. Hypoxia had less prominent effect on succinate-dependent state 3 respiration. Non-phosphorylating (state 4) respiratory rates and ADP/O ratios were slightly affected by oxygen deprivation. Glutamate fall in tissue and mitochondria of hypoxic hearts was concomitant with significant increase in tissue alanine and mitochondrial aspartate. The losses of intramitochondrial ATP and respiratory activity with NAD-dependent substrates during hypoxia were related to a decrease in mitochondrial glutamate. The results suggest that hypoxia-induced impairment of complex I of respiratory chain and a loss of glutamate from the matrix may limit energy-producing capacity of heart mitochondria.  相似文献   

3.
Mitochondrial respiration was studied as a function of the total adenine nucleotide content of rat liver mitochondria. The adenine nucleotide content was varied by treating isolated mitochondria with pyrophosphate or by incubating pyrophosphate-treated mitochondria with ATP. Mitochondria with at least 4 nmol adenine nucleotides/mg protein maintained at least 80% of the State 3 activity of control mitochondria, which had approximately 10 nmol/mg protein. However, State 3 decreased rapidly once the adenine nucleotide content fell below 4 nmol/mg protein. Between 2 and 4 nmol adenine nucleotides/mg, State 3 was not limited by the maximal capacity of electron flow as measured by the uncoupled respiration. However, at very low adenine nucleotide levels (<2 nmol/mg), the uncoupled rates of respiration were markedly depressed. State 4 was not affected by changes in the mitochondrial adenine nucleotide content. Adenine translocase activity varied in almost direct correlation with changes in the adenine nucleotide content. Therefore, adenine translocase activity was more sensitive than State 3 to changes in total adenine nucleotides over the range of 4 to 10 nmol/mg protein. The results suggest that (i) State 3 is dependent on the level of intramitochondrial adenine nucleotides, particularly in the range below 4 nmol/mg protein, (ii) adenine translocase activity is not rate-limiting for oxidative phosphorylation in mitochondria with the normal complement of adenine nucleotides, however, at low adenine nucleotide levels, depressed State 3 rates may be explained in part by the low rate of ADP translocation, and (iii) a mechanism of net ATP uptake exists in mitochondria with low internal adenine nucleotides.  相似文献   

4.
The effect of acute respiratory hypoxia in rats on mitochondrial respiration, adenine nucleotides and some amino acids of the heart was studied. The decrease in the total (ATP + ADP + AMP) and exchangeable (ATP + ADP) adenine nucleotide pool of the mitochondria was accompanied by a pronounced loss of state 3 respiration with glutamate plus malate and a slight decrease with succinate plus rothenone. The uncoupled respiration of mitochondria with glutamate and malate was decreased in the same degree as in the absence of 2,4-dinitrophenol. State 4 respiration with substrates of both types was unaffected by hypoxia. These data point to a hypoxia-induced impairment of complex I of the respiratory chain. The decrease of tissue and mitochondrial glutamate was accompanied by the elevation of alanine content in the heart and an increase in intramitochondrial aspartate. The ADP-stimulated respiration of mitochondria was correlated with mitochondrial glutamate and ATP as well as with exchangeable adenine nucleotide pools during hypoxia. The experimental results suggest that mitochondrial dysfunction induced by hypoxia may also be attributed to the low level of mitochondrial glutamate.  相似文献   

5.
Net adenine nucleotide transport into and out of the mitochondrial matrix via the ATP-Mg/Pi carrier is activated by micromolar calcium concentrations in rat liver mitochondria. The purpose of this study was to induce net adenine nucleotide transport by varying the substrate supply and/or extramitochondrial ATP consumption in order to evaluate the effect of the mitochondrial adenine nucleotide pool size on intramitochondrial adenine nucleotide patterns under phosphorylating conditions. Above 12 nmol/mg protein, intramitochondrial ATP/ADP increased with an increase in the mitochondrial adenine nucleotide pool. The relationship between the rate of respiration and the mitochondrial ADP concentration did not depend on the mitochondrial adenine nucleotide pool size up to 9 nmol ADP/mg mitochondrial protein. The results are compatible with the notion that net uptake of adenine nucleotides at low energy states supports intramitochondrial ATP consuming processes and energized mitochondria may lose adenine nucleotides. The decrease of the mitochondrial adenine nucleotide content below 9 nmol/mg protein inhibits oxidative phosphorylation. In particular, this could be the case within the postischemic phase which is characterized by low cytosolic adenine nucleotide concentrations and energized mitochondria.  相似文献   

6.
1. Uncoupled oxidative phosphorylation in isolated guinea pig brown-adipose-tissue mitochondria is reflected by a low phosphorylation state of adenosine phosphates in the mitochondrial matrix and in the extramitochondrial space during oxidation of succinate or glycerol 1-phosphate in the presence of serum albumin and 100 muM ADP. Recoupling of respiration and phosphorylation in the mitochondria is indicatdd by a dramatic increase in the phosphorylation state of adenine nucleotides in both compartments, when substrates inducing substrate level phosphorylation are respired. In this case ATP/ADP ratios in the extramitochondrial compartment are 10-15 times higher than in the mitochondrial matrix. 2. Recoupling mediated by substrate level phosphorylation depends on the presence of extramitochondrial adenosine phosphate and on intact adenine nucleotide translocation. In the presence of substrate level phosphorylation the amount of extramitochondrial ADP required to restore energy coupling can be extremely low (20 muM ADP or 10 nmol ADP/mg mitochondrial protein respectively). If substrate level phosphorylation is prevented by rotenone or in the presence of atractyloside, 20-50 times higher amounts of extramitochondrial adenine nucleotides are necessary to cause coupled oxidative phosphorylation. The recoupling effect of ATP is significantly stronger than that of ADP. 3. GDP (100 muM) causes a rapid increase of the ATP/ADP ratio in both compartments which is independent of substrate level phosphorylation as well as of the extramitochondrial adenosine phosphate concentration and the adenine nucleotide carrier. 4. The amount of extramitochondrial adenosine phosphate in guinea pig brown-adipose-tissue (18 nmol/mg mitochondrial protein or 2.5 mM respectively) would suffice for recoupling of oxidative phosphorylation mediated by substrate level phosphorylation under conditions in vitro; this suggests that substrate level phosphorylation is of essential importance in brown fat in vivo with respect to energy conditions in the tissue during different states of thermogenesis.  相似文献   

7.
The process of mitochondrial dysfunction in ischemic rat liver was studied. A close correlation was found between decrease in the mitochondrial adenine nucleotide content and deterioration of oxidative phosphorylation capacity. The level of total adenine nucleotides, which was 15--20 nmol/mg protein in mitochondria isolated from normal liver, fell to 1--2 nmol/mg protein with concomitant loss of oxidative phosphorylation capacity after anoxic incubation in vitro or in vivo for 120 min. However, neither the permeability barrier to adenine nucleotides nor matrix enzymes were affected under these conditions. The loss of adenine nucleotides was ascribed to degradation of AMP to adenosine and then leakage of the latter. Conventional procedures for maintenance of oxidative phosphorylation capacity of isolated mitochondria, preservation in the cold and addition of ATP or a respiratory substrate under aerobic conditions, were very effective in maintaining the intramitochondrial levels of adenine nucleotides. Of the three species of adenine nucleotides, only AMP was ineffective in maintaining mitochondrial function; mitochondria containing more than 5 nmol of ATP plus ADP/mg protein exhibited normal activity of oxidative phosphorylation, but with less than 2 nmol they showed no activity.  相似文献   

8.
Unidirectional transport (influx and efflux) of adenine nucleotides in rat liver mitochondria was examined using carboxyatractyloside to inhibit rapid exchange of matrix and external adenine nucleotides via the adenine nucleotide translocase. Influx of adenine nucleotides was concentration-dependent. ATP was the preferred substrate with a Km of 2.67 mM and V of the preferred substrate with a Km of 2.67 mM and V of 8.33 nmol/min/mg of protein. For ADP, the Km was 14.7 mM and V was 10.8 nmol/min/mg of protein. Efflux of adenine nucleotides was also concentration-dependent, varying directly as a function of the matrix adenine nucleotide pool size. Any increase in the influx of adenine nucleotides was coupled to an increase in efflux. However, as the external ATP concentration was increased, influx was stimulated to a much greater extent than was efflux. This imbalance suggested that under certain conditions adenine nucleotide movement might be coupled to the movement of an alternate anion such as phosphate. Adenine nucleotide efflux increased as the external phosphate concentration was varied from 0.5 to 4 mM. Also, increasing the external phosphate concentration caused adenine nucleotide influx to decrease, suggesting competition. In the absence of external adenines and phosphate, no efflux occurred. Both adenine nucleotide influx and efflux were depressed if Mg2+ was omitted. Adenine nucleotide efflux in the presence of external phosphate was inhibited much less by lack of Mg2+ than was efflux in the presence of external ATP. This evidence supports a model in which either adenine nucleotides (probably with Mg2+) or phosphate can move across the mitochondrial membrane on a single carrier. Net adenine nucleotide movements can occur when adenine nucleotide movement is coupled to the movement of phosphate in the opposite direction.  相似文献   

9.
A mathematical model of control of energy transformation in mitochondria is presented. The considered processes are: the proton translocation by the respiratory chain, the production of ATP by ATPase, the translocation of adenine nucleotides and of phosphate by their translocators, and a passive backflow of protons through the mitochondrial membrane. The mathematical equations expressing the steady-state kinetics of these processes and the relations between them were derived on the basis of current experimental data. The model predicts fairly well the values of the proton electrochemical gradient, of the ATP/ADP ratios within and outside mitochondria and of the distribution of phosphate between both compartments in different metabolic states of mitochondria. From the general agreement of model computations with experimental data, it is suggested that the electron flux through the respiratory chain is immediately controlled by the energy back-pressure of the proton electrochemical gradient, that the ATPase reaction is near equilibrium in phosphorylating mitochondria but that the adenine nucleotide exchange across the mitochondrial membrane requires some loss of energy. The latter is caused by an inhibition of the translocator by ATP from the outer side or by ADP from the inner side depending on the actual ATP/ADP in both compartments. It explains that no fixed relation exists between the rate of respiration and the phosphorylation state of extramitochondrial adenine nucleotides. The relation is modified by the concentration of phosphate and by intramitochondrial energy utilization.  相似文献   

10.
Mitochondrial permeability transition, due to opening of the permeability transition pore (PTP), is triggered by Ca2+ in conjunction with an inducing agent such as phosphate. However, incubation of rat liver mitochondria in the presence of low micromolar concentrations of Ca2+ and millimolar concentrations of phosphate is known to also cause net efflux of matrix adenine nucleotides via the ATP-Mg/Pi carrier. This raises the possibility that adenine nucleotide depletion through this mechanism contributes to mitochondrial permeability transition. Results of this study show that phosphate-induced opening of the mitochondrial PTP is, at least in part, secondary to depletion of the intramitochondrial adenine nucleotide content via the ATP-Mg/Pi carrier. Delaying net adenine nucleotide efflux from mitochondria also delays the onset of phosphate-induced PTP opening. Moreover, mitochondria that are depleted of matrix adenine nucleotides via the ATP-Mg/Pi carrier show highly increased susceptibility to swelling induced by high Ca2+ concentration, atractyloside, and the prooxidant tert-butylhydroperoxide. Thus the ATPMg/Pi carrier, by regulating the matrix adenine nucleotide content, can modulate the sensitivity of rat liver mitochondria to undergo permeability transition. This has important implications for hepatocytes under cellular conditions in which the intramitochondrial adenine nucleotide pool size is depleted, such as in hypoxia or ischemia, or during reperfusion when the mitochondria are exposed to increased oxidative stress.  相似文献   

11.
The regulation of oxidative phosphorylation was studied with digitonin-treated epididymal bull spermatozoa in which mitochondria are directly accessible to low molecular compounds in the extracellular medium. Due to the high extramitochondrial ATPase activity in this cell preparation, it was possible to stimulate respiration to a small extent only by added hexokinase in the presence of glucose and adenine nucleotides. Added pyruvate kinase plus phosphoenol pyruvate, however, strongly suppressed the respiration. Under these conditions, the respiration was found to depend on the extramitochondrial [ATP]/[ADP] ratio in the range of 1-100. The contribution of the adenine nucleotide translocator to this dependence was determined by titration with the irreversible inhibitor carboxyatractyloside in the presence of ADP. Using lactate plus malate as substrate, the active state respiration was controlled to about 30% by the translocator, whereas 12 and 4% were determined in the presence of L-glycerol-3-phosphate and malate alone, respectively. In order to compare the results with those for intact cells, the adenine nucleotide patterns were determined in intact and digitonin-treated spermatozoa under conditions of controlled respiration in the presence of vanadate and carboxyatractyloside, respectively. About 21% of total cellular adenine nucleotides were found in digitonin-treated cells representing the mitochondrial compartment. While allowing for the intramitochondrial amount of adenine nucleotides, the cytosolic [ATP]/[ADP] ratio was estimated to be 6-times higher than the mitochondrial ratio in intact cells. It is concluded from the data presented that the principal mechanism by which oxidative phosphorylation in sperm mitochondria is regulated via the extramitochondrial [ATP]/[ADP] ratio is the same as that demonstrated for other isolated mitochondria.  相似文献   

12.
In newborn rat liver, the adenine nucleotide content (ATP + ADP + AMP) of mitochondria increases severalfold within 2 to 3 h of birth. The net increase in mitochondrial adenines suggests a novel mechanism by which mitochondria are able to accumulate adenine nucleotides from the cytosol (J. R. Aprille and G. K. Asimakis, 1980, Arch. Biochem. Biophys.201, 564.). This was investigated further in vitro. Isolated newborn liver mitochondria incubated with 1 mM ATP for 10 min at 30 °C doubled their adenine nucleotide content with effects on respiratory functions similar to those observed in vivo: State 3 respiration and adenine translocase activity increased, but uncoupled respiration was unchanged. The mechanism for net uptake of adenine nucleotides was found to be specific for ATP or ADP, but not AMP. Uptake was concentration dependent and saturable. The apparent Km′s for ATP and ADP were 0.85 ± 0.27 mM and 0.41 ± 0.20 mM, respectively, measured by net uptake of [14C]ATP or [14C]ADP. The specific activities of net ATP and ADP uptake averaged 0.332 ± 0.062 and 0.103 ± 0.002 nmol/min/mg protein, respectively. ADP was a competitive inhibitor of net ATP uptake. If Pi was omitted from the incubations, net uptake of ATP or ADP was reduced by 51%. Either mersalyl or N-ethylmaleimide severely inhibited the accumulation of adenine nucleotides. Net ATP uptake was stoichiometrically dependent on MgCl2, suggesting that Mg2+ is accumulated along with ATP (or ADP). Uptake was energy dependent as indicated by the following results: Net AdN uptake (especially ADP uptake) was stimulated by the addition of an oxidizable substrate (glutamate) and inhibited by FCCP (an uncoupler). Antimycin A had no effect on net ATP uptake but inhibited net ADP uptake, suggesting that ATP was able to serve as an energy source for its own accumulation. If carboxyatractyloside was added to inhibit the exchange translocase, thereby preventing rapid access of exogenous ATP to the matrix, net ATP uptake was inhibited; carboxyatractyloside had no effect on ADP uptake. It was concluded that the net uptake of adenine nucleotides from the extramitochondrial space occurs by a specific transport process distinct from the classic adenine nucleotide exchange translocase. The accumulation of adenine nucleotides may regulate matrix reactions which are allosterically affected by adenines or which require adenines as a substrate.  相似文献   

13.
Pea chloroplasts were found to take up actively ATP and ADP and exchange the external nucleotides for internal ones. Using carrier-free [14C]ATP, the rate of nucleotide transport in chloroplasts prepared from 12-14-day-old plants was calculated to be 330 mumol ATP/g chlorophyll/min, and the transport was not affected by light or temperature between 4 and 22 degrees C. Adenine nucleotide uptake was inhibited only slightly by carboxyatractylate, whereas bongkrekic acid was nearly as effective an inhibitor of the translocator in pea chloroplasts as it was in mammalian mitochondria. There was no counter-transport of adenine nucleotides with substrates carried on the phosphate translocator including inorganic phosphate, 3-phosphoglycerate and dihydroxyacetone phosphate. However, internal or external phosphoenolpyruvate, normally considered to be transported on the phosphate carrier in chloroplasts, was able to exchange readily with adenine nucleotides. Furthermore, inorganic pyrophosphate which is not transported by the phosphate carrier initiated efflux of phosphoenolpyruvate as well as ATP from the chloroplast. These findings illustrate some interesting similarities as well as differences between the various plant phosphate and nucleotide transport systems which may relate to their role in photosynthesis.  相似文献   

14.
The relationship between the respiration rate and the intra- and extramito-chondrial adenine nucleotides was investigated in isolated rat liver mitochondria.

For the determination of adenine nucleotide patterns in both compartments a new procedure was developed, based on the evaluation of these metabolites from incubation of various amounts of mitochondria under identical stationary states of oxidative phosphorylation. These identical states were adjusted by addition of appropriate amounts of hexokinase to a glucose-containing incubation mixture.

Adenine nucleotides were measured in aliquots of the total extract of the incubation mixture without any separation. The concentrations of the adenine nucleotides in both compartments were obtained from a plot of the total concentration of these species versus mitochondrial protein. Disturbances of this method by unspecific efflux of adenine nucleotides could be excluded.

The results obtained for the total adenine nucleotide content (12 nmol · mg−1 protein) and the intramitochondrial [ATP]/[ADP] ratio (about 4 in the resting state) are in good agreement with data obtained by other methods.

Strong evidence is provided for a decrease of the intramitochondrial [ATP]/[ADP] ratio with increasing rate of oxygen consumption. Therefore it is not necessary to assume a microcompartmentation of the intramitochondrial adenine nucleotide pool in respect to the ATPase reaction and the adenine nucleotide translocation.  相似文献   


15.
Pea chloroplasts were found to take up actively ATP and ADP and exchange the external nucleotides for internal ones. Using carrier-free [14C]ATP, the rate of nucleotide transport in chloroplasts prepared from 12–14-day-old plants was calculated to be 330 μmol ATP/g chlorophyll/min, and the transport was not affected by light or temperature between 4 and 22°C. Adenine nucleotide uptake was inhibited only slightly by carboxyatractylate, whereas bongkrekic acid was nearly as effective an inhibitor of the translocator in pea chloroplasts as it was in mammalian mitochondria. There was no counter-transport of adenine nucleotides with substrates carried on the phosphate translocator including inorganic phosphate, 3-phosphoglycerate and dihydroxyacetone phosphate. However, internal or external phosphoenolpyruvate, normally considered to be transported on the phosphate carrier in chloroplasts, was able to exchange readily with adenine nucleotides. Furthermore, inorganic pyrophosphate which is not transported by the phosphate carrier initiated efflux of phosphoenolpyruvate as well as ATP from the chloroplast. These findings illustrate some interesting similarities as well as differences between the various plant phosphate and nucleotide transport systems which may relate to their role in photosynthesis.  相似文献   

16.
The ADP/ATP and ATP-Mg/Pi carriers are widespread among eukaryotes and constitute two systems to transport adenine nucleotides in mitochondria. ADP/ATP carriers carry out an electrogenic exchange of ADP for ATP essential for oxidative phosphorylation, whereas ATP-Mg/Pi carriers perform an electroneutral exchange of ATP-Mg for phosphate and are able to modulate the net content of adenine nucleotides in mitochondria. The functional interplay between both carriers has been shown to modulate viability in Saccharomyces cerevisiae. The simultaneous absence of both carriers is lethal. In the light of the new evidence we suggest that, in addition to exchange of cytosolic ADP for mitochondrial ATP, the specific function of the ADP/ATP carriers required for respiration, both transporters have a second function, which is the import of cytosolic ATP in mitochondria. The participation of these carriers in the generation of mitochondrial membrane potential is discussed. Both are necessary for the function of the mitochondrial protein import and assembly systems, which are the only essential mitochondrial functions in S. cerevisiae.  相似文献   

17.
Oxidative phosphorylation can be treated as two groups of reactions; those that generate protonmotive force (dicarboxylate carrier, succinate dehydrogenase and the respiratory chain) and those that consume protonmotive force (adenine nucleotide and phosphate carriers. ATP synthase and proton leak). Mitochondria from hypothyroid rats have lower rates of respiration in the presence of ADP (state 3) than euthyroid controls. We show that the kinetics of the protonmotive-force generators are unchanged in mitochondria from hypothyroid animals, but the kinetics of the protonmotive-force consumers are altered, supporting proposals that the important effects of thyroid hormone on state 3 are on the ATP synthase or the adenine nucleotide translocator.  相似文献   

18.
The relationship between intra- and extramitochondrial ATP utilization was investigated in liver mitochondria isolated from normally fed, starved and high-protein fed rats. ATP export was provoked by adding a hexokinase-glucose-trap and intramitochondrial ATP consumption by adding ammonia, bicarbonate and ornithine in order to stimulate citrulline synthesis. Both processes compete for ATP produced via oxidative phosphorylation; the rate of citrulline formation declines as the extramitochondrial [ATP]/[ADP] ratio decreases. It is concluded that ATP for adenine nucleotide translocation and that for carbamoyl phosphate synthesis are delivered from a common intramitochondrial pool of adenine nucleotides. In mitochondria from rats with a high-protein diet, citrulline synthesis greatly stimulates the rate of oxidative phosphorylation (about two thirds of state 3 respiration). Under these conditions the intramitochondrial [ATP]/[ADP] ratio is significantly reduced. The intramitochondrial [ATP]/[ADP] ratio is not in thermodynamic equilibrium with the extramitochondrial one.  相似文献   

19.
The efflux of adenine nucleotides from three human tumor mitochondria has been investigated with mitochondria prelabeled with radioactive ATP. Uncouplers induce a large efflux of adenine nucleotides from mitochondria from human hepatoma and oat cell carcinoma while efflux from astrocytoma mitochondria is less. This efflux does not require exchangeable anions, i.e., adenine nucleotides or pyrophosphate, in the extramitochondrial medium, and is not sensitive to atractyloside. The efflux is more extensive with dinitrophenol and CCCP than with valinomycin-K+, and may account for the differential effects of the two types of uncouplers on uncoupler-stimulated ATPase of tumor mitochondria previously reported by us. Dinitrophenol and CCCP do not elicit any efflux of adenine nucleotides from normal liver mitochondria. Efflux of orthophosphate from tumor mitochondria is also greater with dinitrophenol and CCCP; however, the more interesting finding is that the concentration of orthophosphate in these mitochondria is unusually high, i.e., 10-40-times greater than the intramitochondrial phosphate concentration of liver mitochondria. Atractyloside sensitive transport of ATP and ADP in human tumor mitochondria has also been determined. Vmax values for both ADP and ATP transport are lower than those obtained with liver mitochondria, especially with ADP transport. ATP transport in tumor mitochondria is not affected by CCCP in contrast to the 4-5-fold stimulation observed in liver mitochondria.  相似文献   

20.
The total adenine nucleotide content of rat liver mitochondria was varied in vitro over a wide range in order to investigate a possible relationship between net changes in the total matrix ATP + ADP + AMP content and the overall rate of citrulline synthesis. Isolated mitochondria were specifically depleted of matrix adenine nucleotides by incubating with inorganic pyrophosphate (G. K. Asimakis and J. R. Aprille, 1980, Arch. Biochem. Biophys.203, 307–316); alternatively, matrix adenine nucleotides were increased by incubating mitochondria with 1 mm ATP at 30 °C. No exogenous ATP or ADP was included in the subsequent incubations for the determination of citrulline synthesis. Rates varied from 0.1 to 1.6 μmol citrulline/mg protein/h as a linear function of total adenine nucleotide content in the range 2–15 nmol (ATP + ADP + AMP)/mg protein. Further increases in the matrix ATP + ADP + AMP content caused no further increase in citrulline synthesis rates. Changes in the total adenine nucleotide content were reflected in proportional changes in both the ATP and ADP content of the matrix. The ATPADP ratio did not change significantly. Therefore, the variations in citrulline synthesis were most simply explained as the effect of different concentrations of ATP on the activity of carbamoyl-phosphate synthetase. It was concluded that net changes in the total adenine nucleotide content can contribute to the control of citrulline synthesis. These findings are significant in the context of recent evidence which shows that the matrix adenine nucleotide pool size is under hormonal control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号