首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Continuing our efforts to obtain potent and selective analogues of AVP we synthesized and pharmacologically evaluated ten new compounds modified at position 2 with α‐2‐indanylglycine or its D ‐enantiomer (Igl or D ‐Igl, respectively). All the peptides were tested for pressor, antidiuretic, and in vitro uterotonic activities. We also determined the binding affinity of these compounds to human OT receptor. The Igl2 substitution resulted in a significant change of the pharmacological profile of the peptides. The new analogues were moderate or potent OT antagonists (pA2 values ranging from 7.19 to 7.98) and practically did not interact with V1a and V2 receptors. It is worth emphasizing that these new peptides were exceptionally selective. On the other hand, the D ‐Igl2 substituted counterparts turned out to be weak antagonists of the pressor response to AVP and displayed no antidiuretic activity. Some of the results were unexpected, e.g. dual activity in the rat uterotonic test in vitro: the D ‐Igl peptides showed a strong antioxytocic potency (pA2 values ranging from 7.70 to 8.20) at low concentrations and full agonism at high concentrations. The results provided useful information about the SAR of AVP analogues. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Vasopressin and nonmammalian hormone vasotocin are known to increase the water permeability of mammalian collecting ducts, frog skin and the urinary bladder. Neurohypophysial nonapeptides have also been shown to interfere with the regulation of renal ion transport. The subject of this study was a search for vasopressin and vasotocin analogues with selective effects on renal water, sodium and potassium excretion. During this study, we synthesised the following peptides: 13 vasotocin analogues modified at positions 4 (Thr or Arg), 7 (Gly or Leu) and 8 (d ‐Arg, Lys or Glu); 4 vasopressin analogues modified at positions 4 and 8; and 9 peptides shortened or extended at the C‐terminal or with substitutions for Gly‐NH2. Most of these peptides had mercaptopropionic acid (Mpa) instead of Cys in position 1. The effects of these nonapeptides on renal water, sodium and potassium transport were evaluated in in vivo experiments using Wistar rats. Some nonapeptides possessed antidiuretic, natriuretic and kaliuretic activities ([Mpa1]‐arginine vasotocin, [Mpa1, homoArg8]‐vasotocin, [Mpa1, Thr4]‐arginine vasotocin and [Mpa1, Arg4]‐arginine vasopressin). Substitutions at positions 4 and 8 increased the selectivity of peptide actions. The antidiuretic [d ‐Arg8]‐vasotocin analogues had no effects on sodium excretion. [Mpa1, Arg4]‐arginine vasotocin was antidiuretic and kaliuretic but not natriuretic. [Mpa1, Glu8]‐oxytocin had weak natriuretic activity without any effects on water and potassium transport. In accordance with the data obtained, synthesised vasotocin analogues could be good candidates for pharmaceuticals selectively regulating renal sodium and potassium transport, which is of clinical importance. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
ABSTRACT

The aim of the study was to computer-dock selected ligands to neurophyseal receptors in order to identify amino acid residues responsible for ligand–receptor interactions. To this aim, reliable oxytocin receptor (OTR) and arginine-vasopressin receptor (V1aR/V2R) models were built. The OTR-selective agonist [Thr4,Gly7]OT, the OTR-selective cyclohexapeptide antagonist L-366,948 and OT itself were docked via genetic algorithm to OTR, V1aR, and V2R and relaxed using a constrained simulated annealing protocol. For the analysis of receptor/ligand interactions a subset of initial conformations was chosen using energetic and steric criteria. All three ligands seem to prefer similar modes of binding to the receptors, manifested by repetitive residues of the receptors which directly interact with the ligands. Taking into account that many aspects of mechanisms of G protein-coupled receptor (GPCR) action are still unsolved, the results obtained with the docking simulations may propose future experimental research, especially in site-directed mutagenesis analysis and searching for key amino acid residues responsible for drug activities.  相似文献   

4.
The ligand-induced proteolytic cleavage of the V2 vasopressin receptor transiently expressed in COS cells was investigated. After incubation of the cell membranes with a photoreactive ligand possessing full agonistic properties for V2 receptors, approximately 90% of the porcine and bovine V2 vasopressin receptors were cleaved in the upper part of transmembrane helix 2 at a heptapeptide sequence conserved in both vasopressin and oxytocin receptors. The oxytocin receptor was completely resistant to proteolysis after binding the same photoreactive ligand, which is only a partial agonist for this receptor. Chimeric V2/oxytocin receptors obtained by transfer of extracellular domains of the oxytocin receptor into the V2 receptor showed an increase in binding affinity for oxytocin versus vasopressin and a diminished cleavage. The proteolysis-resistant chimeric V2/oxytocin receptor, which contains the first three extracellular domains of the oxytocin receptor, stimulated cAMP accumulation to a larger extent in response to vasopressin than the wild-type receptor and showed impaired desensitization of the adenylate cyclase system. Our data indicate that the proteolytic cleavage of the V2 receptor requires a defined conformation, especially of the first two extracellular domains that is induced by agonist binding. Furthermore, the results suggest that the proteolytic V2 receptor cleavage might play a role in signal termination at elevated hormone concentrations.  相似文献   

5.
Two glycosylated peptides have been studied using NMR spectroscopy supported by molecular modeling. Peptide I is an oxytocin (OT) analogue in which glutamine 4 was replaced by serine with attached α‐d ‐mannose through the oxygen β atom, whereas peptide II is a lysine‐vasopressin (LVP) analogue with lysine 8 side chain modified by the attachment of glucuronic acid through an amide bond. Both peptides exhibit very weak uterotonic effect and are less susceptible to proteolytic degradation than the mother hormones. Additionally, peptide II reveals very weak pressor and antidiuretic activities. Our results have shown that the conformational preferences of glycosylated analogues are highly similar to those of their respective mother hormones. OT glycosylated analogue (I) exhibits a 3,4 β‐turn characteristic of OT‐like peptides, and vasopressin‐glycosylated analogue (II) exhibits β‐turns typical of vasopressin‐like peptides. Therefore, the lack of binding of the glycosylated analogues to the receptors can be attributed to a steric interference between the carbohydrate moieties and the receptors. We also consider this to be the reason of the very low activity of the analyzed glycopeptides. We expect that results from these studies will be helpful in designing new OT‐like and vasopressin‐like drugs. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Vasopressin (CYFQNCPRG-NH(2), AVP) is a semicyclic endogenous peptide, which exerts a variety of biological effects in mammals. The main physiological roles of AVP are the regulation of water balance and the control of blood pressure and adrenocorticotropin hormone (ACTH) secretion, mediated via three different subtypes of vasopressin receptors: V1a, V1b and V2 receptors (V1aR, V1bR and V2R, respectively). They are the members of the class A, G-protein-coupled receptors (GPCRs). AVP also modulates several behavioral and social functions. In this study, the interactions responsible for AVP binding to vasopressin V1a and V2 receptors versus the closely related oxytocin ([I3,L8]AVP, OT) receptor (OTR) have been investigated. Three-dimensional models of the activated receptors were constructed using multiple sequence alignment, followed by homology modeling using the complex of activated rhodopsin with Gt(alpha) C-terminal peptide of transducin MII-Gt(338-350) prototype as a template. AVP was docked into the receptor-G(alpha) systems. The three lowest-energy pairs of receptor-AVP-G(alpha) (two complexes per each receptor) were selected. The 1-ns unconstrained molecular dynamics (MD) of complexes embedded into the fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) lipid bilayer was conducted in the AMBER 7.0 force field. Six relaxed receptor-AVP-G(alpha) models were obtained. The residues responsible for AVP binding to vasopressin receptors have been identified and a different mechanism of AVP binding to V2R than to V1aR has been proposed.  相似文献   

7.
To identify structural elements important to specific G alpha(q) coupling in the oxytocin receptor (OTR), intracellular domains were exchanged between OTR and G alpha(s)-coupled vasopressin V(2) receptors (V(2)Rs). Substitution of sequence from the second (2i) and third (3i) intracellular domains of V(2)R into comparable positions in OTR markedly reduced ligand affinity and resulted in a loss of G alpha(q) coupling. Substitution of the 2i domain of OTR into V(2)R decreased ligand affinity and vasopressin-stimulated adenylyl cyclase activity and only slightly increased phosphatidylinositide turnover. In contrast, substitution of the OTR3i domain into V(2)R produced a receptor chimera with high ligand affinity, decreased vasopressin-stimulated adenylyl cyclase activity, and markedly enhanced ligand-stimulated phosphatidylinositide turnover. The C-terminal 36 amino acids, but not the N-terminal 13 amino acids, of the OTR3i domain contained the determinants critical for enhanced activation of PLC. Mutation of a single lysine in the C-terminal OTR3i sequence to the corresponding V(2)R residue (valine) eliminated the enhanced ability of the V(2)R chimera to stimulate PLC but did not affect maximal adenylyl cyclase stimulation. Furthermore, mutation of this residue (K270) in wild-type OTR completely abolished the ability of the receptor to stimulate phosphatidylinositide turnover, with only a small reduction in ligand affinity. These data demonstrate that OTR K270 is critically important in the stimulation by OTR of phosphatidylinositide turnover and that this determinant can also increase this activity in the V(2)R chimera. Mutation of K270 also adversely affects the ability of OTR to stimulate ERK1/2 phosphorylation. Therefore, this residue plays an important role in the specificity of OTR/G alpha(q)/PLC coupling.  相似文献   

8.
We predict some essential interactions between the V2 vasopressin renal receptor (V2R) and its agonists [Arg8]vasopressin (AVP) and [D-Arg8]vasopressin (DAVP), and the non-peptide antagonist OPC-31260. V2R controls antidiuresis and belongs to the superfamily of heptahelical transmembrane (7TM) G-protein-coupled receptors (GPCRs). The receptor was built, the ligands were docked and the structures relaxed using advanced molecular modeling techniques. Docked agonists and antagonists appear to prefer similar V2R compartments. A number of receptor amino acid residues are indicated, mainly in the TM3–TM7 helices, as potentially important in ligand binding. Many of these residues are invariant for either the GPCR superfamily or the subfamily of related (vasopressin V2R, V1aR and V1bR and oxytocin OR) receptors. Moreover, some of the equivalent residues in V1aR have already been found critical for ligand affinity [Mouillac et al., J. Biol. Chem., 270 (1995) 25771].  相似文献   

9.
Summary We predict some essential interactions between the V2 vasopressin renal receptor (V2R) and its agonists [Arg8]vasopressin (AVP) and [D-Arg8]vasopressin (DAVP), and the non-peptide antagonist OPC-31260. V2R controls antidiuresis and belongs to the superfamily of heptahelical transmembrane (7TM) G-protein-coupled receptors (GPCRs). The receptor was built, the ligands were docked and the structures relaxed using advanced molecular modeling techniques. Docked agonists and antagonists appear to prefer similar V2R compartments. A number of receptor amino acid residues are indicated, mainly in the TM3-TM7 helices, as potentially important in ligand binding. Many of these residues are invariant for either the GPCR superfamily or the subfamily of related (vasopressin V2R, V1aR and V1bR and oxytocin OR) receptors. Moreover, some of the equivalent residues in V1aR have already been found critical for ligand affinity [Mouillac et al., J. Biol. Chem., 270 (1995) 25771].  相似文献   

10.
The aim of the study was to computer-dock selected ligands to neurophyseal receptors in order to identify amino acid residues responsible for ligand-receptor interactions. To this aim, reliable oxytocin receptor (OTR) and arginine-vasopressin receptor (V1aR/V2R) models were built. The OTR-selective agonist [Thr4,Gly7]OT, the OTR-selective cyclohexapeptide antagonist L-366,948 and OT itself were docked via genetic algorithm to OTR, V1aR, and V2R and relaxed using a constrained simulated annealing protocol. For the analysis of receptor/ligand interactions a subset of initial conformations was chosen using energetic and steric criteria. All three ligands seem to prefer similar modes of binding to the receptors, manifested by repetitive residues of the receptors which directly interact with the ligands. Taking into account that many aspects of mechanisms of G protein-coupled receptor (GPCR) action are still unsolved, the results obtained with the docking simulations may propose future experimental research, especially in site-directed mutagenesis analysis and searching for key amino acid residues responsible for drug activities.  相似文献   

11.
Examination of the structure of [Arg(8)]-vasopressin receptors (AVPRs) and oxytocin receptors (OTRs) suggests that G protein-coupled receptor kinases (GRKs) and protein kinase C (PKC) are involved in their signal transduction. To explore the physical association of AVPRs and OTRs with GRKs and PKC, wild types and mutated forms of these receptor subtypes were stably expressed as green fluorescent protein fusion proteins and analyzed by fluorescence, immunoprecipitation, and immunoblotting. Addition of a C-terminal GFP tag did not interfere with ligand binding, internalization, and signal transduction. After agonist stimulation, PKC dissociated from the V(1)R, did not associate with the V(2)R, but associated with the V(3)R and the OTR. After AVP stimulation, only GRK5 briefly associated with AVPRs following a time course that varied with the receptor subtype. No GRK associated with the OTR. Exchanging the V(1)R and V(2)R C termini altered the time course of PKC and GRK5 association. Deletion of the V(1)R C terminus resulted in no PKC association and a ligand-independent sustained association of GRK5 with the receptor. Deletion of the GRK motif prevented association and reduced receptor phosphorylation. Thus, agonist stimulation of AVP/OT receptors leads to receptor subtype-specific interactions with GRK and PKC through specific motifs present in the C termini of the receptors.  相似文献   

12.
[Tyr6]‐γ2‐MSH(6–12) with a short effecting time of about 20 min is one of the most potent rMrgC receptor agonists. To possibly increase its potency and metabolic stability, a series of analogues were prepared by replacing the Tyr6 residue with the non‐canonical amino acids 3‐(1‐naphtyl)‐L ‐alanine, 4‐fluoro‐L ‐phenylalanine, 4‐methoxy‐L ‐phenylalanine and 3‐nitro‐L ‐tyrosine. Dose‐dependent nociceptive assays performed in conscious rats by intrathecal injection of the MSH peptides showed [Tyr6]‐γ2‐MSH(6–12) hyperalgesic effects at low doses (5–20 nmol) and analgesia at high doses (100–200 nmol). This analgesic activity is fully reversed by the kyotorphin receptor‐specific antagonist Leu–Arg. For the two analogues containing in position 6, 4‐fluoro‐L ‐phenylalanine and 3‐nitro‐L ‐tyrosine, a hyperalgesic activity was not observed, while the 3‐(1‐naphtyl)‐L ‐alanine analogue at 10 nmol dose was found to induce hyperalgesia at a potency very similar to γ2‐MSH(6–12), but with longer duration of the effect. Finally, the 4‐methoxy‐L ‐phenylalanine analogue (0.5 nmol) showed greatly improved hyperalgesic activity and prolonged effects compared to the parent [Tyr6]‐γ2‐MSH(6–12) compound. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
β‐Amino acids containing hybrid peptides and β‐peptides show great potential as peptidomimetics. In this paper we describe the synthesis and affinity toward the µ‐ and δ‐opioid receptors of β‐peptides, analogues of Leu‐enkephalin, deltorphin I, dermorphin and α,β‐hybrides, analogues of deltorphin I. Substitution of α‐amino acid residues with β3homo‐amino acid residues, in general resulted in decrease of affinity to opioid receptors. However, the incorporation β3h‐D ‐Ala in position 2 or β3hPhe in position 3 of deltorphin I resulted in potent and selective ligand for δ‐opioid receptor. The NMR studies of β‐deltorphin I analogue suggest that conformational motions in the central part of the peptide backbone are partially restricted and some conformational preferences can be expected. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Understanding of the molecular determinants responsible for antagonist binding to the oxytocin receptor should provide important insights that facilitate rational design of potential therapeutic agents for the treatment of preterm labor. To study ligand/receptor interactions, we used a novel photosensitive radioiodinated antagonist of the human oxytocin receptor, d(CH(2))(5) [Tyr(Me)(2),Thr(4),Orn(8),Phe(3(125)I,4N(3))-NH(2)9]vasotocin. This ligand had an equivalent high affinity for human oxytocin and V(1a) vasopressin receptors expressed in Chinese hamster ovary cells. Taking advantage of this dual specificity, we conducted photoaffinity labeling experiments on both receptors. Photolabeled oxytocin and V(1a) receptors appeared as a unique protein band at 70-75 kDa and two labeled protein bands at 85-90 and 46 kDa, respectively. To identify contact sites between the antagonist and the receptors, the labeled 70-75- and the 46-kDa proteins were cleaved with CNBr and digested with Lys-C and Arg-C endoproteinases. The fragmentation patterns allowed the identification of a covalently labeled region in the oxytocin receptor transmembrane domain III consisting of the residues Leu(114)-Val(115)-Lys(116). Analysis of contact sites in the V(1a) receptor led to the identification of the homologous region consisting of the residues Val(126)-Val(127)-Lys(128). Binding domains were confirmed by mutation of several CNBr cleavage sites in the oxytocin receptor and of one Lys-C cleavage site in the V(1a) receptor. The results are in agreement with previous experimental data and three-dimensional models of agonist and antagonist binding to members of the oxytocin/vasopressin receptor family.  相似文献   

15.
To identify and characterize V1 vasopressin receptors, photoreactive antagonists of the glycogenolytic and vasoconstrictor activity of vasopressin have been synthesized. The following analogues with 3-mercapto-3,3-cyclopentamethylene-propionic acid (Mca) and N-methylalanine (MeAla) in position 1 and 7 of vasopressin (VP) were effective V1 antagonists: [Mca1, D-Tyr2, MeAla7, Lys8]VP (1), [Mca1, MeAla7, Arg8, Lys9]VP (2), [Mca1, MeAla7, Arg8, D-Lys9]VP (3). Introduction of the photoreactive 4-azidophenylamidino group into the side-chain of Lys8 in analogue 1 or into Lys9 in analogues 2 and 3 increased the potency (for analogue 1 a tenfold increase in the antiglycogenolytic effect and a fivefold increase in the antivasopressor effect) and binding affinity for the rat hepatic V1 receptor. Mono-iodination at Tyr2 with 125I resulted in photoreactive antagonists of high specific radioactivity, which had roughly the same binding affinity as vasopressin for the rat hepatic V1 receptor (Kd = 0.9-1.8 nM). In photoaffinity labelling experiments with purified rat liver membranes, containing 2--3 pmol V1 receptor/mg protein, the analogues labelled specifically two proteins with the relative molecular masses (Mr) of 30,000 and 38,000. These results and the results of a recent study using 3H-labelled photoreactive vasopressin agonists [Boer, R. and Fahrenholz, F. (1985) J. Biol. Chem. 260, 15051-15054] provide evidence that both vasopressin agonists and antagonists can interact with the same two subunits of the heterodimeric hepatic V1 receptor. Furthermore the radioiodinated photoreactive V1 antagonists should be helpful to identify V1 receptor proteins in membranes of other cell types.  相似文献   

16.
A linear vasopressin antagonist, Phaa-D-Tyr(Me)-Phe-Gln-Asn-Arg-Pro-Arg-Tyr-NH2 (Linear AVP Antag) (Phaa = Phenylacetyl), was monoiodinated at the phenyl moiety of the tyrosylamide residue at position 9. This antagonist appeared to be a highly potent anti-vasopressor peptide with a pA2 value in vivo of 8.94. It was demonstrated to bind to rat liver membrane preparations with a very high affinity (Kd = 0.06 nM). The affinity for the rat uterus oxytocin receptor was lower (Ki = 2.1 nM), and affinities for the rat kidney- and adenohypophysis-vasopressin receptors were much lower (Ki = 47 nM and 92 nM, respectively), resulting in a highly specific vasopressin V1a receptor ligand. Autoradiographical studies using rat brain slices showed that this ligand is a good tool for studies on vasopressin receptor localization and characterization.  相似文献   

17.
Neurohypophysial hormone receptors were identified and characterized in rabbit endometrium and decidua by radioligand binding methods. The results strongly support the presence of a heterogeneity of sites in the decidua of parturient rabbits. The oxytocin site (R1) binds oxytocin and oxytocin analogues ([Thr4, Gly7]oxytocin and OTA) with high affinity, whereas the AVP site (R2) was selective for the V1 AVP analogues, [Phe2, Orn8]VT and d(CH2)5TyrMeAVP. The concentration of oxytocin receptors was low (50-100 fmol/mg protein) at oestrus (Day 0) and on Day 29 of pregnancy, but increased significantly (about 8-fold, P less than 0.05) during parturition. Conversely, V1 AVP receptors were more concentrated than the oxytocin sites at the end of pregnancy (150 fmol/mg protein) but did not change during parturition. These results indicate that neurohypophysial hormones have specific receptors not only in the myometrium but also in the uterine mucosa and we suggest that these receptors may participate in the regulation of uterine activity during pregnancy.  相似文献   

18.
Oxytocin (OT) is an exciting potential therapeutic agent, but it is highly sensitive to modification and suffers extensive degradation at elevated temperature and in vivo. Here we report studies towards OT analogs with favorable selectivity, affinity and potency towards the oxytocin receptor (OTR), in addition to improving stability of the peptide by bridging the disulfide region with substituted dibromo-xylene analogs. We found a sensitive structure-activity relationship in which meta-cyclized analogs (dOTmeta) gave highest affinity (50?nM Ki), selectivity (34-fold), and agonist potency (34?nM EC50, 87-fold selectivity) towards OTR. Surprisingly, ortho-cyclized analogs demonstrated OTR and vasopressin V1a receptor subtype affinity (220?nM and 69?nM, respectively) and pharmacological activity (294?nM and 35?nM, respectively). V1a binding and selectivity for ortho-cyclized peptides could be improved 6-fold by substituting a neutral residue at position 8 with a basic amino acid, providing potent antagonists (14?nM IC50) that displayed no activation of the OTR. Furthermore, xylene-bridged analogs demonstrated increased stability compared to OT at elevated temperature, demonstrating promising therapeutic potential for these analogs which warrants further study.  相似文献   

19.
The neurohypophyseal hormone oxytocin (CYIQNCPLG-NH(2), OT) is involved in the control of labor, secretion of milk and many social and behavioral functions via interaction with its receptors (OTR) located in the uterus, mammary glands and peripheral tissues, respectively. In this paper we propose the interactions responsible for OT binding and selectivity to OTR versus vasopressin ([F3,R8]OT, AVP) receptors: V1aR and V2R, all three belonging to the Class A G protein-coupled receptors (GPCRs). Three-dimensional models of the activated receptors were constructed using a multiple sequence alignment and the activated rhodopsin-transducin (MII-Gt) prototype [Slusarz and Ciarkowski, 2004] as a template. The 1 ns unconstrained molecular dynamics (MD) of three pairs of receptor-OT complexes (two complexes per each receptor) immersed in the fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) lipid bilayer was conducted in the AMBER 7.0 force field. The relaxed models of ligand-receptor complexes were used to identify the putative binding sites of OT. The stabilizing interactions with conserved Gln residues in all complexes were identified. The nonconserved hydrophobic residues were proposed as responsible for OTR-OT selectivity and ligand recognition. These results provide guidelines for experimental site-directed mutagenesis and if confirmed, they may be helpful in designing new selective OT analogs with both agonistic or antagonistic properties.  相似文献   

20.
We report the hierarchical supramolecular organization of metallosupramolecular homochiral complexes 1 ‐Λ‐(S,S,S,S)‐M2+/ 1 ‐?‐(R,R,R,R)‐M2+ and 2 ‐ Λ‐(S,S,S,S)‐M2+/ 2 ‐?‐ (R,R,R,R)‐M2+ of M2+ = Co2+, Fe2+, Zn2+ metal ions with chiral pseudo‐terpyridine‐type ligands: 1‐ (S,S) or 1‐ (R,R) = 2,6‐bis (naphthyl ethylimine)pyridine and 2‐ (S,S) or 2‐ (R,R) = 2,6‐bis (phenyl‐ethylimine)pyridine. Circular dichroism measurements in solution were used to confirm the enantiomeric nature of all twelve complexes. For crystal structures of 1 ‐ Λ‐ (S,S,S,S)‐M2+ or 1 ‐?‐ (R,R,R,R)‐M2+ complexes, absolute configurations {? (or P), Λ (or M)} were confirmed by refinement of the Flack parameter x: ?0.007 ≤ x ≤ 0.11 for the single crystals of 1 ‐Λ‐(S,S,S,S)‐M2+/ 1 ‐?‐ (R,R,R,R)‐M2+, 2 ‐ Λ‐ (S,S,S,S)‐Fe2+, and 2 ‐?‐ (R,R,R,R)‐Co2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号