首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The amino-acid sequences of soluble, globular proteins must have hydrophobic residues to form a stable core, but excess sequence hydrophobicity can lead to loss of native state conformational specificity and aggregation. Previous studies of polar-to-hydrophobic mutations in the β-sheet of the Arc repressor dimer showed that a single substitution at position 11 (N11L) leads to population of an alternate dimeric fold in which the β-sheet is replaced by helix. Two additional hydrophobic mutations at positions 9 and 13 (Q9V and R13V) lead to population of a differently folded octamer along with both dimeric folds. Here we conduct a comprehensive study of the sequence determinants of this progressive loss of fold specificity. We find that the alternate dimer-fold specifically results from the N11L substitution and is not promoted by other hydrophobic substitutions in the β-sheet. We also find that three highly hydrophobic substitutions at positions 9, 11, and 13 are necessary and sufficient for oligomer formation, but the oligomer size depends on the identity of the hydrophobic residue in question. The hydrophobic substitutions increase thermal stability, illustrating how increased hydrophobicity can increase folding stability even as it degrades conformational specificity. The oligomeric variants are predicted to be aggregation-prone but may be hindered from doing so by proline residues that flank the β-sheet region. Loss of conformational specificity due to increased hydrophobicity can manifest itself at any level of structure, depending upon the specific mutations and the context in which they occur.  相似文献   

2.
Hu C  Koehl P  Max N 《Proteins》2011,79(10):2828-2843
The three‐dimensional structure of a protein is organized around the packing of its secondary structure elements. Predicting the topology and constructing the geometry of structural motifs involving α‐helices and/or β‐strands are therefore key steps for accurate prediction of protein structure. While many efforts have focused on how to pack helices and on how to sample exhaustively the topologies and geometries of multiple strands forming a β‐sheet in a protein, there has been little progress on generating native‐like packings of helices on sheets. We describe a method that can generate the packing of multiple helices on a given β‐sheet for αβα sandwich type protein folds. This method mines the results of a statistical analysis of the conformations of αβ2 motifs in protein structures to provide input values for the geometric attributes of the packing of a helix on a sheet. It then proceeds with a geometric builder that generates multiple arrangements of the helices on the sheet of interest by sampling through these values and performing consistency checks that guarantee proper loop geometry between the helices and the strands, minimal number of collisions between the helices, and proper formation of a hydrophobic core. The method is implemented as a module of ProteinShop. Our results show that it produces structures that are within 4–6 Å RMSD of the native one, regardless of the number of helices that need to be packed, though this number may increase if the protein has several helices between two consecutive strands in the sequence that pack on the sheet formed by these two strands. Proteins 2011; Published 2011 Wiley‐Liss, Inc.  相似文献   

3.
Examples of homomeric β‐helices and β‐barrels have recently emerged. Here we generalize the theory for the shear number in β‐barrels to encompass β‐helices and homomeric structures. We introduce the concept of the “β‐strip,” the set of parallel or antiparallel neighboring strands, from which the whole helix can be generated giving it n‐fold rotational symmetry. In this context, the shear number is interpreted as the sum around the helix of the fixed register shift between neighboring identical β‐strips. Using this approach, we have derived relationships between helical width, pitch, angle between strand direction and helical axis, mass per length, register shift, and number of strands. The validity and unifying power of the method is demonstrated with known structures including α‐hemolysin, T4 phage spike, cylindrin, and the HET‐s(218‐289) prion. From reported dimensions measured by X‐ray fiber diffraction on amyloid fibrils, the relationships can be used to predict the register shift and the number of strands within amyloid protofilaments. This was used to construct models of transthyretin and Alzheimer β(40) amyloid protofilaments that comprise a single strip of in‐register β‐strands folded into a “β‐strip helix.” Results suggest both stabilization of an individual β‐strip helix and growth by addition of further β‐strip helices can involve the same pair of sequence segments associating with β‐sheet hydrogen bonding at the same register shift. This process would be aided by a repeat sequence. Hence, understanding how the register shift (as the distance between repeat sequences) relates to helical dimensions will be useful for nanotube design.  相似文献   

4.
Alexander V. Efimov 《Proteins》2017,85(10):1925-1930
In this study, the structural motifs that can be represented as combinations of small motifs such as β‐hairpins, S‐, and Z‐like β‐sheets and βαβ‐units, and the П‐like module are described and analyzed. The П‐module consists of connected elements of the β‐strand‐loop‐β‐strand type arranged in space so that its overall fold resembles a clip or the Greek letter П. In proteins, the П‐module itself and the structural motifs containing it exhibit unique overall folds and have specific sequence patterns of the key hydrophobic, hydrophilic and glycine residues. All this together enables us to conclude that these structural motifs can fold independently of the remaining part of the molecule and can act as nuclei and/or “ready‐made” building blocks in protein folding.  相似文献   

5.
The sensor histidine kinases of two‐component signal‐transduction systems (TCSs) are essential for bacteria to adapt to variable environmental conditions. The two‐component regulatory system BaeS/R increases multidrug and metal resistance in Salmonella and Escherichia coli. In this study, we report the X‐ray structure of the periplasmic sensor domain of BaeS from Serratia marcescens FS14. The BaeS sensor domain (34–160) adopts a mixed α/β‐fold containing a central four‐stranded antiparallel β‐sheet flanked by a long N‐terminal α‐helix and additional loops and a short C‐terminal α‐helix on each side. Structural comparisons revealed that it belongs to the PDC family with a remarkable difference in the orientation of the helix α2. In the BaeS sensor domain, this helix is situated perpendicular to the long helix α1 and holds helix α1 in the middle with the beta sheet, whereas in other PDC domains, helix α2 is parallel to helix α1. Because the helices α1 and α2 is involved in the dimeric interface, this difference implies that BaeS uses a different dimeric interface compared with other PDC domains. Proteins 2017; 85:1784–1790. © 2017 Wiley Periodicals, Inc.  相似文献   

6.
The stabilities of 66 sequence variants of the human Pin1 WW domain have been determined by equilibrium thermal denaturation experiments. All 34 residues composing the hPin1 WW three‐stranded β‐sheet structure could be replaced one at a time with at least one different natural or non‐natural amino acid residue without leading to an unfolded protein. Alanine substitutions at only four positions within the hPin1 WW domain lead to a partially or completely unfolded protein—in the absence of a physiological ligand. The side chains of these four residues form a conserved, partially solvent‐inaccessible, continuous hydrophobic minicore comprising the N‐ and C‐termini. Ala mutations at five other residues, three of which constitute the ligand binding patch on the concave side of the β‐sheet, significantly destabilize the hPin1 WW domain without leading to an unfolded protein. The remaining mutations affect protein stability only slightly, suggesting that only a small subset of side chain interactions within the hPin1 WW domain are mandatory for acquiring and maintaining a stable, cooperatively folded β‐sheet structure.  相似文献   

7.
An evolutionary bridge to a new protein fold   总被引:1,自引:0,他引:1  
Arc repressor bearing the N11L substitution (Arc-N11L) is an evolutionary intermediate between the wild type protein, in which the region surrounding position 11 forms a beta-sheet, and a double mutant 'switch Arc', in which this region is helical. Here, Arc-N11L is shown to be able to adopt either the wild type or mutant conformations. Exchange between these structures occurs on the millisecond time scale in a dynamic equilibrium in which the relative populations of each fold depend on temperature, solvent conditions and ligand binding. The N11L mutation serves as an evolutionary bridge from the beta-sheet to the helical fold because in the mutant, Leu is an integral part of the hydrophobic core of the new structure but can also occupy a surface position in the wild type structure. Conversely, the polar Asn 11 side chain serves as a negative design element in wild type Arc because it cannot be incorporated into the core of the mutant fold.  相似文献   

8.
The capacity to form β‐sheet structure and to self‐organize into amyloid aggregates is a property shared by many proteins. Severe neurodegenerative pathologies such as Alzheimer's disease are thought to involve the interaction of amyloidogenic protein oligomers with neuronal membranes. To understand the experimentally observed catalysis of amyloid formation by lipid membranes and other water‐hydrophobic interfaces, we examine the physico‐chemical basis of peptide adsorption and aggregation in a model membrane using atomistic molecular simulations. Blocked octapeptides with simple, repetitive sequences, (Gly‐Ala)4, and (Gly‐Val)4, are used as models of β‐sheet‐forming polypeptide chains found in the core of amyloid fibrils. In the presence of an n‐octane phase mimicking the core of lipid membranes, the peptides spontaneously partition at the octane‐water interface. The adsorption of nonpolar sidechains displaces the peptides' conformational equilibrium from a heterogeneous ensemble characterized by a high degree of structural disorder toward a more ordered ensemble favoring β‐hairpins and elongated β‐strands. At the interface, peptides spontaneously aggregate and rapidly evolve β‐sheet structure on a 10 to 100 ns time scale, while aqueous aggregates remain amorphous. Catalysis of β‐sheet formation results from the combination of the hydrophobic effect and of reduced conformational entropy of the polypeptide chain. While the former drives interfacial partition and displaces the conformational equilibrium of monomeric peptides, the planar interface further facilitates β‐sheet organization by increasing peptide concentration and reducing the dimensionality of self‐assembly from three to two. These findings suggest a general mechanism for the formation of β‐sheets on the surface of globular proteins and for amyloid self‐organization at hydrophobic interfaces. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Elastin is a fibrous structural protein of the extracellular matrix that provides reversible elastic recoil to vertebrate tissues such as arterial vessels, lung, and skin. The elastin monomer, tropoelastin, contains a large proportion of intrinsically disordered and flexible hydrophobic sequences that collectively are responsible for the initial phase separation of monomers during assembly, and are essential for driving elastic recoil. While structural disorder of hydrophobic sequences is controlled by a high proline and glycine residue composition, hydrophobic domain 30 of human tropoelastin is atypically proline‐poor, and forms β‐sheet amyloid‐like fibrils as an individual peptide. We explored the contribution of confined regions of secondary structure at the location of domain 30 in human tropoelastin to fiber assembly and mechanical properties using a set of mutations designed to inhibit or enhance the propensity of β‐sheet formation at this location. Our data support a dual role for confined β‐sheet secondary structure in domain 30 of tropoelastin in guiding the formation of fibers, and as a determinant of stiffness and viscoelastic properties of cross‐linked materials. Together, these results suggest a mechanism for specificity in fiber assembly, and elucidate structure‐function relationships for the rational design of elastomeric biomaterials with defined mechanical properties. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 267–275, 2016.  相似文献   

10.
The eye lens protein γD‐crystallin contributes to cataract formation in the lens. In vitro experiments show that γD‐crystallin has a high propensity to form amyloid fibers when denatured, and that denaturation by acid or UV‐B photodamage results in its C‐terminal domain forming the β‐sheet core of amyloid fibers. Here, we show that thermal denaturation results in sheet‐like aggregates that contain cross‐linked oligomers of the protein, according to transmission electron microscopy and SDS‐PAGE. We use two‐dimensional infrared spectroscopy to show that these aggregates have an amyloid‐like secondary structure with extended β‐sheets, and use isotope dilution experiments to show that each protein contributes approximately one β‐strand to each β‐sheet in the aggregates. Using segmental 13C labeling, we show that the organization of the protein's two domains in thermally induced aggregates results in a previously unobserved structure in which both the N‐terminal and C‐terminal domains contribute to β‐sheets. We propose a model for the structural organization of the aggregates and attribute the recruitment of the N‐terminal domain into the fiber structure to intermolecular cross linking.  相似文献   

11.
Adjacent N11L and L12N mutations in the antiparallel beta-ribbon of Arc repressor result in dramatic changes in local structure in which each beta-strand is replaced by a right-handed helix. The full solution structure of this "switch" Arc mutant shows that irregular 3(10) helices compose the new secondary structure. This structural metamorphosis conserves the number of main-chain and side-chain to main-chain hydrogen bonds and the number of fully buried core residues. Apart from a slight widening of the interhelical angle between alpha-helices A and B and changes in side-chain conformation of a few core residues in Arc, no large-scale structural adjustments in the remainder of the protein are necessary to accommodate the ribbon-to-helix change. Nevertheless, some changes in hydrogen-exchange rates are observed, even in regions that have very similar structures in the two proteins. The surface of switch Arc is packed poorly compared to wild-type, leading to approximately 1000A(2) of additional solvent-accessible surface area, and the N termini of the 3(10) helices make unfavorable head-to-head electrostatic interactions. These structural features account for the positive m value and salt dependence of the ribbon-to-helix transition in Arc-N11L, a variant that can adopt either the mutant or wild-type structures. The tertiary fold is capped in different ways in switch and wild-type Arc, showing how stepwise evolutionary transformations can arise through small changes in amino acid sequence.  相似文献   

12.
Many protein architectures exhibit evidence of internal rotational symmetry postulated to be the result of gene duplication/fusion events involving a primordial polypeptide motif. A common feature of such structures is a domain‐swapped arrangement at the interface of the N‐ and C‐termini motifs and postulated to provide cooperative interactions that promote folding and stability. De novo designed symmetric protein architectures have demonstrated an ability to accommodate circular permutation of the N‐ and C‐termini in the overall architecture; however, the folding requirement of the primordial motif is poorly understood, and tolerance to circular permutation is essentially unknown. The β‐trefoil protein fold is a threefold‐symmetric architecture where the repeating ~42‐mer “trefoil‐fold” motif assembles via a domain‐swapped arrangement. The trefoil‐fold structure in isolation exposes considerable hydrophobic area that is otherwise buried in the intact β‐trefoil trimeric assembly. The trefoil‐fold sequence is not predicted to adopt the trefoil‐fold architecture in ab initio folding studies; rather, the predicted fold is closely related to a compact “blade” motif from the β‐propeller architecture. Expression of a trefoil‐fold sequence and circular permutants shows that only the wild‐type N‐terminal motif definition yields an intact β‐trefoil trimeric assembly, while permutants yield monomers. The results elucidate the folding requirements of the primordial trefoil‐fold motif, and also suggest that this motif may sample a compact conformation that limits hydrophobic residue exposure, contains key trefoil‐fold structural features, but is more structurally homologous to a β‐propeller blade motif.  相似文献   

13.
The amino acid sequences of soluble, ordered proteins with stable structures have evolved due to biological and physical requirements, thus distinguishing them from random sequences. Previous analyses have focused on extracting the features that frequently appear in protein substructures, such as α‐helix and β‐sheet, but the universal features of protein sequences have not been addressed. To clarify the differences between native protein sequences and random sequences, we analyzed 7368 soluble, ordered protein sequences, by inspecting the observed and expected occurrences of 400 amino acid pairs in local proximity, up to 10 residues along the sequence in comparison with their expected occurrence in random sequence. We found the trend that the hydrophobic residue pairs and the polar residue pairs are significantly decreased, whereas the pairs between a hydrophobic residue and a polar residue are increased. This trend was universally observed regardless of the secondary structure content but was not observed in protein sequences that include intrinsically disordered regions, indicating that it can be a general rule of protein foldability. The possible benefits of this rule are discussed from the viewpoints of protein aggregation and disorder, which are both caused by low‐complexity regions of hydrophobic or polar residues.  相似文献   

14.
Amyloid‐like aggregation of natural proteins or polypeptides is an important process involved in many human diseases as well as some normal biological functions. Plenty of works have been done on this ubiquitous phenomenon, but the molecular mechanism of amyloid‐like aggregation has not been fully understood yet. In this study, we showed that a series of designer bolaamphiphilic peptides could undergo amyloid‐like aggregation even though they didn't possess typical β‐sheet secondary structure. Through systematic amino acid substitution, we found that for the self‐assembling ability, the number and species of amino acid in hydrophobic section could be variable as long as enough hydrophobic interaction is provided, while different polar amino acids as the hydrophilic heads could change the self‐assembling nanostructures with their aggregating behaviors affected by pH value change. Based on these results, novel self‐assembling models and aggregating mechanisms were proposed, which might provide new insight into the molecular basis of amyloid‐like aggregation.  相似文献   

15.
Bacteriophage Qβ is a small RNA virus that infects Escherichia coli. The virus particle contains a few copies of the minor coat protein A1, a C‐terminally prolonged version of the coat protein, which is formed when ribosomes occasionally read‐through the leaky stop codon of the coat protein. The crystal structure of the read‐through domain from bacteriophage Qβ A1 protein was determined at a resolution of 1.8 Å. The domain consists of a heavily deformed five‐stranded β‐barrel on one side of the protein and a β‐hairpin and a three‐stranded β‐sheet on the other. Several short helices and well‐ordered loops are also present throughout the protein. The N‐terminal part of the read‐through domain contains a prominent polyproline type II helix. The overall fold of the domain is not similar to any published structure in the Protein Data Bank.  相似文献   

16.
Protein aggregation into insoluble fibrillar structures known as amyloid characterizes several neurodegenerative diseases, including Alzheimer's, Huntington's and Creutzfeldt‐Jakob. Transthyretin (TTR), a homotetrameric plasma protein, is known to be the causative agent of amyloid pathologies such as FAP (familial amyloid polyneuropathy), FAC (familial amyloid cardiomiopathy) and SSA (senile systemic amyloidosis). It is generally accepted that TTR tetramer dissociation and monomer partial unfolding precedes amyloid fibril formation. To explore the TTR unfolding landscape and to identify potential intermediate conformations with high tendency for amyloid formation, we have performed molecular dynamics unfolding simulations of WT‐TTR and L55P‐TTR, a highly amyloidogenic TTR variant. Our simulations in explicit water allow the identification of events that clearly discriminate the unfolding behavior of WT and L55P‐TTR. Analysis of the simulation trajectories show that (i) the L55P monomers unfold earlier and to a larger extent than the WT; (ii) the single α‐helix in the TTR monomer completely unfolds in most of the L55P simulations while remain folded in WT simulations; (iii) L55P forms, early in the simulations, aggregation‐prone conformations characterized by full displacement of strands C and D from the main β‐sandwich core of the monomer; (iv) L55P shows, late in the simulations, severe loss of the H‐bond network and consequent destabilization of the CBEF β‐sheet of the β‐sandwich; (v) WT forms aggregation‐compatible conformations only late in the simulations and upon extensive unfolding of the monomer. These results clearly show that, in comparison with WT, L55P‐TTR does present a much higher probability of forming transient conformations compatible with aggregation and amyloid formation.  相似文献   

17.
WD40‐repeat proteins are abundant and play important roles in forming protein complexes. The domain usually has seven WD40 repeats, which folds into a seven β‐sheet propeller with each β‐sheet in a four‐strand structure. An analysis of 20 available WD40‐repeat proteins in Protein Data Bank reveals that each protein has at least one Asp‐His‐Ser/Thr‐Trp (D‐H‐S/T‐W) hydrogen‐bonded tetrad, and some proteins have up to six or seven such tetrads. The relative positions of the four residues in the tetrads are also found to be conserved. A sequence alignment analysis of 560 WD40‐repeat protein sequences in human reveals very similar features, indicating that such tetrad may be a general feature of WD40‐repeat proteins. We carried out density functional theory and found that these tetrads can lead to significant stabilization including hydrogen‐bonding cooperativity. The hydrogen bond involving Trp is significant. These results lead us to propose that the tetrads may be critical to the stability and the mechanism of folding of these proteins. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Insertions and deletions in protein sequences, or indels, can disrupt structure and may result in changes in protein folds during evolution or in association with alternative splicing. Pfl 6 and Xfaso 1 are two proteins in the Cro family that share a common ancestor but have different folds. Sequence alignments of the two proteins show two gaps, one at the N terminus, where the sequence of Xfaso 1 is two residues shorter, and one near the center of the sequence, where the sequence of Pfl 6 is five residues shorter. To test the potential importance of indels in Cro protein evolution, we generated hybrid variants of Pfl 6 and Xfaso 1 with indels in one or both regions, chosen according to several plausible sequence alignments. All but one deletion variant completely unfolded both proteins, showing that a longer N‐terminal sequence was critical for Pfl 6 folding and a longer central region sequence was critical for Xfaso 1 folding. By contrast, Xfaso 1 tolerated a longer N‐terminal sequence with little destabilization, and Pfl 6 tolerated central region insertions, albeit with substantial effects on thermal stability and some perturbation of the surrounding structure. None of the mutations appeared to convert one stable fold into the other. On the basis of this two‐protein comparison, short insertion and deletion mutations probably played a role in evolutionary fold change in the Cro family, but were also not the only factors. Proteins 2013; 81:1988–1996. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Aggregation of β‐amyloid peptides into senile plaques has been identified as one of the hallmarks of Alzheimer's disease. An attractive therapeutic strategy for Alzheimer's disease is the inhibition of the soluble β‐amyloid aggregation using synthetic β‐sheet breaker peptides that are capable of binding Aβ but are unable to become part of a β‐sheet structure. As the early stages of the Aβ aggregation process are supposed to occur close to the neuronal membrane, it is strategic to define the β‐sheet breaker peptide positioning with respect to lipid bilayers. In this work, we have focused on the interaction between the β‐sheet breaker peptide acetyl‐LPFFD‐amide, iAβ5p, and lipid membranes, studied by ESR spectroscopy, using either peptides alternatively labeled at the C‐ and at the N‐terminus or phospholipids spin‐labeled in different positions of the acyl chain. Our results show that iAβ5p interacts directly with membranes formed by the zwitterionic phospholipid dioleoyl phosphatidylcholine and this interaction is modulated by inclusion of cholesterol in the lipid bilayer formulation, in terms of both peptide partition coefficient and the solubilization site. In particular, cholesterol decreases the peptide partition coefficient between the membrane and the aqueous medium. Moreover, in the absence of cholesterol, iAβ5p is located between the outer part of the hydrophobic core and the external hydrophilic layer of the membrane, while in the presence of cholesterol it penetrates more deeply into the lipid bilayer. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Acylation of proteins is known to mediate membrane attachment and to influence subcellular sorting. Here, we report that acylation can stabilize secondary structure. Circular dichroism spectroscopy showed that N‐terminal attachment of acyl chains decreases the ability of an intrinsically flexible hydrophobic model peptide to refold from an α‐helical state to β‐sheet in response to changing solvent conditions. Acylation also stabilized the membrane‐embedded α‐helix. This increase of global helix stability did not result from decreased local conformational dynamics of the helix backbone as assessed by deuterium/hydrogen‐exchange experiments. We concluded that acylation can stabilize the structure of intrinsically dynamic helices and may thus prevent misfolding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号