首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Adult mice communicate by emitting ultrasonic vocalizations (USVs) during the appetitive phases of sexual behavior. However, little is known about the genes important in controlling call production. Here, we study the induction and regulation of USVs in muscarinic and dopaminergic receptor knockout (KO) mice as well as wild-type controls during sexual behavior. Female mouse urine, but not female rat or human urine, induced USVs in male mice, whereas male urine did not induce USVs in females. Direct contact of males with females is required for eliciting high level of USVs in males. USVs (25 to120 kHz) were emitted only by males, suggesting positive state; however human-audible squeaks were produced only by females, implying negative state during male-female pairing. USVs were divided into flat and frequency-modulated calls. Male USVs often changed from continuous to broken frequency-modulated calls after initiation of mounting. In M2 KO mice, USVs were lost in about 70-80% of the mice, correlating with a loss of sexual interaction. In M5 KO mice, mean USVs were reduced by almost 80% even though sexual interaction was vigorous. In D2 KOs, the duration of USVs was extended by 20%. In M4 KOs, no significant differences were observed. Amphetamine dose-dependently induced USVs in wild-type males (most at 0.5 mg/kg i.p.), but did not elicit USVs in M5 KO or female mice. These studies suggest that M2 and M5 muscarinic receptors are needed for male USV production during male-female interactions, likely via their roles in dopamine activation. These findings are important for the understanding of the neural substrates for positive affect.  相似文献   

2.
In humans, chronic stressors have long been linked to cardiac morbidity. Altered serotonergic neurotransmission may represent a crucial pathophysiological mechanism mediating stress-induced cardiac disturbances. Here, we evaluated the physiological role of serotonin (5-HT) 1A receptors in the autonomic regulation of cardiac function under acute and chronic stress conditions, using 5-HT(1A) receptor knockout mice (KOs). When exposed to acute stressors, KO mice displayed a higher tachycardic stress response and a larger reduction of vagal modulation of heart rate than wild type counterparts (WTs). During a protocol of chronic psychosocial stress, 6 out of 22 (27%) KOs died from cardiac arrest. Close to death, they displayed a severe bradycardia, a lengthening of cardiac interval (P wave, PQ and QRS) duration, a notched QRS complex and a profound hypothermia. In the same period, the remaining knockouts exhibited higher values of heart rate than WTs during both light and dark phases of the diurnal rhythm. At sacrifice, KO mice showed a larger expression of cardiac muscarinic receptors (M2), whereas they did not differ for gross cardiac anatomy and the amount of myocardial fibrosis compared to WTs. This study demonstrates that chronic genetic loss of 5-HT(1A) receptors is detrimental for cardiovascular health, by intensifying acute, stress-induced heart rate rises and increasing the susceptibility to sudden cardiac death in mice undergoing chronic stress.  相似文献   

3.
Blood pressure increases with age, and dysfunction of the dopamine D3 receptor has been implicated in the pathogenesis of hypertension. To evaluate the role of the D3 receptor in aging-related hypertension, we assessed cardiac structure and function in differently aged (2 mo, 1 yr, 2 yr) wild type (WT) and young (2 mo) D3 receptor knockout mice (D3KO). In WT, systolic and diastolic blood pressures and rate-pressure product (RPP) significantly increased with age, while heart rate significantly decreased. Blood pressure values, heart rate and RPP of young D3KO were significantly elevated over age-matched WT, but similar to those of the 2 yr old WT. Echocardiography revealed that the functional measurements of ejection fraction and fractional shortening decreased significantly with age in WT and that they were significantly smaller in D3KO compared to young WT. Despite this functional change however, cardiac morphology remained similar between the age-matched WT and D3KO. Additional morphometric analyses confirmed an aging-related increase in left ventricle (LV) and myocyte cross-sectional areas in WT, but found no difference between age-matched young WT and D3KO. In contrast, interstitial fibrosis, which increased with age in WT, was significantly elevated in the D3KO over age-matched WT, and similar to 2 yr old WT. Western analyses of myocardial homogenates revealed significantly increased levels of pro- and mature collagen type I in young D3KO. Column zymography revealed that activities of myocardial MMP-2 and MMP-9 increased with age in WTs, but in D3KO, only MMP-9 activity was significantly increased over age-matched WTs. Our data provide evidence that the dopamine D3 receptor has a critical role in the emergence of aging-related cardiac fibrosis, remodeling, and dysfunction.  相似文献   

4.
Evidence suggests that the kappa-opioid receptor (KOP-r) system plays an important role in cocaine addiction. Indeed, cocaine induces endogenous KOP activity, which is a mechanism that opposes alterations in behaviour and brain function resulting from repeated cocaine use. In this study, we have examined the influence of deletion of preprodynorphin (ppDYN) on cocaine-induced behavioural effects and on hypothalamic-pituitary-adrenal axis activity. Furthermore, we have measured mu-opioid receptor (MOP-r) agonist-stimulated [(35)S]GTPgammaS, dopamine D(1), D(2) receptor and dopamine transporter (DAT) binding. Male wild-type (WT) and ppDYN knockout (KO) mice were injected with saline or cocaine (45 mg/kg/day) in a 'binge' administration paradigm for 14 days. Chronic cocaine produced an enhancement of locomotor sensitisation in KO. No genotype effect was found on stereotypy behaviour. Cocaine-enhanced MOP-r activation in WT but not in KO. There was an overall decrease in D(2) receptor binding in cocaine-treated KO but not in WT mice. No changes were observed in D(1) and DAT binding. Cocaine increased plasma corticosterone levels in WT but not in KO. The data confirms that the endogenous KOP system inhibits dopamine neurotransmission and that ppDYN may mediate the enhancement of MOP-r activity and the activation of the hypothalamic-pituitary-adrenal axis after chronic cocaine treatment.  相似文献   

5.
Inhibitory effects of passive ethanol exposure on brain neurogenesis have been extensively documented in animal models. In contrast, a role of brain neurogenesis in ethanol self-administration has not been addressed, as yet. The aim of this study was to assess intake of, and preference for, ethanol solutions [2-16% (v/v)] in a mouse model of adult neurogenesis deficiency based on permanent knockout (KO) of cyclin D2 (Ccnd2). Wild type (WT) and Ccnd2 KO mice did not differ in 2% and 4% ethanol intake. The KO group consumed significantly more ethanol in g/kg when offered with 8% or 16% ethanol as compared with the WT controls. The WT and KO mice did not differ in 2% ethanol preference, but the KO group showed a significantly higher preference for 4-16% ethanol. Animal and human studies have suggested that the low level of response to the sedative/hypnotic effects of alcohol is genetically associated with enhanced alcohol consumption. However, in this study, there were no between-genotype differences in ethanol-induced loss of righting reflex. Previous reports have also suggested that high ethanol intake is genetically associated with the avidity for sweets and better acceptance of bitter solutions. However, the KO and WT mice consumed similar amounts of saccharin solutions and the KOs consumed less quinine (i.e. bitter) solutions as compared with the WTs. In conclusion, these results may indicate that Ccnd2 and, possibly, brain neurogenesis are involved in central regulation of ethanol intake in mice.  相似文献   

6.
Matsuda H  Li Y  Yoshikawa M 《Life sciences》2000,67(24):2921-2927
It was previously reported that escin Ib isolated from horse chestnut inhibited gastric emptying (GE) in mice, in which the capsaicin-sensitive sensory nerves (CPSN), the central nervous system and endogenous prostaglandins (PGs) were involved. In the present study, the possible involvement of dopamine and dopamine receptors in the inhibition of GE by escin Ib were investigated in mice. GE inhibition by escin Ib (25 mg/kg, p.o.) was attenuated after pretreatment with a single bolus of DL-alpha-methyl-p-tyrosine methyl ester (400 mg/kg, s.c., an inhibitor of tyrosine hydroxylase), reserpine (5 mg/kg, p.o., a catecholamine depletor), 6-hydroxydopamine (80 mg/kg, i.p., a dopamine depletor). Furthermore, pretreatment with spiperone (0.5-5 mg/kg, s.c., a dopamine2 receptor antagonist), haloperidol (0.5-10 mg/kg, s.c.) and metoclopramide (1-10 mg/kg, s.c.) (centrally acting dopamine2 receptor antagonists) attenuated the effect of escin Ib. Domperidone (0.1-5 mg/kg, s.c., a peripheral-acting dopamine2 antagonist) showed a weak attenuation, but SCH 23390 (1-5 mg/kg, s.c., a dopamine, receptor antagonist) did not. It is postulated that escin Ib inhibits GE, at least in part, mediated by CPSN, to stimulate the synthesis and/or release of dopamine, to act through central dopamine2 receptor, which in turn causes the release of PGs.  相似文献   

7.
The focus was on haloperidol (central dopamine antagonist)-stomach lesion, a longly described suitable counterpart of dopamine blocker cysteamine-duodenal lesion. In this, the contribution of blockade of central/peripheral dopamine receptors and prostaglandins synthesis, along with influence of antiulcer agents was evaluated in mice. Male NMRI Hannnover mice were sacrificed 24 h after haloperidol (25 mg/kg b.w. i.p., given alone or with saline (haloperidol+saline) (i) or in combination (ii,iii)). Supporting central dopamine predominance for haloperidol stomach lesion induction, co-administration of peripheral dopamine receptor antagonist domperidone (5 mg/kg i.p.) (haloperidol+ domperidone) (ii), or prostaglandin synthesis inhibitor indomethacin (10 mg/kg s.c.) (haloperidol+ indomethacin) (iii) did not aggravate this lesion. (i) In haloperidol+saline challenged mice the lesions were inhibited by co-administration (/kg i.p.) of a gastric pentadecapeptide BPC 157, GlyGluProProProGlyLysProAlaAspAspAlaGlyLeuVal, M.W. 1419 (10 microg, 10 ng, 10 pg, but not 1 pg, 100 fg, 10 fg), bromocriptine (10 mg), omeprazole (10 mg, 100 mg, but not 1 mg). Atropine (10, 100, 200 mg), pirenzepine (10, 100, 200 mg), misoprostol (10, 100, 200 microg), pantoprazole (1, 10, 100 mg), lansoprazole (0.1, 1, 10 mg), cimetidine (10, 100, 200 mg) and ranitidine (10, 100, 200 mg) were not effective. (ii) Dopamine peripheral blockade influence: in haloperidol+domperidone mice, previously effective bromocriptine, pentadecapeptide BPC 157 (10 microg) or omeprazole (10 mg) did not attenuate stomach lesions. (iii) Prostaglandins synthesis blockade effect: in haloperidol+indomethacin mice, previously effective agents, bromocriptine or omeprazole were not active, while BPC 157 effect was only lessened.  相似文献   

8.
Social behavior involves both the recognition and production of social cues. Mice with selective deletion (knockout) of either the gene for oxytocin (OT) or genes for the estrogen receptor (ER) -α or -β display impaired social recognition. In this study we demonstrate that these gene knockout mice also provide discriminably different social stimuli in behavioral assays. In an odor choice test, which is a measure of social interest and discrimination, outbred female Swiss-Webster mice discriminated the urine odors of male knockouts (KO: OTKO, αERKO, βERKO) from the odors of their wildtype littermates (WT: OTWT, αERWT, βERWT). Females showed marked initial choices of the urine odors of OTWT and βERWT males over those of OTKO and βERKO males, and αERKO males over αERWT males. The odors of OTKO and βERKO males also induced aversive, analgesic responses, with the odors of WTs having no significant effects. Odors of both the αERWT and αERKO males induced aversive, analgesic responses, with the odors of the WT inducing significantly greater analgesia. The odors of restraint stressed WT and KO males also elicited analgesia with, again, females displaying significantly greater responses to the odors of stressed OTKO and βERKO males than their WTs, and significantly lower analgesia to the odors of stressed αERKO than αERWT males. These findings show that the KO mice are discriminated from their WTs on the basis of odor and that the various KOs differ in the relative attractiveness/aversiveness of their odors. Therefore, in behavioral assays one causal route by which gene inactivation alters the social behavior of knockout mice may be mediated through the partners' modified responses to their odors.  相似文献   

9.
The effect of three--structurally different--groups of compounds was compared against gastric mucosal damages induced by ethanol or prostaglandin (PG) synthesis inhibitors, as well as against carrageenan-induced inflammation. All the compounds studied--SH-compounds (cysteamine, 2,3-dimercaptosuccinic acid, D,L-penicillamine), SH-blocking N-ethylmaleimide (NEM) and morphine-exerted dose-dependent inhibition on carrageenan edema test and against ethanol-induced gastric damage. Mucosal lesions induced by PG synthesis inhibitors (indomethacin 20 mg/kg, naproxen 75 mg/kg, piroxicam 60 mg/kg) were inhibited by drugs studied when the compounds were given before the damaging agents. However, when the drugs were injected 1 h after the inhibitors of PG synthesis opposite actions were observed; SH-compounds exerted protective, while NEM (2 mg/kg p.o.) and morphine (5 mg/kg p.o.) aggravating action. The results suggest that: 1. SH-compounds might have therapeutic importance in the treatment of gastric damage induced by prostaglandin synthesis inhibitors. 2. Reconsideration of the use of the term "cytoprotection" is necessary, since "cytoprotective" agents may aggravate mucosal damage in other ulcer model.  相似文献   

10.
《Journal of Physiology》1997,91(3-5):127-130
It is known that cysteamine's ulcerogenic effect depends, among others, on a depletion of somatostatin (SRIH). Since growth hormone (GH) affects the release of hypothalamic SRIH, we have studied the influence of GH and the GH-SRIH interaction on the severity of gastric mucosa lesions induced by cysteamine. Female rats of the Sprague-Dawley strain were pretreated with GH (1 mg/kg) and subjected to cysteamine-induced gastric lesions. We found that these animals showed an increased mortality and severity of gastric lesions. Pretreatment with SRIH (25 or 50 μg/kg) was followed by a decrease in mortality and of incidence and severity of gastric mucosa lesions as compared to those found in control animals pretreated with saline. The dose of 5μg/kg was ineffective in this respect. The combined administration of GH and SRIH revealed that cysteamine ulcerogenic action remained unchanged. It is possible that high levels of plasma GH, as induced by exogenous GH administration, may decrease the release of gastro-intestinal SRIH and this in turn may potentiate the ulcerogenic activity of cysteamine.  相似文献   

11.

Background

DYT11 myoclonus-dystonia (M-D) syndrome is a neurological movement disorder characterized by myoclonic jerks and dystonic postures or movement that can be alleviated by alcohol. It is caused by mutations in SGCE encoding ε-sarcoglycan (ε-SG); the mouse homolog of this gene is Sgce. Paternally-inherited Sgce heterozygous knockout (Sgce KO) mice exhibit myoclonus, motor impairment and anxiety- and depression-like behaviors, modeling several clinical symptoms observed in DYT11 M-D patients. The behavioral deficits are accompanied by abnormally high levels of dopamine and its metabolites in the striatum of Sgce KO mice. Neuroimaging studies of DYT11 M-D patients show reduced dopamine D2 receptor (D2R) availability, although the possibility of increased endogenous dopamine, and consequently, competitive D2R occupancy cannot be ruled out.

Methodology/Principal Findings

The protein levels of striatal D2R, dopamine transporter (DAT), and dopamine D1 receptor (D1R) in Sgce KO mice were analyzed by Western blot. The striatal dopamine release after amphetamine injection in Sgce KO mice were analyzed by microdialysis in vivo. The striatal D2R was significantly decreased in Sgce KO mice without altering DAT and D1R. Sgce KO mice also exhibited a significant increase of dopamine release after amphetamine injection in comparison to wild-type (WT) littermates.

Conclusion/Significance

The results suggest ε-SG may have a role in the regulation of D2R expression. The loss of ε-SG results in decreased striatal D2R, and subsequently leads to increased discharge of dopamine which could contribute to the behavioral impairment observed in DYT11 dystonia patients and in Sgce KO mice. The results suggest that reduction of striatal D2R and enhanced striatal dopamine release may contribute to the pathophysiology of DYT11 M-D patients.  相似文献   

12.
γ-Aminobutyric acid 1 (GAT-1) is the most copiously expressed GABA transporter; we studied its role in phasic and tonic inhibition in the neocortex using GAT-1 knockout (KO) mice. Immunoblotting and immunocytochemical studies showed that GAT-2 and GAT-3 levels in KOs were unchanged and that GAT-3 was not redistributed in KOs. Moreover, the expression of GAD65/67 was increased, whereas that of GABA or VGAT was unchanged. Microdialysis studies showed that in KOs spontaneous extracellular release of GABA and glutamate was comparable in WT and KO mice, whereas KCl-evoked output of GABA, but not of glutamate, was significantly increased in KOs. Recordings from layer II/III pyramids revealed a significant increase in GABAAR-mediated tonic conductance in KO mice. The frequency, amplitude and kinetics of spontaneous inhibitory post-synaptic currents (IPSCs) were unchanged, whereas the decay time of evoked IPSCs was significantly prolonged in KO mice. In KO mice, high frequency stimulation of GABAergic terminals induced large GABAAR-mediated inward currents associated with a reduction in amplitude and decay time of IPSCs evoked immediately after the train. The recovery process was slower in KO than in WT mice. These studies show that in the cerebral cortex of GAT-1 KO mice GAT-3 is not redistributed and GADs are adaptively changed and indicate that GAT-1 has a prominent role in both tonic and phasic GABAAR-mediated inhibition, in particular during sustained neuronal activity.  相似文献   

13.
A role of IL-18 in the induction of gastric lesions by water immersion and restraint stress (WRS) was investigated. When wild-type BALB/c mice were exposed to WRS, levels of IL-18 in the serum and stomach increased rapidly with the development of acute gastric lesions. In IL-18-deficient mice [IL-18 knockout (KO) mice] similarly exposed to WRS, no gastric lesions were observed, but the administration of IL-18 before exposure to WRS resulted in the induction of WRS-induced gastric lesions. WRS enhanced gastric histidine decarboxylase (HDC) activity with concomitant increases in gastric histamine content. In IL-18 KO mice, the WRS-induced elevation of gastric HDC activity and histamine levels was much less than that in wild-type mice, but it was augmented by prior administration of IL-18. Treatment of wild-type mice with cimetidine, a histamine H2 receptor antagonist, inhibited the formation of WRS-induced gastric lesions with no effect on the induction of gastric IL-18 by WRS. Levels of corticosterone, one of the stress indicators, were lower in IL-18 KO mice than in wild-type mice. The glucocorticoid receptor antagonist mifepristone had no effect on gastric IL-18 and histamine levels but aggravated the stress-induced gastric lesions, indicating that corticosterone was not involved in the IL-18-mediated formation of stress-induced gastric lesions. These results indicate that IL-18 is involved in the induction of gastric lesions by WRS through augmentation of HDC activity and production of histamine in the stomach.  相似文献   

14.
《Journal of Physiology》1996,90(2):63-73
The effect of cysteamine on gastric blood flow and on the indomethacin-induced gastric mucosal damage was studied. In anesthetized rats, cysteamine (280 mg/kg) given subcutaneously (sc) decreased gastric blood flow measured by the laser Doppler flowmetry technique. In contrast, cysteamine (1–60 mg/ml) applied topically to the serosal surface of the stomach evoked a concentration-dependent and long-lasting increase in gastric blood flow. At 60 mg/ml, cysteamine increased blood flow by 166.8 ± 26.1% of predrug control value. Pretreatment with indomethacin (20 mg/kg, sc), intravenous (iv) atropine (1 mg/kg), propranolol (1 mg/kg, iv), combined H1 and H2-blockade or bilateral cervical vagotomy alone or combined with iv guanethidine (8 mg/kg), or pretreatment with the capsaicin analogue resiniferatoxin did not reduce the vasodilator response to cysteamine. The vasodilator response to topical capsaicin, was not reduced after sc cysteamine (280 mg/kg) pretreatment. In conscious pylorus-ligated rats, sc cysteamine (100 or 280 mg/kg) given simultaneously with indomethacin inhibited gastric acid output but had variable effects on the indomethacin-induced gastric mucosal damage. Cysteamine (100 or 280 mg/kg) administered sc 4 h prior to indomethacin enhanced gastric injury by sc indomethacin, but did not prevent the gastroprotective action of capsaicin. In contrast, orally administered cysteamine (60 mg/ml) reduced gastric injury induced by sc indomethacin plus intragastric HCl. These data provide the first evidence for the effect of cysteamine on gastric microcirculation in the rat and suggest a direct vasodilator effect for topical cysteamine. The microvascular effects of cysteamine are largely responsible for the different effects of this agent on experimental gastric injury.  相似文献   

15.
We have previously shown that chronic treatment with the angiotensin-converting enzyme inhibitor perindopril increased striatal dopamine levels by 2.5-fold in normal Sprague-Dawley rats, possibly via modulation of the striatal opioid or tachykinin levels. In the present study, we investigated if this effect of perindopril persists in an animal model of Parkinson's disease, the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse. C57BL/6 mice were treated with the neurotoxin (30 mg/kg/day intraperitoneally) for 4 days and then left for 3 weeks to allow the degeneration of striatal dopaminergic terminals. At this time, the mice exhibited a 40% decrease in striatal dopamine content and an accompanying 46% increase in dopamine D2 receptor levels compared with control untreated mice. The dopamine content returned to control levels, and the increase in dopamine D2 receptor levels was attenuated in mice treated with perindopril (5 mg/kg/day orally for 7 days) 2 weeks after the last dose of MPTP. When the angiotensin-converting enzyme inhibitor was administered (5 mg/kg/day for 7 days) immediately after the cessation of the MPTP treatment, there was no reversal of the effect of the neurotoxin in decreasing striatal dopamine content. Our results demonstrate that perindopril is an effective agent in increasing striatal dopamine content in an animal model of Parkinson's disease.  相似文献   

16.
Xie X  Jhaveri KA  Ding M  Hughes LF  Toth LA  Ramkumar V 《Life sciences》2007,81(13):1031-1041
The striatal dopamine D2 receptor (D2R) and adenosine A2A receptor (A2AAR) exhibit mutually antagonistic effects through physical interactions and by differential modulation of post-receptor signaling pathways. The expression of the A2AAR and the D2R is differentially regulated by nuclear factor-kappaB (NF-kappaB). In this report, we determined the role of NF-kappaB in regulation of these receptors by comparing mice deficient in the NF-kappaB p50 subunit (p50 KO) with genetically intact B6129PF2/J (F2) mice. Quantification of adenosine receptor (AR) subtypes in mouse striatum by real time PCR, immunocytochemistry and radioligand binding assays showed more A2AAR but less A1AR in p50 KO mice as compared with F2 mice. Striata from p50 KO mice also had less D2R mRNA and [(3)H]-methylspiperone binding than did striata from F2 mice. G(alphaolf) and G(alphas) proteins, which are transducers of A2AAR signals, were also present at a higher level in striata from the p50 KO versus F2 mice. In contrast, the G(alphai1) protein, which transduces signals from the A1AR and D2R, was significantly reduced in striata from p50 KO mice. Behaviorally, p50 KO mice exhibited increased locomotor activity relative to that of F2 mice after caffeine ingestion. These data are consistent with a role for the NF-kappaB in the regulation of A1AR, A2AAR, D2R and possibly their coupling G proteins in the striatum. Dysregulation of these receptors in the striata of p50 KO mice might sensitize these animals to locomotor stimulatory action of caffeine.  相似文献   

17.
The present study attempts to demonstrate D1/D2 dopamine (DA) receptor interactions during stereotyped behaviour in mice. B-HT 920 [2-amino-6-allyl-5, 6, 7, 8-tetrahydro-4H-thiazolo-(4, 5-d)-azepine] (0.05-1.0 mg/kg), a selective D2-DA agonist, induced mild per se stereotypy consisting mainly of sniffing and rearing responses. Apomorphine, a mixed D1/D2 agonist, also produced typical stereotypic response in mice. The stereotypic response of B-HT 920 was blocked by D2-DA antagonist, sulpiride (50 mg/kg). The effect of apomorphine was not influenced by co-treatment with SKF 38393. Simultaneous administration of B-HT 920 (0.1-0.5 mg/kg) with SKF 38393 (5 mg/kg), a selective D1-DA agonist, elicited dramatic increase in stereotyped behaviours in naive as well as in 24 hr reserpinised (2 mg/kg) mice. Co-treatment of apomorphine (0.5 mg/kg) with B-HT 920 (0.1, 0.25 mg/kg) also resulted in a clearly synergistic effect on stereotyped behaviour. These potentiated responses were reduced or blocked by haloperidol, a D2-DA antagonist. The data suggest that in presence of concomitant stimulation of D1-DA receptors. B-HT 920 exhibits full expression of postsynaptic D2-DA receptor mediated behavioural effects.  相似文献   

18.
We have crossed ERp57flx/flx mice with commercially available mice expressing villin-driven cre-recombinase. Lysates of intestinal epithelial cells were prepared from knock-out (KO) mice and littermates (LM) and used in Western blot analyses with Ab099 against the N terminus of the 1,25D3-MARRS (membrane-associated, rapid response steroid-binding) receptor: LM mice exhibited one positive band, which was absent in preparations from KO mice. Saturation analyses of cell lysates with [3H]1,25D3 revealed negligible binding in preparations from either female or male KOs. Lysates from female and male LM mice had similar affinities but different numbers of binding sites. Isolated enterocytes were tested for steroid-stimulated calcium uptake. Treatment of cells from female or male LM mice with 1,25D3 elicited enhanced calcium uptake in females and males within 5 min. Intestinal cells from KO mice exhibited a severely blunted or completely absent response to hormone. Confocal microscopy of intestinal cells revealed the presence of cell surface vitamin D receptors. However, antibodies to the vitamin D receptor failed to block 1,25D3-stimulated calcium uptake. In chick enterocytes we have found that the PKA pathway mediates calcium uptake. The time course for activation of PKA in mouse enterocytes paralleled that for enhanced calcium uptake and for LM females reached 250% of controls within 5 min, and 150% of controls in cells prepared from LM males. Enterocytes from female or male KO mice failed to exhibit steroid hormone-stimulated PKA activity, but did respond to forskolin with enhanced calcium uptake. We conclude that the 1,25D3-MARRS receptor is of central importance to steroid hormone-stimulated calcium uptake in mammalian intestinal cells.  相似文献   

19.
Adenosine A2A receptor (A2AR) antagonism attenuates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration and quinolinic acid-induced excitotoxicity in the neostriatum. As A2ARs are enriched in striatum, we investigated the effect of genetic and pharmacological A2A inactivation on striatal damage produced by the mitochondrial complex II inhibitor 3-nitropriopionic acid (3-NP). 3-NP was administered to A2AR knockout (KO) and wild-type (WT) littermate mice over 5 days. Bilateral striatal lesions were analyzed from serial brain tissue sections. Whereas all of the 3-NP-treated WT mice (C57BL/6 genetic background) had bilateral striatal lesions, only one of eight of the 3-NP-treated A2AR KO mice had detectable striatal lesions. Similar attenuation of 3-NP-induced striatal damage was observed in A2AR KO mice in a 129-Steel background. In addition, the effect of pharmacological antagonism on 3-NP-induced striatal neurotoxicity was tested by pre-treatment of C57Bl/6 mice with the A2AR antagonist 8-(3-chlorostyryl) caffeine (CSC). Although bilateral striatal lesions were observed in all mice treated either with 3-NP alone or 3-NP plus vehicle, there were no demonstrable striatal lesions in mice treated with CSC (5 mg/kg) plus 3-NP and in five of six mice treated with CSC (20 mg/kg) plus 3-NP. We conclude that both genetic and pharmacological inactivation of the A2AR attenuates striatal neurotoxicity produced by 3-NP. Since the clinical and neuropathological features of 3-NP-induced striatal damage resemble those observed in Huntington's disease, the results suggest that A2AR antagonism may be a potential therapeutic strategy in Huntington's disease patients.  相似文献   

20.
The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号