首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using genetic engineering, the Vitreoscilla (bacterial) hemoglobin gene (vgb) was integrated stably into the chromosomes of Pseudomonas aeruginosa and Burkholderia sp. strain DNT. This was done for both wild type vgb and two site-directed mutants of vgb that produce Vitreoscilla hemoglobin (VHb) with lowered oxygen affinities; in all cases functional VHb was expressed. Similar to previous results, the wild type VHb improved growth for both species and degradation of 2,4-dinitrotoluene (Burkholderia sp.) or benzoic acid (P. aeruginosa) under both normal and low aeration conditions. Both mutant vgbs enhanced these parameters compared to wild type vgb, and the improvement was seen in both species. The enhancements were generally greater at low aeration than at normal aeration. The results demonstrate the possibility that the positive effects provided by VHb may be augmented by protein engineering.  相似文献   

2.
Expression of vgb, encoding Vitreoscilla hemoglobin (VHb), in Burkholderia strain YV1 was previously shown to improve cell growth and enhance 2,4-dinitrotoluene (2,4-DNT) degradation compared with control strain DNT, especially under hypoxic conditions. In the work reported here, the ratio of 2,4-DNT degraded to oxygen uptake was approximately 5-fold larger for strain YV1 than for strain DNT. The addition of purified VHb to cytosolic fractions of strain DNT increased 2,4-DNT degradation 1.5-fold, compared with 1.1-fold for control bovine Hb, but increased the 2,4-DNT degradation 2.7-fold when added to partially purified 2,4-DNT dioxygenase, compared with 1.3-fold for bovine Hb. This suggests a direct transfer of oxygen from VHb to the oxygenase. In a bioreactor at high 2,4-DNT concentration (using 100 ml oleyl alcohol containing 2 g 2,4-DNT as the second phase) with 1.5 l culture, both strains could remove 0.8 g 2,4-DNT by 120 h; and, under the same conditions in a fed-batch reactor, the degradation increased to 1 g for strain YV1 but not for strain DNT.  相似文献   

3.
The gene (vgb) encoding Vitreoscilla (bacterial) hemoglobin (VHb) was electroporated into Gordonia amarae, where it was stably maintained, and expressed at about 4 nmol VHb g−1 of cells. The maximum cell mass (OD600) of vgb-bearing G. amarae was greater than that of untransformed G. amarae for a variety of media and aeration conditions (2.8-fold under normal aeration and 3.4-fold under limited aeration in rich medium, and 3.5-fold under normal aeration and 3.2-fold under limited aeration in mineral salts medium). The maximum level of trehalose lipid from cultures grown in rich medium plus hexadecane was also increased for the recombinant strain, by 4.0-fold in broth and 1.8-fold in cells under normal aeration and 2.1-fold in broth and 1.4-fold in cells under limited aeration. Maximum overall biosurfactant production was also increased in the engineered strain, by 1.4-fold and 2.4-fold for limited and normal aeration, respectively. The engineered strain may be an improved source for producing purified biosurfactant or an aid to microorganisms bioremediating sparingly soluble contaminants in situ.  相似文献   

4.
Pseudomonas aeruginosa was transformed with pUC8:16, a pUC-based plasmid bearing the gene (vgb) encoding Vitreoscilla (bacterial) hemoglobin (VHb). Transformation was initially indicated by an increase in ampicillin resistance from 1500 to 2500 mg l–1. Presence of the plasmid in P. aeruginosa was confirmed by amplification of a portion of vgb from and detection of VHb in the transformant but not the untransformed host. Southern blot analysis further indicated that pUC8:16 existed as an autonomous plasmid rather than integrated into the chromosome of the P. aeruginosa transformant.  相似文献   

5.
Given the well-established beneficial effects of Vitreoscilla hemoglobin (VHb) on heterologous organisms, the potential of this protein for the production of L -DOPA and dopamine in two bacteria, Citrobacter freundii and Erwinia herbicola, was investigated. The constructed recombinants bearing the VHb gene (vgb+) had substantially higher levels of cytoplasmic L -DOPA (112 mg/L for C. freundii and 97 mg/L for E. herbicola) than their respective hosts (30.4 and 33.8 mg/L) and the vgb control strains (35.6 and 35.8 mg/L). Further, the vgb+ recombinants of C. freundii and E. herbicola had 20-fold and about two orders of magnitude higher dopamine levels than their hosts, repectively. The activity of tyrosine phenol-lyase, the enzyme converting L -tyrosine to L -DOPA, was well-correlated to cytoplasmic L -DOPA levels. As cultures aged, higher tyrosine phenol-lyase activity of the vgb+ strains was more apparent.  相似文献   

6.
Enhancement of the desulfurization activities of Paenibacillus strains 32O-W and 32O-Y were investigated using dibenzothiophene (DBT) and DBT sulfone (DBTS) as sources of sulphur in growth experiments. Strains 32O-W, 32O-Y and their co-culture (32O-W plus 32O-Y), and Vitreoscilla hemoglobin (VHb) expressing recombinant strain 32O-Yvgb and its co-culture with strain 32O-W were grown at varying concentrations (0·1–2 mmol l−1) of DBT or DBTS for 96 h, and desulfurization measured by production of 2-hydroxybiphenyl (2-HBP) and disappearance of DBT or DBTS. Of the four cultures grown with DBT as sulphur source, the best growth occurred for the 32O-Yvgb plus 32O-W co-culture at 0·1 and 0·5 mmol l−1 DBT. Although the presence of vgb provided no consistent advantage regarding growth on DBTS, strain 32O-W, as predicted by previous work, was shown to contain a partial 4S desulfurization pathway allowing it to metabolize this 4S pathway intermediate.  相似文献   

7.
Microbial production of butanediol and acetoin has received increasing interest because of their diverse potential practical uses. Although both products are fermentative in nature, their optimal production requires a low level of oxygen. In this study, the use of a recombinant oxygen uptake system on production of these metabolites was investigated. Enterobacter aerogenes was transformed with a pUC8-based plasmid carrying the gene (vgb) encoding Vitreoscilla (bacterial) hemoglobin (VHb). The presence of vgb and production of VHb by this strain resulted in an increase in viability from 72 to 96 h in culture, but no overall increase in cell mass. Accumulation of the fermentation products acetoin and butanediol were enhanced (up to 83%) by the presence of vgb/VHb. This vgb/VHb related effect appears to be due to an increase of flux through the acetoin/butanediol pathway, but not at the expense of acid production.  相似文献   

8.
The Vitreoscilla hemoglobin (VHb) gene (vgb) was integrated into the chromosome of Bacillus thuringiensis BMB171 using integrative vector pEG491. The production of VHb was confirmed by CO-difference spectra analysis. Fermentation experiments results showed that with the production of VHb, the critical oxygen concentration (COC) of the host strain was reduced from 18 to 12%. The maximum viable cell counts of the VHb+ strain in high, middle, and low aeration/agitation fermentations were 0.94-, 1.23-, and 1.59-fold of those of the VHb strain, respectively. Under the same conditions, the yields of insecticidal crystal proteins (ICP) by VHb+ strain were 1.22-, 1.63-, and 3.13-fold of those of the VHb strain. The production of VHb also accelerated the formation of ICP and spores. These results indicated that the production of VHb could improve the cell density and ICP yield of B. thuringiensis, especially under low aeration/agitation condition.  相似文献   

9.
The hemoglobins found in unicellular organisms show a great deal of chemical reactivity, protecting cells against oxidative stress, and hence have been implicated in a wider variety of potential functions than those traditionally associated with animal and plant hemoglobins. There are well-documented studies showing that bacteria expressing Vitreoscilla hemoglobin (VHb), the first prokaryotic hemoglobin characterized, have better growth and oxygen uptake rates than their VHb counterparts. Here, the expression of VHb, its effect on the growth and antioxidant enzyme status of cells under different culture conditions was studied by cloning the complete regulatory and coding sequences (vgb) for VHb in Enterobacter aerogenes. Contrary to what has been reported for Escherichia coli, the expression of vgb in E.aerogenes decreased several fold under 10% of atmospheric oxygen (2% oxygen) and its growth was not greatly improved by the presence of VHb. Measured either as viable cells or total cell mass, untransformed E. aerogenes grew better than the recombinant strains. At the late exponential phase, however, the vgb-bearing strain was determined to have a higher cell number and total cell mass than the strain bearing only the plasmid vector with no vgb insert. The VHb expressing strain also had an oxygen uptake rate several fold higher than its counterparts. Given that oxidative stress may occur upon elevated oxygen exposure and be balanced by the action of antioxi-dative compounds, the level of antioxidative response of E. aerogenes expressing VHb was also studied. The VHb expressing strain had substantially (1.5–2.6-fold) higher catalase activity than strains not expressing VHb. Both VHb+ and VHb- strains, however, showed similar levels of superoxide dismutase activity. The activity of both enzymes was also growth phase dependent. Stationary phase cells of all strains showed 2–5-fold higher activity for these enzymes than cells at the exponential phase.  相似文献   

10.
Escherichia coli strain FBR5, which has been engineered to direct fermentation of sugars to ethanol, was further engineered, using three different constructs, to contain and express the Vitreoscilla hemoglobin gene (vgb). The three resulting strains expressed Vitreoscilla hemoglobin (VHb) at various levels, and the production of ethanol was inversely proportional to the VHb level. High levels of VHb were correlated with an inhibition of ethanol production; however, the strain (TS3) with the lowest VHb expression (approximately the normal induced level in Vitreoscilla) produced, under microaerobic conditions in shake flasks, more ethanol than the parental strain (FBR5) with glucose, xylose, or corn stover hydrolysate as the predominant carbon source. Ethanol production was dependent on growth conditions, but increases were as high as 30%, 119%, and 59% for glucose, xylose, and corn stover hydrolysate, respectively. Only in the case of glucose, however, was the theoretical yield of ethanol by TS3 greater than that achieved by others with FBR5 grown under more closely controlled conditions. TS3 had no advantage over FBR5 regarding ethanol production from arabinose. In 2 L fermentors, TS3 produced about 10% and 15% more ethanol than FBR5 for growth on glucose and xylose, respectively. The results suggest that engineering of microorganisms with vgb/VHb could be of significant use in enhancing biological production of ethanol.  相似文献   

11.
To develop an efficient way to produce S-adenosylmethionine (SAM), methionine adenosyltransferase gene (mat) from Streptomyces spectabilis and Vitreoscilla hemoglobin gene (vgb) were coexpressed intracellularly in Pichia pastoris, both under control of methanol-inducible promoter. Expression of mat in P. pastoris resulted in about 27 times higher specific activity of methionine adenosyltransferase (SMAT) and about 19 times higher SAM production relative to their respective control, suggesting that overexpression of mat could be used as an efficient method for constructing SAM-accumulating strain. Under induction concentration of 0.8 and 2.4% methanol, coexpression of vgb improved, though to different extent, cell growth, SAM production, and respiratory rate. However, the effects of VHb on SAM content (specific yield of SAM production) and SMAT seemed to be methanol concentration-dependent. When cells were induced with 0.8% methanol, no significant effects of VHb expression on SAM content and specific SMAT could be detected. When the cells were induced with 2.4% methanol, vgb expression increased SAM content significantly and depressed SMAT remarkably. We suggested that under our experimental scheme, the presence of VHb might improve ATP synthesis rate and thus improve cell growth and SAM production in the recombinant P. pastoris.  相似文献   

12.
Oxygen deficiency is a critical factor during the fermentation production of natamycin. In order to alleviate oxygen limitation and enhance the yield of natamycin, the vgb gene, encoding Vitreoscilla hemoglobin (VHb) was inserted into pSET152 with its native promoter and integrated into the chromosome of Streptomyces gilvosporeus (S. gilvosporeus). The expression of VHb was determined by Western blotting. The activity of expressed VHb was confirmed by the observation of VHb-specific CO-difference spectrum with a maximal absorption at 419 nm for the recombinant. Integration of the empty plasmid pSET152 did not affect natamycin production of S. gilvosporeus. While the vgb-harboring strain exhibited high natamycin productivity, reaching 3.31 g/L in shake flasks and 8.24 g/L in 1-L fermenters. Compared to the wild strain, expression of VHb, increased the natamycin yield of the strain bearing vgb by 131.3 % (jar fermenter scale) and 175 % (shake flask scale), respectively, under certain oxygen-limiting condition. Addition of an extra copy of the vgb gene in S. gilvosporeus-vgb2 did not enhance the natamycin production obviously. These results provided a superior natamycin-producing strain which can be directly used in industry and a useful strategy for increasing yields of other metabolites in industrial strains.  相似文献   

13.
A series of high-copy-number Escherichia coli expression vectors equipped with an oxygen-sensitive promoter Pvgb of Vitreoscilla hemoglobin (encoded by the vgb gene) were constructed and characterized. Plasmid pKVp containing Pvgb was inducible by low oxygen tension, while plasmid pKVpP containing a partition (par) region from plasmid pSC101 ligated to Pvgb provided inheritable stability for the vectors in the absence of ampicillin. Plasmid pKVpV had the Vitreoscilla hemoglobin operon vgb ligated to Pvgb, while a construct containing Pvgb, the vgb operon and a par region constituted plasmid pKVpPV. Shake-flask studies demonstrated that plasmids pKVpV and pKVpPV expressed higher levels of Vitreoscilla hemoglobin under low aeration condition (5% air saturation in water) compared with the levels observed under strong aeration (20% air saturation in water). Introduction of either the enhanced green fluorescent protein (eGFP) gene egfp or the toluene dioxygenase (TDO) gene tod into either pKVpV (Pvgb, vgb operon) or pKVpPV (Pvgb, vgb operon, par) slightly attenuated (30%) the strong expression of VHb under low aeration. However, all displayed approximately a three-fold increase versus that observed for strong aeration. Recombinant E. coli harboring either pKVp-E (Pvgb, egfp) or pKVpP-E (Pvgb, par, egfp) displayed at least a two-fold increase in eGFP expression under conditions of low aeration and absence of antibiotic, compared with that under strong aeration after 24 h of cultivation. Strong expression of TDO was also observed using low aeration in recombinant E. coli harboring pKVpPV-T (Pvgb, vgb operon, par, tod) or pKVpP-T (Pvgb, par, tod). Plasmids containing the par region were stable over 100 generations. These results indicate that the novel expression system combining plasmid stability over the cell growth phase and a promoter inducible by low oxygen tension will be very useful for high-density production of foreign proteins.  相似文献   

14.

Escherichia coli strains W3110 and BL21 were engineered for the production of plasmid DNA (pDNA) under aerobic and transitions to microaerobic conditions. The gene coding for recombinase A (recA) was deleted in both strains. In addition, the Vitreoscilla hemoglobin (VHb) gene (vgb) was chromosomally inserted and constitutively expressed in each E. coli recA mutant and wild type. The recA inactivation increased the supercoiled pDNA fraction (SCF) in both strains, while VHb expression improved the pDNA production in W3110, but not in BL21. Therefore, a codon-optimized version of vgb was inserted in strain BL21recA, which, together with W3110recAvgb+, was tested in cultures with shifts from aerobic to oxygen-limited regimes. VHb expression lowered the accumulation of fermentative by-products in both strains. VHb-expressing cells displayed higher oxidative activity as indicated by the Redox Sensor Green fluorescence, which was more intense in BL21 than in W3110. Furthermore, VHb expression did not change pDNA production in W3110, but decreased it in BL21. These results are useful for understanding the physiological effects of VHb expression in two industrially relevant E. coli strains, and for the selection of a host for pDNA production.

  相似文献   

15.
16.
The vgb gene, encoding Vitreoscilla hemoglobin (VHb), was introduced into a specific desulfurization bacterium, Rhodococcus erythropolis LSSE8-1. The VHb-specific spectrum was observed for the recombinant. Compared to the wild type, the strain bearing vgb showed a higher biomass yield and desulfurizing activity.  相似文献   

17.
Geckil  Hikmet  Arman  Ahmet  Gencer  Salih  Ates  Burhan  Ramazan Yilmaz  H. 《Biometals》2004,17(6):715-723
When expressed in heterologous microorganisms Vitreoscilla hemoglobin (VHb) acts as oxygen storage and causes a higher oxygen uptake. In this study, the effect of this protein on growth, sensitivity and antioxidant properties of Enterobacter aerogenes exposed to metal stress was investigated. The strain expressing VHb was more sensitive to mercury and cadmium as the minimal inhibitory concentration (MIC) for these metals was up to 2-fold lower in this strain than the host and the recombinant strain carrying a comparable plasmid. At lower concentrations than MIC, the metals partially limited growth and caused an inhibition proportional to metal concentration applied. The growth pattern of VHb expressing strain was also distinctly different from other two non-hemoglobin strains. The hemoglobin containing strain showed substantially higher superoxide dismuates (SOD) activity than the non-hemoglobin strains, while catalase levels were similar in all strains. All strains exposed to copper, however, showed similar MIC values, growth patterns, and SOD and catalase levels.  相似文献   

18.
Dihydroxyacetone (DHA) is an important ketose sugar, which is extensively used in the cosmetic, chemical, and pharmaceutical industries. DHA has been industrially produced by Gluconobacter oxydans with a high demand of oxygen. To improve the production of DHA, the gene vgb encoding Vitreoscilla hemoglobin (VHb) was successfully introduced into G. oxydans, where it was stably maintained, and expressed at about 76.0 nmol/g dry cell weight. Results indicated that the constitutively expressed VHb improved cell growth and DHA production in G. oxydans under different aeration conditions. Especially at low aeration rates, the VHb-expressing strain (VHb+) displayed 23.13% more biomass and 37.36% more DHA production than those of VHb-free strain (VHb) after 32 h fermentation in bioreactors. In addition, oxygen uptake rate (OUR) was also increased in VHb+ strain relative to the control strain during fermentation processes.  相似文献   

19.
Vitreoscilla hemoglobin (VHb) gene vgb equipped with a native promoter Pvgb or a tac promoter Ptac was introduced into Corynebacterium glutamicum ATCC14067, respectively. Ptac was proven to be more suitable for expressing VHb protein in higher concentration in both Escherichia coli and C. glutamicum strains compared with the native vgb promoter Pvgb. VHb-expressing C. glutamicum exhibited higher oxygen uptake rate and enhanced cell growth. Recombinant C. glutamicum harboring vgb gene equipped with Ptac promoter produced 23% more l-glutamate in shake-flask culture and grew to 30% more cell density and formed 22% more l-glutamate in fermentor studies compared with the wild-type strain. When a site-directed mutagenesis in which Tyr405 was replaced by a phenylalanine residue (Y405F) was performed on glutamine synthesis gene, recombinant C. glutamicum overexpressing the mutated gene glnA′ was able to produce l-glutamine effectively. Co-expression of vgb and glnA′ genes in C. glutamicum produced 17 g/l l-glutamine in shake flask culture, approximately 30% more than that produced by the recombinant harboring only glnA′ gene. In fermentor cultivation, the recombinant yielded 25% more cells and produced 40.5 g/l l-glutamine. In this study, it was clearly demonstrated that VHb significantly enhanced cell growth, l-glutamate, and l-glutamine production by recombinant C. glutamicum.  相似文献   

20.
Inefficient carbon metabolism is a relevant issue during the culture of mammalian cells for the production of biopharmaceuticals. Therefore, cell engineering strategies to improve the metabolic and growth performance of cell lines are needed. The expression of Vitreoscilla stercoraria hemoglobin (VHb) has been shown to significantly reduce overflow metabolism and improve the aerobic growth of bacteria. However, the effects of VHb on mammalian cells have been rarely studied. Here, the impact of VHb on growth and lactate accumulation during CHO‐K1 cell culture was investigated. For this purpose, CHO‐K1 cells were transfected with plasmids carrying the vgb or gfp gene to express VHb or green fluorescence protein (GFP), respectively. VHb expression increased the specific growth rate and biomass yields on glucose and glutamine by 60 %, and reduced the amount of lactate produced per cell by 40 %, compared to the GFP‐expression controls. Immunofluorescence microscopy showed that VHb is distributed in the cytoplasm and organelles, which support the hypothesis that VHb could serve as an oxygen carrier, enhancing aerobic respiration. These results are useful for the development of better producing cell lines for industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号