首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Understanding the complex relationship between amino acid sequence and protein behaviors, such as folding and self‐association, is a major goal of protein research. In the present work, we examined the effects of deleting a C‐terminal residue on the intrinsic properties of an amphapathic α‐helix of mastoparan‐B (MP‐B), an antimicrobial peptide with the sequence LKLKSIVSWAKKVL‐NH2. We used circular dichroism and nuclear magnetic resonance to demonstrate that the peptide MP‐B[1‐13] displayed significant unwinding at the N‐terminal helix compared with the parent peptide of MP‐B, as the temperature increased when the residue at position 14 was deleted. Pulsed‐field gradient nuclear magnetic resonance data revealed that MP‐B forms a larger diffusion unit than MP‐B[1‐13] at all experimental temperatures and continuously dissociates as the temperature increases. In contrast, the size of the diffusion unit of MP‐B[1‐13] is almost independent of temperature. These findings suggest that deleting the flexible, hydrophobic amino acid from the C‐terminus of MP‐B is sufficient to change the intrinsic helical thermal stability and self‐association. This effect is most likely because of the modulation of enthalpic interactions and conformational freedom that are specified by this residue. Our results implicate terminal residues in the biological function of an antimicrobial peptide. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Antimicrobial peptides are important effector molecules of the innate immune system. Here, we describe that peptides derived from the heparin‐binding disulfide‐constrained loop region of human ß‐amyloid precursor protein are antimicrobial. The peptides investigated were linear and cyclic forms of NWCKRGRKQCKTHPH (NWC15) as well as the cyclic form comprising the C‐terminal hydrophobic amino acid extension FVIPY (NWCKRGRKQCKTHPHFVIPY; NWC20c). Compared with the benchmark antimicrobial peptide LL‐37, these peptides efficiently killed the Gram‐negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram‐positive Staphylococcus aureus and Bacillus subtilis, and the fungi Candida albicans and Candida parapsilosis. Correspondingly, fluorescence and electron microscopy demonstrated that the peptides caused defects in bacterial membranes. Analogously, the peptides permeabilised negatively charged liposomes. Despite their bactericidal effect, the peptides displayed very limited hemolytic activities within the concentration range investigated and exerted very small membrane permeabilising effects on human epithelial cells. The efficiency of the peptides with respect to bacterial killing and liposome membrane leakage was in the order NWC20c > NWC15c > NWC15l, which also correlated to the adsorption density for these peptides at the model lipid membrane. Thus, whereas the cationic sequence is a minimum determinant for antimicrobial action, a constrained loop‐structure as well as a hydrophobic extension further contributes to membrane permeabilising activity of this region of amyloid precursor protein. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Natural peptides with antimicrobial properties are deeply investigated as tools to fight bacteria resistant to common antibiotics. Small peptides, as those belonging to the temporin family, are very attractive because their activity can easily be tuned after small modification to their primary sequence. Structure‐activity studies previously reported by us allowed the identification of one peptide, analogue of temporin B, TB_KKG6A, showing, unlike temporin B, antimicrobial activity against both Gram‐positive and Gram‐negative bacteria. In this paper, we investigated the antimicrobial and anti‐inflammatory activity of the peptide TB_KKG6A against Pseudomonas aeruginosa. Interestingly, we found that the peptide exhibits antimicrobial activity at low concentrations, being able to downregulate the pro‐inflammatory chemokines and cytokines interleukin (IL)‐8, IL‐1β, IL‐6 and tumor necrosis factor‐α produced downstream infected human bronchial epithelial cells. Experiments were carried out also with temporin B, which was found to show pro‐inflammatory activity. Details on the interaction between TB_KKG6A and the P. aeruginosa LPS were obtained by circular dichroism and fluorescence studies. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Self‐assembling peptides are considered a good biological scaffold for the repair of injured nervous system. In order to set up a stable system to produce the peptides at low cost, we used a gene recombinant expression method. The sequence of the peptide was devised to facilitate neural cell attachment and growth. The nucleotide sequence of the self‐assembling peptide was designed, artificially synthesized, and inserted into the fusion protein vector pTYB2. After being transformed and expressed in Escherichia coli BL‐21 (DE3) by means of the fusion protein, the soluble 16‐residue peptide (named RAE16) was obtained by one‐step chitin affinity chromatography. During cell culture, bone marrow stromal cells were fully embedded in the 3D environment of the peptide scaffolds. The MTT (3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide) test indicated that bone marrow stromal cells cultured in RAE16 had the highest survival rate with the absorbance value of 0.7 at 7 days. Moreover, the cortical neural axons in the RAE16 group were longer (118.36 ± 7.04 μm) than in the other groups (p < 0.01). The recombinant peptide nanofiber scaffolds we designed provide a promising cell culture system for general molecular and cell biology studies and are useful as well for neural regeneration studies.  相似文献   

5.
XPF‐St7 (GLLSNVAGLLKQFAKGGVNAVLNPK) is an antimicrobial peptide isolated from Silurana tropicalis. We developed an α‐helical segment of XPF‐St7 termed as XPF2. Using the XPF2 as a framework, we increased the positive net charge of XPF2 by amino acid substitutions, and thus obtained two novel antimicrobial peptides XPF4 and XPF6. These were each fused with an ubiquitin tag and successfully expressed in Escherichia coli. This ubiquitin fusion system may present a viable alternative for industrial production of antimicrobial peptides. XPF4 and XPF6 showed much better overall antimicrobial activity against both Gram‐negative and Gram‐positive bacteria than XPF2. The therapeutic index of XPF4 and XPF6 was 5.6‐fold and 6.7‐fold of XPF2, respectively. Bacterial cell membrane permeabilization and genomic DNA interaction assays were utilized to explore the mechanism of action of XPF serial peptides. The results revealed that the target of these antimicrobial peptides was the bacterial cytoplasmic membrane. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
pVEC is a cell‐penetrating peptide derived from the murine vascular endothelial‐cadherin protein. To evaluate the potential of pVEC as antimicrobial peptide (AMP), we synthesized pVEC and its analogs with Trp and Arg/Lys substitution, and their antimicrobial and lipopolysaccharide (LPS)‐neutralizing activities were investigated. pVEC and its analogs displayed a potent antimicrobial activity (minimal inhibitory concentration: 4–16 μM) against Gram‐positive and Gram‐negative bacteria but no or less hemolytic activity (less than 10% hemolysis) even at a concentration of 200 μM. These peptides induced a near‐complete membrane depolarization (more than 80%) at 4 μM against Staphylococcus aureus and a significant dye leakage (35–70%) from bacterial membrane‐mimicking liposome at a concentration as low as 1 μM. The fluorescence profiles of pVEC and its analogs in dye leakage from liposome and membrane depolarization were similar to those of a frog‐derived AMP, magainin 2. These results suggest that pVEC and its analogs kill bacteria by forming a pore or ion channel in the cytoplasmic membrane. pVEC and its analogs significantly inhibited nitric oxide production or tumor necrosis factor‐α release in LPS‐stimulated mouse macrophage RAW264.7 cells at 10 to 50 μM, in which RAW264.7 were not damaged. Taken together, our results suggest that pVEC and its analogs with potent antimicrobial and LPS‐neutralizing activities can serve as AMPs for the treatment of microbial infection and sepsis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Recombinant protein expression and purification remains a central need for biotechnology. Herein, the authors report a streamlined protein and peptide purification strategy using short self‐assembling peptides and a C‐terminal cleavage intein. In this strategy, the fusion protein is first expressed as an aggregate induced by the self‐assembling peptide. Upon simple separation, the target protein or peptide with an authentic N‐terminus is then released in the solution by intein‐mediated cleavage. Different combinations of four self‐assembling peptides (ELK16, L6KD, FK and FR) with three inteins (Sce VMA, Mtu ΔI‐CM and Ssp DnaB) were explored. One protein and two peptides were used as model polypeptides to test the strategy. The intein Mtu ΔI‐CM, which has pH‐shift inducible cleavage, was found to work well with three self‐assembling peptides (L6KD, FR, FK). Using this intein gave a yield of protein or peptide comparable with that from other more established strategies, such as the Trx‐strategy, but in a simpler and more economical way. This strategy provides a simple and efficient method by which to prepare proteins and peptides with an authentic N‐terminus, which is especially effective for peptides of 30‐100 amino acids in length that are typically unstable and susceptible to degradation in Escherichia coli.  相似文献   

8.
Helices are important structural/recognition elements in proteins and peptides. Stability and conformational differences between helices composed of α‐ and β‐amino acids as scaffolds for mimicry of helix recognition has become a theme in medicinal chemistry. Furthermore, helices formed by β‐amino acids are experimentally more stable than those formed by α‐amino acids. This is paradoxical because the larger sizes of the hydrogen‐bonding rings required by the extra methylene groups should lead to entropic destabilization. In this study, molecular dynamics simulations using the second‐generation force field, AMOEBA (Ponder, J.W., et al., Current status of the AMOEBA polarizable force field. J Phys Chem B, 2010. 114 (8): p. 2549–64.) explored the stability and hydrogen‐bonding patterns of capped oligo‐β‐alanine, oligoalanine, and oligoglycine dodecamers in water. The MD simulations showed that oligo‐β‐alanine has strong acceptor+2 hydrogen bonds, but surprisingly did not contain a large content of 312‐helical structures, possibly due to the sparse distribution of the 312‐helical structure and other structures with acceptor+2 hydrogen bonds. On the other hand, despite its backbone flexibility, the β‐alanine dodecamer had more stable and persistent <3.0 Å hydrogen bonds. Its structure was dominated more by multicentered hydrogen bonds than either oligoglycine or oligoalanine helices. The 31 (PII) helical structure, prevalent in oligoglycine and oligoalanine, does not appear to be stable in oligo‐β‐alanine indicating its competition with other structures (stacking structure as indicated by MD analyses). These differences are among the factors that shape helical structural preferences and the relative stabilities of these three oligopeptides. Proteins 2014; 82:3043–3061. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
The present work describes the synthesis and characterization of α/γ hybrid peptides, Boc‐Phe‐γ4‐Phe‐Val‐OMe, P1 ; Boc‐Ala‐γ4‐Phe‐Val‐OMe, P2 ; and Boc‐Leu‐γ4‐Phe‐Val‐OMe, P3 together with the formation of self‐assembled structures formed by these hybrid peptides in dimethyl sulfoxide (DMSO)/water (1:1). The self‐assembled structures were characterized by infrared (IR) spectroscopy, circular dichroism (CD), and scanning electron microscopy (SEM). Further, α/γ hybrid peptide self‐assembled structures were evaluated for antibacterial properties. Among all, the self‐assembled peptide P1 exhibited the antimicrobial activity against Escherichia coli and Klebsiella pneumoniae, while self‐assembled peptide P3 inhibited the biofilms of Salmonella typhimurium and Pseudomonas aeruginosa. In this study, we have shown the significance of self‐assembled structures formed from completely hydrophobic α/γ hybrid peptides in exploring the antibacterial properties together with biofilm inhibition.  相似文献   

10.
The overuse of antibiotics has resulted in the emergence of antibiotic‐resistant bacteria, which presents an urgent need for new antimicrobial agents. At present, antimicrobial peptides have attracted a great deal of attention from researchers. However, antimicrobial peptides often affect a broad range of microorganisms, including the normal flora in a host organism. In the present study, we designed a novel hybrid antimicrobial peptide, expressed the hybrid peptide, and studied its specific target. The hybrid peptide, named T‐catesbeianin‐1, which includes the FyuA‐binding domain of pesticin and the peptide catesbeianin‐1, was designed and expressed in Pichia pastoris X‐33. Then, we determined the antimicrobial activity, cytotoxicity, and specific target of the peptide. T‐catesbeianin‐1 has strong antimicrobial activity and binds to FyuA to inhibit or kill Escherichia coli present in clinical specimens and mixed‐species culture. In summary, these findings suggested that T‐catesbeianin‐1 might be promising and specific antibiotic agent for therapeutic application against fyuA+ E. coli.  相似文献   

11.
The defensin‐like antimicrobial peptides have been characterized from various other arthropods including insects, scorpions, and ticks. But no natural spider defensin‐like antimicrobial peptides have ever been isolated from spiders, except couple of cDNA and DNA sequences of five spider species revealed by previous genomic study. In this work, a defensin‐like antimicrobial peptide named Oh‐defensin was purified and characterized from the venoms of the spider, Ornithoctonus hainana. Oh‐defensin is composed of 52 amino acid (aa) residues including six Cys residues that possibly form three disulfide bridges. Its aa sequence is MLCKLSMFGAVLGV PACAIDCLPMGKTGGSCEGGVCGCRKLTFKILWDKKFG. By BLAST search, Oh‐defensin showed significant sequence similarity to other arthropod antimicrobial peptides of the defensin family. Oh‐defensin exerted potent antimicrobial activities against tested microorganisms including Gram‐positive bacteria, Gram‐negative bacteria, and fungi. The cDNA encoding Oh‐defensin precursor was also cloned from the cDNA library of O. hainana. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Self‐assembly of PAs composed of palmitic acid and several repeated heptad peptide sequences, C15H31CO‐(IEEYTKK)n‐NH2 (n = 1–4, represented by PA1–PA4), was investigated systematically. The secondary structures of the PAs were characterized by CD. PA3 and PA4 (n = 3 and 4, respectively) showed an α‐helical structure, whereas PA1 and PA2 (n = 1 and 2, respectively) did not display an α‐helical conformations under the tested conditions. The morphology of the self‐assembled peptides in aqueous medium was studied by transmission electron microscopy. As the number of heptad repeats in the PAs increased, the nanostructure of the self‐assembled peptides changed from nanofibers to nanovesicles. Changes of the secondary structures and the self‐assembly morphologies of PA3 and PA4 in aqueous medium with various cations were also studied. The critical micelle concentrations were determined using a pyrene fluorescence probe. In conclusion, this method may be used to design new peptide nanomaterials. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
The antimicrobial peptide fowlicidin‐2 identified in chicken is a member of the cathelicidins family. The mature fowlicidin‐2 possesses high antibacterial efficacy and lipopolysaccharide (LPS) neutralizing activity, and also represents an excellent candidate as an antimicrobial agent. In the present study, the recombinant fowlicidin‐2 was successfully produced by Escherichia coli (E. coli) recombinant expression system. The gene encoding fowlicidin‐2 with the codon preference of E. coli was designed through codon optimization and synthesized in vitro. The gene was then ligated into the plasmid pET‐32a(+), which features fusion protein thioredoxin at the N‐terminal. The recombinant plasmid was transformed into E. coli BL21(DE3) and cultured in Luria‐Bertani (LB) medium. After isopropyl‐β‐D‐thiogalactopyranoside (IPTG) induction, the fowlicidin‐2 fusion protein was successfully expressed as inclusion bodies. The inclusion bodies were dissolved and successfully released the peptide in 70% formic acid solution containing cyanogen bromide (CNBr) in a single step. After purification by reverse‐phase high‐performance liquid chromatography (RP‐HPLC), ~6.0 mg of fowlicidin‐2 with purity more than 97% was obtained from 1 litre of bacteria culture. The recombinant peptide exhibited high antibacterial activity against the Gram‐positive and Gram‐negative bacteria, and even drug‐resistant strains. This system could be used to rapidly and efficiently produce milligram quantities of a battery of recombinant antimicrobial peptides as well as for large‐scale production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:369–374, 2015  相似文献   

14.
Antimicrobial‐peptide‐based therapies could represent a reliable alternative to overcome antibiotic resistance, as they offer potential advantages such as rapid microbicidal activity and multiple activities against a broad spectrum of bacterial pathogens. Three synthetic antimicrobial peptides (AMPs), AMP72, AMP126, and also AMP2041, designed by using ad hoc screening software developed in house, were synthesized and tested against nine reference strains. The peptides showed a partial β‐sheet structure in 10‐mM phosphate buffer. Low cytolytic activity towards both human cell lines (epithelial, endothelial, and fibroblast) and sheep erythrocytes was observed for all peptides. The antimicrobial activity was dose dependent with a minimum bactericidal concentration (MBC) ranging from 0.17 to 10.12 μM (0.4–18.5 µg/ml) for Gram‐negative and 0.94 to 20.65 μM (1.72‐46.5 µg/ml) for Gram‐positive bacteria. Interestingly, in high‐salt environment, the antibacterial activity was generally maintained for Gram‐negative bacteria. All peptides achieved complete bacterial killing in 20 min or less against Gram‐negative bacteria. A linear time‐dependent membrane permeabilization was observed for the tested peptides at 12.5 µg/ml. In a medium containing Mg2+ and Ca2+, the peptide combination with EDTA restores the antimicrobial activity particularly for AMP2041. Moreover, in combination with anti‐infective agents (quinolones or aminoglycosides) known to bind divalent cation, AMP126 and AMP2041 showed additive activity in comparison with colistin. Our results suggest the following: (i) there is excellent activity against Gram‐negative bacteria, (ii) there is low cytolytic activity, (iii) the presence of a chelating agent restores the antimicrobial activity in a medium containing Mg2+ and Ca2+, and (iv) the MBC value of the combination AMPs–conventional antibiotics was lower than the MBC of single agents alone. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
IsCT1‐NH2 is a cationic antimicrobial peptide isolated from the venom of the scorpion Opisthacanthus madagascariensis that has a tendency to form an α‐helical structure and shows potent antimicrobial activity and also inopportunely shows hemolytic effects. In this study, five IsCT1 (ILGKIWEGIKSLF)‐based analogs with amino acid modifications at positions 1, 3, 5, or 8 and one analog with three simultaneous substitutions at the 1, 5, and 8 positions were designed. The net charge of each analog was between +2 and +3. The peptides obtained were characterized by mass spectrometry and analyzed by circular dichroism for their structure in different media. Studies of antimicrobial activity, hemolytic activity, and stability against proteases were also carried out. Peptides with a substitution at position 3 or 5 ([L]3‐IsCT1‐NH2, [K]3‐IsCT1‐NH2, or [F]5‐IsCT1‐NH2) showed no significant change in an activity relative to IsCT1‐NH2. The addition of a proline residue at position 8 ([P]8‐IsCT1‐NH2) reduced the hemolytic activity as well as the antimicrobial activity (MIC ranging 3.13‐50 μmol L?1), and the addition of a tryptophan residue at position 1 ([W]1‐IsCT1‐NH2) increased the hemolytic activity (MHC = 1.56 μmol L?1) without an improvement in antimicrobial activity. The analog [A]1[F]5[K]8‐IsCT1‐NH2, which carries three simultaneous modifications, presented increasing or equivalent values in antimicrobial activity (MIC approximately 0.38 and 12.5 μmol L?1) with a reduction in hemolytic activity. In addition, this analog presented the best resistance against proteases. This kind of strategy can find functional hotspots in peptide molecules in an attempt to generate novel potent peptide antibiotics.  相似文献   

16.
The emergence of strains of multidrug‐resistant Gram‐negative bacteria mandates a search for new types of antimicrobial agents. Alyteserin‐2a (ILGKLLSTAAGLLSNL.NH2) is a cationic, α‐helical peptide, first isolated from skin secretions of the midwife toad, Alytes obstetricans, which displays relatively weak antimicrobial and haemolytic activities. Increasing the cationicity of alyteserin‐2a while maintaining amphipathicity by the substitution Gly11→ Lys enhanced the potency against both Gram‐negative and Gram‐positive bacteria by between fourfold and 16‐fold but concomitantly increased cytotoxic activity against human erythrocytes by sixfold (mean concentration of peptide producing 50% cell death; LC50 = 24 µm ). Antimicrobial potency was increased further by the additional substitution Ser7→Lys, but the resulting analogue remained cytotoxic to erythrocytes (LC50 = 38 µm ). However, the peptide containing d ‐lysine at positions 7 and 11 showed high potency against a range of Gram‐negative bacteria, including multidrug‐resistant strains of Acinetobacter baumannii and Stenotrophomonas maltophilia (minimum inhibitory concentration = 8 µm ) but appreciably lower haemolytic activity (LC50 = 185 µm ) and cytotoxicity against A549 human alveolar basal epithelial cells (LC50 = 65 µm ). The analogue shows potential for treatment of nosocomial pulmonary infections caused by bacteria that have developed resistance to commonly used antibiotics. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Peptide‐based hydrogels are of interest for their potential use in regenerative medicine. Combining these hydrogels with materials that may enhance their physical and biological properties, such as glycosaminoglycans, has the potential to extend their range of biomedical applications, for example in the repair of early cartilage degeneration. The aim of this study was to combine three self‐assembling peptides (P11‐4, P11‐8, and P11‐12) with chondroitin sulphate at two molar ratios of 1:16 and 1:64 in 130 and 230 mM Na+ salt concentrations. The study investigates the effects of mixing self‐assembling peptide and glycosaminoglycan on the physical and mechanical properties at 37°C. Peptide alone, chondroitin sulphate alone, and peptide in combination with chondroitin sulphate were analysed using Fourier transform infrared spectroscopy to determine the β‐sheet percentage, transmission electron microscopy to determine the fibril morphology, and rheology to determine the elastic and viscous modulus of the materials. All of the variables (peptide, salt concentration, and chondroitin sulphate molar ratio) had an effect on the mechanical properties, β‐sheet formation, and fibril morphology of the hydrogels. P11‐4 and P11‐8‐chondroitin sulphate mixtures, at both molar ratios, were shown to have a high β‐sheet percentage, dense entangled fibrillar networks, as well as high mechanical stiffness in both (130 and 230 mM) Na+ salt solutions when compared with the P11‐12/chondroitin sulphate mixtures. These peptide/chondroitin sulphate hydrogels show promise for biomedical applications in glycosaminoglycan depleted tissues.  相似文献   

18.
New bioengineering approaches are required for development of more active and less toxic antimicrobial peptides. In this study we used β‐hairpin antimicrobial peptide arenicin‐1 as a template for design of more potent antimicrobials. In particular, six shortened 17‐residue analogs were obtained by recombinant expression in Escherichia coli. Besides, we have introduced the second disulfide bridge by analogy with the structure of tachyplesins. As a result, a number of analogs with enhanced activity and cell selectivity were developed. In comparison with arenicin‐1, which acts on cell membranes with low selectivity, the most potent and promising its analog termed ALP1 possessed two‐fold higher antibacterial activity and did not affect viability of mammalian cells at concentration up to 50 μM. The therapeutic index of ALP1 against both Gram‐positive and Gram‐negative bacteria was significantly increased compared with that of arenicin‐1 while the mechanism of action remained the same. Like arenicin‐1, the analog rapidly disrupt membranes of both stationary and exponential phase bacterial cells and effectively kills multidrug‐resistant Gram‐negative bacteria. Furthermore, ALP1 was shown to bind DNA in vitro at a ratio of 1:1 (w/w). The circular dichroism spectra demonstrated that secondary structures of the shortened analogs were similar to that of arenicin‐1 in water solution, but significantly differed in membrane‐mimicking environments. This work shows that a strand length is one of the key parameters affecting cell selectivity of β‐hairpin antimicrobial peptides. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
20.
β‐Amino acids containing α,β‐hybrid peptides show great potential as peptidomimetics. In this paper, we describe the synthesis and affinity to μ‐opioid and δ‐opioid receptors of α,β‐hybrids, analogs of the tetrapeptide Tyr‐ d ‐Ala‐Phe‐Phe‐NH2 (TAPP). Each amino acid was replaced with an l ‐ or d ‐β3h‐amino acid. All α,β‐hybrids of TAPP analogs were synthesized in solution and tested for affinity to μ‐opioid and δ‐opioid receptors. The analog Tyr‐β3h‐ d ‐Ala‐Phe‐PheNH2 was found to be as active as the native tetrapeptide. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号