首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 788 毫秒
1.
The association between abdominal obesity and atherogenic lipid profile emerges from complex interactions of genes and environment. We aimed to explore the heritability and effects of overweight on serum lipid profile (high‐density lipoprotein‐cholesterol (HDL‐C), HDL mean particle size, percentages of HDL2b, 2a, 3a, 3b, and 3c, low‐density lipoprotein‐cholesterol (LDL‐C), LDL peak particle size and triglycerides (TGs)) in healthy, young adults. HDL‐C, LDL‐C, and TG were measured in 52 monozygotic (MZ) and 89 dizygotic (DZ) twin pairs, aged 23–32 years, chosen to represent a wide range of BMIs (17.6–42.9 kg/m2). Of them, 24 MZ and 26 DZ pairs were chosen at random for measurements of HDL mean and LDL peak particle sizes and percentages of HDL subspecies. The heritabilities of the lipid parameters adjusted for BMI were HDL‐C 73%, HDL mean particle size 56%, HDL subspecies 46–63%, LDL‐C 79%, LDL peak particle size 49%, and TG 64%. Genetic and environmental correlations between BMI and HDL‐C, LDL‐C, and TG were modest (0.3–0.4). Abdominal overweight (waist circumference ≥94 cm for males and ≥80 cm for females) associated with decreased HDL‐C, increased LDL‐C, and TG concentrations, smaller HDL mean particle size, lower HDL2b, and higher HDL3c percentages in both genders. Within MZ twins, controlling for genetic influences, within‐pair differences in HDL3c percentage were associated with those in waist (r = 0.46, P = 0.032) and BMI (r = 0.51, P = 0.013). In conclusion, serum lipid parameters, including LDL peak and HDL mean particle sizes and HDL subspecies distribution are under strong genetic control. Overweight associated with significant lipid profile changes, particularly, small HDL3c increased in overweight independent of genetic influences.  相似文献   

2.
Objective: To determine whether acquired obesity or accompanying metabolic changes such as adiponectin deficiency, insulin resistance, dyslipidemia, or visceral fat are associated, independent of genetic influences, with endothelial dysfunction by studying young adult monozygotic (MZ) twin pairs discordant for obesity. Research Methods and Procedures: Nine obesity‐discordant (intra‐pair difference in BMI, 3.8 to 10.1 kg/m2) and nine concordant (0 to 2.3 kg/m2) 24‐ to 27‐year‐old MZ twin pairs were identified from a population‐based FinnTwin16‐sample. Endothelial function was measured by blood flow responses to intrabrachial infusions of an endothelium‐dependent (acetylcholine) and an endothelium‐independent (sodium nitroprusside) vasodilator. Whole body insulin sensitivity was measured using the euglycemic insulin clamp technique, and forearm and body composition were measured with magnetic resonance imaging and DXA. In addition, serum levels of adiponectin, high‐sensitivity C‐reactive protein, and lipids were determined. Results: The heavier co‐twins of the discordant pairs had significantly lower whole body insulin sensitivity than the leaner co‐twins. Blood flows/muscle volume during infusions of acetylcholine and sodium nitroprusside were not altered by obesity. However, intra‐pair differences in serum adiponectin, intra‐abdominal fat, and C‐reactive protein were significantly correlated with those in endothelial function. Only the relationship between intra‐pair differences in adiponectin and endothelial function persisted in multiple linear regression analysis. Obesity‐concordant co‐twins had comparable insulin sensitivity and endothelial function. Discussion: In young adult MZ twins discordant for obesity, acquired adiponectin deficiency rather than obesity per se is an independent correlate of endothelial dysfunction.  相似文献   

3.
Objective: Intra‐abdominal fat has been identified as being the most clinically relevant type of fat in humans. Therefore, an assessment of body‐fat distribution could possibly identify subjects with the highest risk of adverse lipid profile and hypertension. Few data on the relationship between body‐fat distribution and cardiovascular risk factors are available in children, especially before puberty. Research Methods and Procedures: This cross‐sectional study was undertaken to explore the relationship between anthropometric variables, lipid concentrations, and blood pressure (BP) in a sample of 818 prepubertal children (ages 3 to 11 years) and to assess the clinical relevance of waist circumference in identifying prepubertal children with higher cardiovascular risk. Height, weight, triceps and subscapular skinfolds, waist circumference, and BP were measured. Plasma levels for triacylglycerol, total cholesterol, high‐density lipoprotein (HDL) cholesterol, low‐density lipoprotein cholesterol, apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB) were determined. Results: Females were fatter than males (5.8 [3.5] vs. 4.8 [3.3] kg of fat mass; p < 0.01). Males had higher HDL cholesterol and ApoA1/ApoB plasma concentrations than females (p < 0.001 and p < 0.01, respectively). Waist circumference had a higher correlation with systolic and diastolic BP (r = 0.40 and 0.29, respectively; p < 0.001) than triceps (r = 0.35 and 0.21, respectively; p < 0.001) and subscapular (r = 0.28 and 0.16, respectively; p < 0.001) skinfolds and relative body weight (0.33 and 0.23, respectively; p < 0.001). Multivariate linear model analysis showed that ApoA1/ApoB, HDL cholesterol, total cholesterol/HDL cholesterol, and systolic as well as diastolic BP were significantly associated with waist circumference and triceps and subscapular skinfolds, independently of age, gender, and body mass index. Discussion: Waist circumference as well as subscapular and triceps skinfolds may be helpful parameters in identifying prepubertal children with an adverse blood‐lipids profile and hypertension. However, waist circumference, which is easy to measure and more easily reproducible than skinfolds, may be considered in clinical practice. Children with a waist circumference greater than the 90th percentile are more likely to have multiple risk factors than children with a waist circumference that is less than or equal to the 90th percentile.  相似文献   

4.
Weight discordance is very rare in monozygotic (MZ) twin pairs; when found, however, such pairs are advantageous in the search for either environmental or epigenetic causes and consequences of obesity. We analyzed the growth patterns of young adult MZ pairs discordant and concordant for obesity. Screening 5 consecutive birth cohorts (1975-1979) of 22- to 27-year-old Finnish twins (the FinnTwin16 study), we found 14 obesity discordant (Body Mass Index [BMI] difference > or = 4 kg/m2) MZ pairs out of 658. Ten pairs participated in clinical studies. Nine concordant pairs (BMI difference < or = 2 kg/m2) were examined as controls. Lifetime measured heights and weights recorded in hospitals and health centers were traced manually. Height development was similar in all the co-twins of both groups. The weight differences between the co-twins of the discordant pairs began to emerge at 18 years leading to an average discordance of 16.4 kg, 5.6 kg/m2 (p for both = .005) at 25.7 years. The heavier co-twin weighed 221 g (p = .066), 1.0 kg/m2 (p = .01) more already at birth than the leaner, but the differences waned by 6 months of age and reappeared only after adolescence. Both the leaner and the heavier co-twins of the discordant pairs weighed more than expected by the singleton reference values (Cole et al., 1998) after 8 years. The concordant co-twins, on the other hand, grew similarly and after 6 months, their mean growth was not distinguishable from the singleton patterns. Young adulthood represents a critical period of gaining weight irrespective of genetic background in this twin sample.  相似文献   

5.
Objectives: To examine the relationship between obesity and lipoprotein profiles and compare the effects of total obesity and central adiposity on lipids/lipoproteins in American Indians. Research Methods and Procedures: Participants were 773 nondiabetic American Indian women and 739 men aged 45 to 74 years participating in the Strong Heart Study. Total obesity was estimated using body mass index (BMI). Central obesity was measured as waist circumference. Lipoprotein measures included triglycerides, high‐density lipoprotei in (HDL) cholesterol, low‐density lipoprotein (LDL) cholesterol, apolipoprotein AI (apoAI), and apolipoprotein B (apoB). Partial and canonical correlation analyses were used to examine the associations between obesity and lipids/lipoproteins. Results: Women were more obese than men in Arizona (median BMI 32.1 vs. 29.2 kg/m2) and South Dakota and North Dakota (28.3 vs. 28.0 kg/m2), but there was no sex difference in waist circumference. Men had higher apoB and lower apoAI levels than did women. In women, when adjusted for center, gender, and age, BMI was significantly related to HDL cholesterol (r = ?0.24, p < 0.001). There was a significant but weak relation with apoAI (r = ?0.14 p < 0.001). Waist circumference was positively related to triglycerides (r = 0.14 p < 0.001) and negatively related to HDL cholesterol (r = ?0.23, p < 0.001) and apoAI (r = ?0.13, p < 0.001). In men, BMI was positively correlated with triglycerides (r = 0.30, p < 0.001) and negatively correlated with HDL cholesterol (r = ?0.35, p < 0.001) and apoAI (r = ?0.23, p < 0.001). Triglycerides increased with waist circumference (r = 0.30, p < 0.001) and HDL cholesterol decreased with waist circumference (r = ?0.36 p < 0.001). In both women and men there was an inverted U‐shaped relationship between obesity and waist with LDL cholesterol and apoB. In canonical correlation analysis, waist circumference received a greater weight (0.86) than did BMI (0.17) in women. However, the canonical weights were similar for waist (0.46) and BMI (0.56) in men. Only HDL cholesterol (?1.02) carried greater weight in women, whereas in men, triglycerides (0.50), and HDL cholesterol (?0.64) carried a large amount of weight. All the correlation coefficients between BMI, waist circumference, and the first canonical variable of lipids/lipoproteins or between the individual lipid/lipoprotein variables and the first canonical variable of obesity were smaller in women than in men. Triglycerides and HDL cholesterol showed clinically meaningful changes with BMI and waist circumference in men. All lipid/lipoprotein changes in women in relation to BMI and waist circumference were minimal. Discussion: The main lipoprotein abnormality related to obesity in American Indians was decreased HDL cholesterol, especially in men. Central adiposity was more associated with abnormal lipid/lipoprotein profiles than general obesity in women; both were equally important in men.  相似文献   

6.
Both genetic and environmental factors are involved in the etiology of obesity and the associated lipid disturbances. We determined whether acquired obesity is associated with changes in global serum lipid profiles independent of genetic factors in young adult monozygotic (MZ) twins. 14 healthy MZ pairs discordant for obesity (10 to 25 kg weight difference) and ten weight concordant control pairs aged 24-27 years were identified from a large population-based study. Insulin sensitivity was assessed by the euglycemic clamp technique, and body composition by DEXA (% body fat) and by MRI (subcutaneous and intra-abdominal fat). Global characterization of lipid molecular species in serum was performed by a lipidomics strategy using liquid chromatography coupled to mass spectrometry. Obesity, independent of genetic influences, was primarily related to increases in lysophosphatidylcholines, lipids found in proinflammatory and proatherogenic conditions and to decreases in ether phospholipids, which are known to have antioxidant properties. These lipid changes were associated with insulin resistance, a pathogonomic characteristic of acquired obesity in these young adult twins. Our results show that obesity, already in its early stages and independent of genetic influences, is associated with deleterious alterations in the lipid metabolism known to facilitate atherogenesis, inflammation and insulin resistance.  相似文献   

7.
Abdominally obese individuals with the metabolic syndrome often have excess fat deposition both intra‐abdominally (IA) and in the liver, but the relative contribution of these two deposits to variation in components of the metabolic syndrome remains unclear. We determined the mutually independent quantitative contributions of IA and liver fat to components of the syndrome, fasting serum (fS) insulin, and liver enzymes and measures of hepatic insulin sensitivity in 356 subjects (mean age 42 years, mean BMI 29.7 kg/m2) in whom liver fat and abdominal fat volumes were measured. IA and liver fat contents were correlated (r = 0.65, P < 0.0001). In multivariate linear regression analyses including either liver or IA fat, liver fat or IA fat explained variation in fS‐triglyceride (TG) and high‐density lipoprotein (HDL) cholesterol, plasma glucose, insulin and liver enzyme concentrations, and hepatic insulin sensitivity independent of age, gender, subcutaneous (SC) fat, and/or lean body mass (LBM). Including both liver and IA fat, liver and IA fat both explained variation in TG, HDL cholesterol, insulin and hepatic insulin sensitivity independent of each other and of age, gender, SC fat, and LBM. Liver fat independently predicted glucose and liver enzymes. SC fat and age explained variation in blood pressure. In conclusion, both IA and liver fat independently of each other explain variation in serum TG, HDL cholesterol, insulin concentrations and hepatic insulin sensitivity, thus supporting that both fat depots are important predictors of these components of the metabolic syndrome.  相似文献   

8.
We determined whether acquired obesity is associated with increases in liver or intra-abdominal fat or impaired insulin sensitivity by studying monozygotic (MZ) twin pairs discordant and concordant for obesity. We studied nineteen 24- to 27-yr-old MZ twin pairs, with intrapair differences in body weight ranging from 0.1 to 24.7 kg [body mass index (BMI) range 20.0-33.9 kg/m2], identified from a population-based FinnTwin16 sample. Fat distribution was determined by magnetic resonance imaging, percent body fat by dual-energy X-ray absorptiometry, liver fat by proton spectroscopy, insulin sensitivity by measuring the fasting insulin concentration, and whole body insulin sensitivity by the euglycemic insulin clamp technique. Intrapair differences in BMI were significantly correlated with those in intra-abdominal fat (r = 0.82, P < 0.001) and liver fat (r = 0.57, P = 0.010). Intrapair differences in fasting insulin correlated with those in subcutaneous abdominal (r = 0.60, P = 0.008), intra-abdominal (r = 0.75, P = 0.0001) and liver (r = 0.49, P = 0.048) fat. Intrapair differences in whole body insulin sensitivity correlated with those in subcutaneous abdominal (r = -0.72, P = 0.001) and intra-abdominal (r = -0.55, P = 0.015) but not liver (r = -0.20, P = 0.20) fat. We conclude that acquired obesity is associated with increases in intra-abdominal and liver fat and insulin resistance, independent of genetic factors.  相似文献   

9.
Objective: This study was conducted to evaluate the association of total and central adiposity with serum cardiovascular disease (CVD) risk factors in lean and obese Portuguese children and adolescents. Research Methods and Procedures: A total of 87 girls (13.2 ± 1.6 years old, 29.9 ± 6.4% body fat [mean ± SD]) and 72 boys (13.2 ± 1.6 years old, 20.8 ± 9.9% body fat) volunteered for the study. Whole‐body composition and fat distribution, from DXA and anthropometry, and serum lipids, lipoproteins, and apolipoproteins were evaluated. Results: The sum of three trunk skinfolds (STS) was highly correlated with total trunk fat mass measured by DXA (p < 0.001). Body mass index, DXA‐measured percentage of body fat, trunk fat mass, STS, and the waist‐to‐height ratio were generally found to be associated with triacylglycerol, the ratio of total cholesterol (TC) to high density lipoprotein‐cholesterol (HDL‐C), low density lipoprotein‐cholesterol (LDL‐C), and apolipoprotein B levels, (significant age‐adjusted r between 0.16 and 0.27, p < 0.05). Body mass index, STS, and the waist circumference were also associated with HDL‐C (p < 0.05), whereas no body composition variable significantly correlated with TC or apolipoproteins A‐I. The STS was significantly correlated with HDL‐C (p < 0.01), TC/HDL‐C (p < 0.05), and apolipoproteins A‐I (p < 0.05) independently of whole‐body fatness. Obese subjects (n = 73) had higher TC, LDL‐C, TC/HDL‐C, and apolipoprotein B than did non‐obese subjects (n = 86), and significant associations between central adiposity and some lipid variables (triacylglycerol and HDL‐C) were found in obese children and adolescents that were not present in leaner individuals. Discussion: DXA‐ and anthropometry‐based whole‐body and central fat measures are associated with serum CVD risk factors in Portuguese boys and girls. Obese children and adolescents have a poorer lipid profile than do their leaner counterparts. Trunk skinfolds, which are easy to obtain even in large samples, predict CVD risk factors to the same extent as DXA‐based variables, in some cases, independently of total fatness.  相似文献   

10.
The aim of this study was to investigate and disentangle the genetic and nongenetic causes of stability and change in lipids and (apo)lipoproteins that occur during the lifespan. Total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), and lipoprotein(a) (Lp[a]) were measured in a group of 160 middle-aged parents and their twin offspring (first project) and in a group of 203 middle-aged twin pairs (second project). Combining the data of both projects enabled the estimation of the extent to which measured lipid parameters are influenced by different genes in adolescence and adulthood. To that end, an extended quantitative genetic model was specified, which allowed the estimation of heritabilities for each sex and generation separately. Heritabilities were similar for both sexes and both generations. Larger variances in the parental generation could be ascribed to proportional increases in both unique environmental and additive genetic variance from childhood to adulthood, which led to similar heritability estimates in adolescent and middle-aged twins. Although the magnitudes of heritabilities were similar across generations, results showed that, for total cholesterol, triglycerides, HDL, and LDL, partly different genes are expressed in adolescence compared to adulthood. For triglycerides, only 46% of the genetic variance was common to both age groups; for total cholesterol this was 80%. Intermediate values were found for HDL (66%) and LDL (76%). For ApoA1, ApoB, and Lp(a), the same genes seem to act in both generations.  相似文献   

11.
The purpose of this study was to determine the utility of dual‐energy X‐ray absorptiometry (DXA)‐derived fat mass indices for predicting blood lipid profile in postmenopausal women. A secondary purpose was to determine whether waist circumference is comparable with DXA‐derived measurements in predicting blood lipid profile. Subjects were 423 postmenopausal women (age 58.1 ± 6.3 years). Fat mass was assessed at abdomen, trunk, and total body using DXA. Anthropometric measurements included BMI and waist circumference. Blood samples were analyzed for total cholesterol (TC), triglyceride (TAG), high‐density lipoprotein (HDL), low‐density lipoprotein (LDL), and cholesterol/HDL ratio. Of the DXA‐derived measures, abdominal‐fat mass was the best predictor of blood lipid profiles. DXA‐derived abdominal fat mass and waist girth explained 20 and 16.5% of variation in TC/HDL ratio, respectively, in univariate analysis, with no difference between the slopes of the regression coefficients. Eighty‐four percent of subjects were common to the top quartiles of waist circumference and abdominal fat mass, and blood lipid profiles generally worsened across increasing quartiles. DXA‐derived abdominal fat mass and waist circumference are of equivalent utility for predicting alterations in blood lipids. Waist circumference is, therefore, ideal as an inexpensive means in primary health‐care services for predicting risk of cardiovascular diseases in postmenopausal women.  相似文献   

12.
It is difficult to identify the successful component(s) related to changes in metabolic syndrome (MetS) from lifestyle interventions: the weight loss, the behavior change, or the combination. The purpose of this study is to determine the effects of a weight‐stable randomized controlled trial of low‐fat diet and exercise, alone and in combination, on MetS. Men (n = 179) and postmenopausal women (n = 149) with elevated low‐density lipoprotein cholesterol (LDL‐C) and low high‐density lipoprotein cholesterol (HDL‐C) were randomized into a 1‐year, weight‐stable trial with four treatment groups: control (C), diet (D), exercise (E), or diet plus exercise (D+E). MetS was defined using a continuous score. Changes in MetS score (ΔMetS) were compared between groups using analysis of covariance, stratified by gender and using two models, with and without baseline and change in percent body fat (ΔBF) as a covariate. In men, ΔMetS was higher for D vs. C (P = 0.04), D+E vs. C (P = 0.0002), and D+E vs. E (P = 0.02). For women, ΔMetS was greater for D vs. C (P = 0.045), E vs. C (P = 0.02), and D+E vs. C (P = 0.004). After adjusting for ΔBF, all differences between groups were attenuated and no longer significant. ΔMetS were associated with ΔBF for both men (P < 0.0001) and women (P = 0.004). After adjustment for ΔBF, low‐fat diet alone and in combination with exercise had no effect on MetS. The key component for MetS from low‐fat diet and/or increased physical activity appears to be body fat loss.  相似文献   

13.
Objective: Abnormal subpopulation distributions of plasma lipoproteins have been reported in white American (WA) women with obesity and type 2 diabetes that explain part of the elevated rate of cardiovascular disease in these patients. This study examined if these perturbations also occur in obese and diabetic African American (AA) women and compared the lipoprotein profiles with WA counterparts. Research Methods and Procedures: We determined the lipoprotein subpopulation distribution in the plasma of 51 lean women (29 WA, 22 AA, body mass index [BMI] < 30), 50 obese women (27 WA, 23 AA, BMI > 30), and 43 obese women with type 2 diabetes (27 WA, 16 AA), by nuclear magnetic resonance spectroscopy. Results: AA diabetic women, like WA diabetic women, had a larger average very low density lipoprotein (VLDL) size, elevated levels of small low density lipoprotein cholesterol (LDL‐C), and lower levels of small high density lipoprotein cholesterol (HDL‐C), when compared to lean controls (p < 0.05). These differences were accompanied by higher VLDL‐triglycerides (TG) and LDL‐C in WA (p < 0.05), but not in AA. Although the effects of obesity and diabetes on lipoprotein subpopulation were fairly similar for AA and WA, some racial differences, particularly with respect to HDL, were observed. Discussion: The atherogenic perturbations in lipoprotein profiles of obese AA women, particularly those with diabetes, were relatively similar to those found in WA women and may be contributing to the increased rate of cardiovascular disease (CVD) in AA with obesity and diabetes. The parameters of subpopulation distribution may provide better markers for CVD than lipid concentrations alone, particularly in AA women. Furthermore, subtle racial differences in lipoprotein profiles suggest that race‐specific criteria may be needed to screen patients for CVD.  相似文献   

14.
Objective: Obesity and hyperinsulinemia are associated with dyslipidemia in adults and older children, but little is known about these relationships in very young children. We examined the relation of fasting insulin to lipid levels and lipid particle size in young healthy children. Research Methods and Procedures: Analyses were performed on data from 491 healthy 2‐ and 3‐year old Hispanic children enrolled in a dietary study conducted in New York City, 1992–1995. Obesity measures included BMI, ponderal index, skinfold thickness, and waist circumference. Low‐density lipoprotein (LDL)‐ and high‐density lipoprotein (HDL)‐cholesterol particle size were measured by nuclear magnetic resonance. Results: Fasting insulin level was positively correlated with triglyceride levels (r = 0.24 for boys and r = 0.23 for girls; p < 0.001 for both) and inversely correlated with HDL‐cholesterol level in boys (r = ?0.20; p < 0.01). Higher fasting insulin level was also correlated with smaller mean HDL particle size in both boys (r = ?0.21; p < 0.001) and girls (r = ?0.14; p < 0.05) and smaller mean LDL particle size in boys (r = ?0.13; p < 0.05). The associations of fasting insulin level with triglyceride and HDL‐cholesterol levels and HDL and LDL particle size remained significant after multivariate regression adjustment for age, sex, and BMI or ponderal index. Discussion: Fasting insulin level is associated with relative dyslipidemia in healthy 2‐ and 3‐year‐old Hispanic children.  相似文献   

15.
The purpose of this study was to determine independent relationships of intra‐abdominal adipose tissue (IAAT), leg fat, and aerobic fitness with blood lipids and insulin sensitivity (Si) in European‐American (EA) and African‐American (AA) premenopausal women. Ninety‐three EA and ninety‐four AA with BMI between 27 and 30 kg/m2 had IAAT by computed tomography, total fat and leg fat by dual‐energy X‐ray absorptiometry, aerobic fitness by a graded exercise test, African admixture (AFADM) by ancestry informative markers, blood lipids by the Ektachem DT system, and Si by glucose tolerance test. Independent of age, aerobic fitness, AFADM, and leg fat, IAAT was positively related to low‐density lipoprotein–cholesterol (LDL‐C), cholesterol‐high‐density lipoprotein (HDL) ratio, triglycerides (TGs), and fasting insulin (standardized β varying 0.16–0.34) and negatively related to HDL‐cholesterol (HDL‐C) and Si (standardized β ?0.15 and ?0.25, respectively). In contrast, independent of age, aerobic fitness, AFADM, and IAAT, leg fat was negatively related to total cholesterol, LDL‐C, cholesterol‐HDL ratio, TGs, and fasting insulin (standardized β varying ?0.15 to ?0.21) and positively related to HDL‐C and Si (standardized β 0.16 and 0.23). Age was not independently related to worsening of any blood lipid but was related to increased Si (standardized β for Si 0.25, insulin ?0.31). With the exception of total cholesterol and LDL‐C, aerobic fitness was independently related to worsened blood lipid profile and increased Si (standardized β varying 0.17 to ?0.21). Maintenance of favorable fat distribution and aerobic fitness may be important strategies for healthy aging, at least in premenopausal EA and AA women.  相似文献   

16.
BACKGROUND: Monozygotic (MZ) twinning is a poorly understood phenomenon that may result in subtle biologic differences between twins, despite their identical inheritance. These differences may in part account for discordant expression of disease in MZ twin pairs. Due to their stochastic nature, differences in X chromosome inactivation patterns are one source of such variation in female MZ twins. MATERIALS AND METHODS: We investigated X chromosome inactivation patterns in the blood of 41 MZ twin pairs based on methylation of the androgen receptor gene using a Hpa II-PCR assay. Twenty-six female MZ twin pairs with autoimmune disease (rheumatoid arthritis or multiple sclerosis) were studied. In addition, we studied 15 newborn female MZ twin pairs who were characterized at birth with respect to the anatomy of chorionic membranes (dichorionic versus monochorionic). RESULTS: We found a strong correlation between dichorionic fetal anatomy and differences in X chromosome inactivation patterns between members of an MZ twin pair. In contrast, all monochorionic twin pairs had closely correlated patterns of X chromosome inactivation. X chromosome inactivation patterns did not distinguish between MZ twin pairs who were concordant or discordant for autoimmune disease. CONCLUSIONS: The highly similar patterns of X chromosome inactivation among monochorionic twin pairs may result from their shared placental blood supply during intrauterine life. Alternatively, these patterns may indicate that X chromosome inactivation occurs before the twinning event in this anatomic subgroup of MZ twins. The data further suggest that these factors do not make a major contribution to the high discordance rates for autoimmune disease in MZ twin pairs.  相似文献   

17.
The aim of the study was to determine what effect weight loss had on intra‐abdominal adipose tissue (IAAT) and cardiovascular disease (CVD) risk in 135 premenopausal overweight African‐American (AA) and European‐American (EA) women matched for BMI. Blood lipids, systolic blood pressure (SBP), diastolic BP (DBP), and IAAT (computed tomography determined) were examined prior to and after an 800 kcal/day diet producing 12 kg‐weight loss. Significant decreases in IAAT (~38%), total cholesterol (TC; 3%), low‐density lipoproteins (LDLs: 6%), triglycerides (TGs: 27%), cholesterol/high‐density lipoprotein ratio (C/HDL ratio: 18%), SBP (3%), and DBP (3%) occurred while HDL increased (16%), following weight loss and 1 month energy balance. Significant interactions between time and race showed that AA women decreased TG and increased HDL proportionately less than EA women. After adjusting for ΔIAAT, none of the CVD variables significantly changed after weight loss with the exception of HDL and C/HDL ratio. After adjusting for ΔLF (leg fat), ΔTC, ΔTG, ΔLDL, and ΔC/HDL ratio were significantly different. Multiple regression showed that independent of each other, ΔIAAT was significantly and positively related to ΔTC (adjusted β = 0.24) and ΔTG (adjusted β = 0.47), and ΔLF was negatively related to ΔTC (adjusted β = ?0.19) and ΔTG (adjusted β = ?0.18). Overweight and premenopausal AA and EA women benefitted from weight loss by decreasing IAAT and improving CVD risk. The changes in IAAT were significantly related to blood lipids, but loss of LF seems to be related to reduced improvement in TC and TG. Based on these results, interventions should focus on changes on IAAT.  相似文献   

18.
Hepatic lipase (LIPC) is a key rate‐limiting enzyme in lipoprotein catabolism pathways involved in the development of obesity. The C‐514T polymorphism in the promoter region is associated with decreased LIPC activity. We performed a case‐controlled study (850 obese children and 2119 controls) and evaluated the association between LIPC C‐514T polymorphism, obesity and plasma lipid profile in Chinese children and adolescents. Additionally, we conducted a meta‐analysis of all results from published studies as well as our own data. A significant association between the polymorphism and obesity is observed in boys (P = 0.042), but not in girls. And we observed a significant relationship of the polymorphism with total cholesterol (TC) and high density lipoprotein cholesterol (HDL‐C) independent of obesity in boys. The T allele carriers have higher levels of low density lipoprotein cholesterol (LDL‐C) in obese boys, and triglyceride (TG), TC and LDL‐C in non‐obese girls (all P < 0.05). In the meta‐analysis, under dominant model the T allele increased body mass index (BMI) level in boys, while it decreased BMI in girls, and increased the levels of TC both in the overall and subgroups, TG and HDL‐C in the overall and boys, and LDL‐C in the overall (all P < 0.05). Our results suggest that the T allele might carry an increased risk of obesity in Chinese boys. The meta‐analysis suggests that T allele acts as a risk allele for higher BMI levels in male childhood, while it is a protective allele in female childhood. And the polymorphism is associated with the levels of plasma lipids, which may be modulated by obesity and gender.  相似文献   

19.
Objective: To determine whether antioxidant (AOX) supplementation attenuates post‐exercise oxidative stress and contributors to oxidative stress (inflammation, blood lipids) in overweight young adults. Research Methods and Procedures: This was a randomized, double‐blind, controlled study. Overweight (BMI, 33.2 ± 1.9 kg/m2) and comparative normal‐weight (BMI, 21.9 ± 0.5 kg/m2) adults 18 to 30 years old (total N = 48) were enrolled. Participants received either daily antioxidant (AOX) treatment (800 IU of vitamin E, 500 mg of vitamin C, 10 mg of β‐carotene) or placebo (PL) for 8 weeks for a total of four groups. All participants completed a standardized 30‐minute cycle exercise bout at baseline and 8 weeks. Exercise‐induced changes in lipid hydroperoxide (ΔPEROX), C‐reactive protein (ΔCRP), interleukin‐6 (ΔIL‐6), cholesterol subfractions, triglycerides, total AOX status (ΔTAS), and adiponectin were assessed. Results: Exercise‐induced ΔPEROX was lower in the overweight‐AOX group (0.09 nM/kg per min) compared with PL‐treated overweight and normal‐weight groups (0.98, 0.53 nM/kg per min) by 8 weeks (p < 0.05). Adiponectin was increased in both overweight and normal‐weight AOX groups (22.1% vs. 3.1%; p < 0.05) but reduced in PL groups. ΔIL‐6, Δtotal cholesterol, and Δlow‐density lipoprotein‐cholesterol concentrations during exercise were lower in the AOX‐treated groups compared with PL groups (all p < 0.05). After controlling for BMI, the Δtotal cholesterol, Δlow‐density lipoprotein‐cholesterol, Δadiponectin, and ΔTAS explained 59.1% of the variance of the regression model of the ΔPEROX by 8 weeks (total model R2 = 0.600; p = 0.015). Discussion: AOX lowers exercise‐induced oxidative stress in overweight adults. Inflammatory and lipid markers may also be attenuated with AOX. Further studies are needed to determine whether AOX may be used in cardiovascular disease prevention in the overweight population.  相似文献   

20.
The BMI is the most frequently used marker to evaluate obesity‐associated risks. An alternative continuous index of lipid over accumulation, the lipid accumulation product (LAP), has been proposed, which is computed from waist circumference (WC, cm) and fasting triglycerides (TGs) (mmol/l): (WC ? 65) × TG (men) and (WC ? 58) × TG (women). We evaluated LAP and BMI as predictors of mortality in a high‐risk cohort. Study population included 5,924 new consecutive patients seen between 1995 and 2006 at a preventive cardiology clinic. Fifty‐eight percent of patients were discordant for their LAP and BMI quartiles. Patients whose LAP quartile was greater than BMI quartile had higher mortality compared with those with LAP quartile was lower than BMI quartile (8.2 vs. 5.4% at 6 years, P = 0.007). After adjustment for age, gender, smoking, diabetes mellitus, blood pressure, low‐density lipoprotein‐cholesterol (LDL‐C) and high‐density lipoprotein‐cholesterol (HDL‐C), (ln)LAP was independently associated with mortality (hazard ratio (HR) = 1.46, P < 0.001). BMI was not associated with increased mortality (HR = 1.06, P = 0.39). Adding LAP to a model including traditional risk factors for atherosclerosis increased its predictive value (C statistic 0.762 vs. 0.750, P = 0.048). Adding BMI to the same model did not change its predictive value (0.749 vs. 0.750, P = 0.29). Subgroup analyses showed that LAP predicted mortality in the nondiabetic patients (adjusted HR for (ln)LAP 1.64, P < 0.001), but did not reach significance in the diabetic patients (HR = 1.21, P = 0.11). In conclusion, LAP and not BMI predicted mortality in nondiabetic patients at high risk for cardiovascular diseases. LAP may become a useful tool in clinical practice to stratify the risk of unfavorable outcome associated with obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号