首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
“Reduced minus oxidized” difference extinction coefficients Δ? in the α-bands of Cyt b559 and Cyt c550 were determined by using functionally and structurally well-characterized PS II core complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus. Values of 25.1 ± 1.0 mM−1 cm−1 and 27.0 ± 1.0 mM−1 cm−1 were obtained for Cyt b559 and Cyt c550, respectively. Anaerobic redox titrations covering the wide range from −250 up to +450 mV revealed that the heme groups of both Cyt b559 and Cyt c550 exhibit homogenous redox properties in the sample preparation used, with Em values at pH 6.5 of 244 ± 11 mV and −94 ± 21 mV, respectively. No HP form of Cyt b559 could be detected. Experiments performed on PS II membrane fragments of higher plants where the content of the high potential form of Cyt b559 was varied by special treatments (pH, heat) have shown that the α-band extinction of Cyt b559 does not depend on the redox form of the heme group. Based on the results of this study the Cyt b559/PSII stoichiometry is inferred to be 1:1 not only in thermophilic cyanobacteria as known from the crystal structure but also in PSII of plants. Possible interrelationships between the structure of the QB site and the microenvironment of the heme group of Cyt b559 are discussed.  相似文献   

2.
This study describes an analysis of different treatments that influence the relative content and the midpoint potential of HP Cyt b559 in PS II membrane fragments from higher plants. Two basically different types of irreversible modification effects are distinguished: the HP form of Cyt b559 is either predominantly affected when the heme group is oxidized ("O-type" effects) or when it is reduced ("R-type" effects). Transformation of HP Cyt b559 to lower potential redox forms (IP and LP forms) by the "O-type" mechanism is induced by high pH and detergent treatments. In this case the effects consist of a gradual decrease in the relative content of HP Cyt b559 while its midpoint potential remains unaffected. Transformation of HP Cyt b559 via an "R-type" mechanism is caused by a number of exogenous compounds denoted L: herbicides, ADRY reagents and tetraphenylboron. These compounds are postulated to bind to the PS II complex at a quinone binding site designated as Q(C) which interacts with Cyt b559 and is clearly not the Q(B) site. Binding of compounds L to the Q(C) site when HP Cyt b559 is oxidized gives rise to a gradual decrease in the E(m) of HP Cyt b559 with increasing concentration of L (up to 10 K(ox)(L) values) while the relative content of HP Cyt b559 is unaffected. Higher concentrations of compounds L required for their binding to Q(C) site when HP Cyt b559 is reduced (described by K(red)(L)) induce a conversion of HP Cyt b559 to lower potential redox forms ("R-type" transformation). Two reaction pathways for transitions of Cyt b559 between the different protein conformations that are responsible for the HP and IP/LP redox forms are proposed and new insights into the functional regulation of Cyt b559 via the Q(C) site are discussed.  相似文献   

3.
Transformation of three-component redox pattern of cytochrome (Cyt) b559 in PS II membrane fragments upon various treatments is manifested in decrease of the relative content (R) of the high potential (HP) redox form of Cyt b559 and concomitant increase in the fractions of the two lower potential forms. Redox titration of Cyt b559 in different types of PS II membrane preparations was performed and revealed that (1) alteration of redox titration curve of Cyt b559 upon treatment of a sample is not specific to the type of treatment; (2) each value of RHP defines the individual shape of the redox titration curve; (3) population of Cyt b559 may exist in several stable forms with multicomponent redox pattern: three types of three-component redox pattern and one type of two-component redox pattern as well as in the form with a single Em; (4) transformation of Cyt b559 proceeds as successive conversion between the stable forms with multicomponent redox pattern; (5) upon harsh treatments, Cyt b559 abruptly converts into the state with a single Em which value is intermediate between the Em values of the two lower potential forms. Analysis of the data using the model of Cyt b559-quinone redox interaction revealed that diminution of RHP in a range from 80 to 10% reflects a shift in redox equilibrium between the heme group of Cyt b559 and the interacting quinone, due to a gradual decrease of 90?mV in Em of the heme group at the virtually unchanged Em of the quinone component.  相似文献   

4.
Cytochrome b559 is an essential component of the photosystem II reaction center in photosynthetic oxygen-evolving organisms, but its function still remains unclear. The use of photosystem II preparations from Thermosynechococcus elongatus of high integrity and activity allowed us to measure for the first time the influence of cytochrome b559 mutations on its midpoint redox potential and on the reduction of the cytochrome b559 by the plastoquinone pool (or QB). In this work, five mutants having a mutation in the α-subunit (I14A, I14S, R18S, I27A and I27T) and one in the β-subunit (F32Y) of cytochrome b559 have been investigated. All the mutations led to a destabilization of the high potential form of the cytochrome b559. The midpoint redox potential of the high potential form was significantly altered in the αR18S and αI27T mutant strains. The αR18S strain also showed a high sensitivity to photoinhibitory illumination and an altered oxidase activity. This was suggested by measurements of light induced oxidation and dark re-reduction of the cytochrome b559 showing that under conditions of a non-functional water oxidation system, once the cytochrome is oxidized by P680+, the yield of its reduction by QB or the PQ pool was smaller and the kinetic slower in the αR18S mutant than in the wild-type strain. Thus, the extremely positive redox potential of the high potential form of cytochrome b559 could be necessary to ensure efficient oxidation of the PQ pool and to function as an electron reservoir replacing the water oxidation system when it is not operating.  相似文献   

5.
Pavel Pospíšil  Arjun Tiwari 《BBA》2010,1797(4):451-456
The effect of illumination and molecular oxygen on the redox and the redox potential changes of cytochrome b559 (cyt b559) has been studied in Tris-treated spinach photosystem II (PSII) membranes. It has been demonstrated that the illumination of Tris-treated PSII membranes induced the conversion of the intermediate-potential (IP) to the reduced high-potential (HPFe2+) form of cyt b559, whereas the removal of molecular oxygen resulted in the conversion of the IP form to the oxidized high-potential (HPFe3+) form of cyt b559. Light-induced conversion of cyt b559 from the IP to the HP form was completely inhibited above pH 8 or by the modification of histidine ligand that prevents its protonation. Interestingly, no effect of high pH or histidine modification was observed during the conversion of the IP to the HP form of cyt b559 after the removal of molecular oxygen. These results indicate that conversion from the IP to the HP form of cyt b559 proceeds via different mechanisms. Under illumination, conversion of the IP to the HP form of cyt b559 depends primarily on the protonation of the histidine residue, whereas under anaerobic conditions, the conversion of the IP to the HP form of cyt b559 is driven by higher hydrophobicity of the environment around the heme iron resulting from the absence of molecular oxygen.  相似文献   

6.
Cytochrome b559 (Cyt b559) is a well-known intrinsic component of Photosystem II (PS II) reaction center in all photosynthetic oxygen-evolving organisms, but its physiological role remains unclear. This work reports the response of the two redox forms of Cyt b559 (i.e. the high- (HP) and low-potential (LP) forms) to inhibition of the donor or acceptor side of PS II. The photooxidation of HP Cyt b559 induced by red light at room temperature was pH-dependent under conditions in which electron flow from water was diminished. This photooxidation was observed only at pH values higher than 7.5. However, in the presence of 1 M CCCP, a limited oxidation of HP Cyt b559 was observed at acidic pH, At pH 8.5 and in the presence of the protonophore, this photooxidation of the HP form was accompanied by its partial transformation into the LP form. On the other hand, a partial photoreduction of LP Cyt b559 was induced by red light under aerobic conditions when electron transfer through the primary quinone acceptor QA was impaired by strong irradiation in the presence of DCMU. This photoreduction was enhanced at acidic pH values. To the best of our knowledge, this is the first time that both photoreduction and photooxidation of Cyt b559 is described under inhibitory conditions using the same kind of membrane preparations. A model accommodating these findings is proposed.Abbreviations CCCP carbonylcyanide 3-chlorophenylhydrazone - Cyt cytochrome - DCBQ 2,5-dichloro-p-benzoquinone - DCMU dichlorophenyldimethylurea - E m midpoint redox potential - HP and LP high- and low-potential forms of Cyt b559 - P680 primary donor - IA acceptor side inhibition - ID donor side inhibition - Pheo pheophytin - PS II photosystem II - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II  相似文献   

7.
Restoration of a high potential (HP) form of cytochrome b-559 (Cyt b-559) from a low potential (LP) form was the primary process in the reconstitution of O2-evolving center during the photoreactivation of Tris-inactivated chloroplasts. In normal chloroplasts, about 0.5 to 0.7 mol of Cyt b-559 was present in the HP form per 400 chlorophyll molecules. However, the HP form was converted to the LP form when the O2-evolving center was inactivated by 0.8 M alkaline Tris-washing (pH 9.1). The inactivation was reversible and both the Cyt b-559 HP form and the O2-evolving activity were restored by incubating the inactivated chloroplasts with weak light, Mn2+, Ca2+ and an electron donor (photoreactivation). The recovery of the HP form preceded the recovery of O2-evolving activity. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) did not inhibit the recovery of the HP form. Thus, the recovery of Cyt b-559 HP form was the primary reaction in the photoreactivation, which was stimulated by the light-induced redox reaction of the PS-II core center.Abbreviations ASC ascorbate - BSA bovine serum albumin - Chl chlorophyll - Cyt b-559 HP form high potential form of cytochrome b-559 - Cyt b-559 LP form low potential form of cytochrome b-559 - Cyt b-559 VLP form very low potential form of cytochrome b-559 - Cyt f cytochrome f - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-dichlorophenol indophenol - Hepes N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid - HQ hydroquinone - SHN chloroplast-preparation medium containing 0.4 M sucrose, 50 mM Hepes-Na (pH 7.8) and 20 mM NaCl - PS-II Photosystem II  相似文献   

8.
The present study provides a thorough analysis of effects on the redox properties of cytochrome (Cyt) b559 induced by two photosystem II (PS II) herbicides [3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,4-dinitro-6-sec-butylphenol (dinoseb)], an acceleration of the deactivation reactions of system Y (ADRY) agent carbonylcyanide-m-chlorophenylhydrazone (CCCP), and the lipophilic PS II electron-donor tetraphenylboron (TPB) in PS II membrane fragments from higher plants. The obtained results revealed that (1) all four compounds selectively affected the midpoint potential (E(m)) of the high potential (HP) form of Cyt b559 without any measurable changes of the E(m) values of the intermediate potential (IP) and low potential (LP) forms; (2) the control values from +390 to +400 mV for HP Cyt b559 gradually decreased with increasing concentrations of DCMU, dinoseb, CCCP, and TPB; (3) in the presence of high TPB concentrations, a saturation of the E(m) decrease was obtained at a level of about +240 mV, whereas no saturation was observed for the other compounds at the highest concentrations used in this study; (4) the effect of the phenolic herbicide dinoseb on the E(m) is independent of the occupancy of the Q(B)-binding site by DCMU; (5) at high concentrations of TPB or dinoseb, an additional slow and irreversible transformation of HP Cyt b559 into IP Cyt b559 or a mixture of the IP and LP Cyt b559 is observed; and (6) the compounds stimulate autoxidation of HP Cyt b559 under aerobic conditions. These findings lead to the conclusion that a binding site Q(C) exists for the studied substances that is close to Cyt b559 and different from the Q(B) site. On the basis of the results of the present study and former experiments on the effect of PQ extraction and reconstitution on HP Cyt b559 [Cox, R. P., and Bendall, D. S. (1974) The functions of plastoquinone and beta-carotene in photosystem II of chloroplasts, Biochim. Biophys. Acta 347, 49-59], it is postulated that the binding of a plastoquinone (PQ) molecule to Q(C) is crucial for establishing the HP form of Cyt b559. On the other hand, the binding of plastoquinol (PQH2) to Q(C) is assumed to cause a marked decrease of E(m), thus, giving rise to a PQH2 oxidase function of Cyt b559. The possible physiological role of the Q(C) site as a regulator of the reactivity of Cyt b559 is discussed.  相似文献   

9.
Peter Horton 《BBA》1981,637(1):152-158
The shape of the fluorescence induction curve in chloroplasts inhibited by 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea has been determined at different redox potentials. At ?10 mV a monophasic and sigmoidal curve is seen which is transformed into an exponential curve when the potential is poised at ?150 mV. At this potential, the quencher with high midpoint, QH, is reduced but that with low midpoint, QL, is oxidized. Thus, a sigmoidal induction is observed during photoreduction of QL and QH but photoreduction of QL proceeds with exponential kinetics. A correlation between the relative proportions of QL and QH observed in redox titration and the sigmoidicity of induction is also seen upon depletion of Mg2+ and after alkalinization to pH 9.5. Several models are discussed to explain the relationship between Photosystem II interactions and Q heterogeneity.  相似文献   

10.
The redox potentials Em(QA/) of the primary quinone electron acceptor QA in oxygen-evolving photosystem II complexes of three species were determined by spectroelectrochemistry. The Em(QA/) values were experimentally found to be −162 ± 3 mV for a higher plant spinach, −171 ± 3 mV for a green alga Chlamydomonas reinhardtii and −104 ± 4 mV vs. SHE for a red alga Cyanidioschyzonmerolae. On the basis of possible deviations for the experimental values, as estimated to differ by 9-29 mV from each true value, plausible causes for such remarkable species-dependence of Em(QA/) are discussed, mainly by invoking the effects of extrinsic subunits on the delicate structural environment around QA.  相似文献   

11.
A series of experiments have been conducted with isolated reaction centers of photosystem two (PS II) with the aim to elucidate the functional role of cytochrome (Cyt b 559). At pH 6.5 it was found that Cyt b 559 was reversibly photoreduced by red actinic light when Mn2+ was present as an electron donor while at pH 8.5 a photo-oxidation was observed under the same lighting conditions, which was dark reversible in the presence of hydroquinone. These pH dependent light induced changes were measured under anaerobic conditions and correlated with changes in the relative levels of high (HP) and low (LP) potential forms of the cytochrome. At pH 6.5 the cytochrome was mainly in its LP form while at pH 8.5 a significant proportion was converted to the HP form as detected by dark titrations with hydroquinone. This pH dependent difference in the levels of HP and LP Cyt b 559 was also detected when bright white light was used to monitor the level of the LP form using a novel reaction involving direct electron donation from the flavin of glucose oxidase (present in the medium and used together with glucose and catalase as an oxygen trap). The results suggest that PS II directly oxidises and reduces the HP and LP forms, respectively and that the extent of these photo-reactions is dependent on the relative levels of the two forms, which are in turn governed by the pH. This conclusion is interpreted in terms of the model presented previously (Barber J and De Las Rivas J (1993) Proc Natl Acad Sci USA 90: 10942–10946) whereby the pH induced effect is considered as a possible mechanism by which interconversion of LP and HP forms of Cyt b 559 is achieved. In agreement with this was the finding that as the extent of photo-oxidisable HPCyt b 559 increases, with increasing pH, the rate of irreversible photo-oxidation of -carotene decreases, a result expected if the HP form protects against donor side photoinhibition.Abbreviations -car -carotene - CCCP carbonylcyanide m-chloro-phenylhydrazone - Chl chlorophyll - Cyt b 559 cytochrome b 559 - HPCyt b 559 high potential form of cytochrome b 559 which is reducible by hydroquinone - LPCyt b 559 low potential form of cytochrome b 559 which is non-reducible by hydroquinone - D1 and D2 products of the psbA and psbD genes, respectively - LHC II light-harvesting chlorophyll protein complex associated with PS II - Mes 2-(N-morpholino) ethanesulphonic acid - P680 primary electron donor of PS II - Pheo pheophytin - PQ plastoquinone - PS II Photosystem II - QA first stable quinone electron acceptor of PS II - QB second stable quinone electron acceptor of PS II - RC reaction center - SDS sodium dodecyl sulphate - SiMo silicomolybdate - Tris tris(hydroxymethyl) amino methane - YZ and YD tyrosine residues 161 in D1 and D2 proteins of the PS II RC which act as secondary electron donors to P680  相似文献   

12.
The nature of interaction of cytochrome b-559 high potential (HP) with electron transport on the reducing side of photosystem II was investigated by measuring the susceptibility of cytochrome b-559HP to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) under different conditions. Submicromolar DCMU concentrations decreased the rate of absorbance change corresponding to cytochrome b-559HP photoreduction while the amplitude was lowered at higher concentrations (up to 10 M). Appreciable extents of cytochrome b-559HP photoreduction were observed at DCMU concentrations which completely abolished the electron transport from water to methyl viologen under the same experimental conditions. However, the susceptibility of cytochrome b-559HP to DCMU increased with the degree of cytochrome b-559HP oxidation, induced either by ferricyanide or by illumination of low intensity (2 W/m2) of red light in the presence of 2 M carbonyl cyanide-m-chlorophenylhydrazone. Also, the DCMU inhibition was more severe when the pH increased from 6.5 to 8.5, indicating that the unprotonated form of cytochrome b-559HP is more susceptible to DCMU. These results demonstrate that cytochrome b-559HP can accept electrons prior to the QB site, probably via QA although both QA and QB can be involved to various extents in this reaction. We suggest that the redox state and the degree of protonation of cytochrome b-559HP alter its interaction with the reducing side of photosystem II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting system Y - CCCP carbonylcyanide m-chlorophenylhydrazone - FeCN ferricyanide - HP high potential - MV methylviologen CIW-DPB Publication No.1096.  相似文献   

13.
Han Bao  Yanan Ren  Jingquan Zhao 《BBA》2010,1797(3):339-346
The correlation between the reduction of QA and the oxidation of TyrZ or Car/ChlZ/Cytb559 in spinach PSII enriched membranes induced by visible light at 10 K is studied by using electron paramagnetic resonance spectroscopy. Similar g = 1.95-1.86 QA-•EPR signals are observed in both Mn-depleted and intact samples, and both signals are long lived at low temperatures. The presence of PPBQ significantly diminished the light induced EPR signals from QA-•, Car+•/Chl+• and oxidized Cytb559, while enhancing the amplitude of the S1TyrZ• EPR signal in the intact PSII sample. The quantification and stability of the g = 1.95-1.86 EPR signal and signals arising from the oxidized TyrZ and the side-path electron donors, respectively, indicate that the EPR-detectable g = 1.95-1.86 QA-• signal is only correlated to reaction centers undergoing oxidation of the side-path electron donors (Car/ChlZ/Cytb559), but not of TyrZ. These results imply that two types of QA-• probably exist in the intact PSII sample. The structural difference and possible function of the two types of QA are discussed.  相似文献   

14.
The main cofactors involved in the function of Photosystem II (PSII) are borne by the D1 and D2 proteins. In some cyanobacteria, the D1 protein is encoded by different psbA genes. In Thermosynechococcus elongatus the amino acid sequence deduced from the psbA3 gene compared to that deduced from the psbA1 gene points a difference of 21 residues. In this work, PSII isolated from a wild type T. elongatus strain expressing PsbA1 or from a strain in which both the psbA1 and psbA2 genes have been deleted were studied by a range of spectroscopies in the absence or the presence of either a urea type herbicide, DCMU, or a phenolic type herbicide, bromoxynil. Spectro-electrochemical measurements show that the redox potential of PheoD1 is increased by 17 mV from −522 mV in PsbA1-PSII to −505 mV in PsbA3-PSII. This increase is about half that found upon the D1-Q130E single site directed mutagenesis in Synechocystis PCC 6803. This suggests that the effects of the D1-Q130E substitution are, at least partly, compensated for by some of the additional amino-acid changes associated with the PsbA3 for PsbA1 substitution. The thermoluminescence from the S2QA−• charge recombination and the C ≡ N vibrational modes of bromoxynil detected in the non-heme iron FTIR difference spectra support two binding sites (or one site with two conformations) for bromoxynil in PsbA3-PSII instead of one in PsbA1-PSII which suggests differences in the QB pocket. The temperature dependences of the S2QA−• charge recombination show that the strength of the H-bond to PheoD1 is not the only functionally relevant difference between the PsbA3-PSII and PsbA1-PSII and that the environment of QA (and, as a consequence, its redox potential) is modified as well. The electron transfer rate between P680+• and YZ is found faster in PsbA3 than in PsbA1 which suggests that the redox potential of the P680/P680+• couple (and hence that of 1P680*/P680+•) is tuned as well when shifting from PsbA1 to PsbA3. In addition to D1-Q130E, the non-conservative amongst the 21 amino acid substitutions, D1-S270A and D1-S153A, are proposed to be involved in some of the observed changes.  相似文献   

15.
Bruce A. Diner  René Delosme 《BBA》1983,722(3):452-459
Redox titrations of the flash-induced formation of C550 (a linear indicator of Q?) were performed between pH 5.9 and 8.3 in Chlamydomonas Photosystem II particles lacking the secondary electron acceptor, B. One-third of the reaction centers show a pH-dependent midpoint potential (Em,7.5) = ? 30 mV) for redox couple QQ?, which varies by ?60 mV/pH unit. Two-thirds of the centers show a pH-independent midpoint potential (Emm = + 10 mV) for this couple. The elevated pH-independent Em suggests that in the latter centers the environment of Q has been modified such as to stabilize the semiquinone anion, Q?. The midpoint potentials of the centers having a pH-dependent Em are within 20 mV of those observed in chloroplasts having a secondary electron acceptor. It appears therefore that the secondary electron acceptor exerts little influence on the Em of QQ?. An EPR signal at g 1.82 has recently been attributed to a semiquinone-iron complex which comprises Q?. The similar redox behavior reported here for C550 and reported by others (Evans, M.C.W., Nugent, J.H.A., Tilling, L.A. and Atkinson, Y.E. (1982) FEBS Lett. 145, 176–178) for the g 1.82 signal in similar Photosystem II particles confirm the assignment of this EPR signal to Q?. At below ?200 mV, illumination of the Photosystem II particles produces an accumulation of reduced pheophytin (Ph?). At ?420 mV Ph? appears with a quantum yield of 0.006–0.01 which in this material implies a lifetime of 30–100 ns for the radical pair P-680+Ph?.  相似文献   

16.
Shibamoto T  Kato Y  Watanabe T 《FEBS letters》2008,582(10):1490-1494
The redox potential of cytochrome b559 (Cyt b559) in the D1-D2-Cyt b559 complex from spinach has been determined to be +90+/-2mV vs. SHE at pH 6.0, by thin-layer cell spectroelectrochemistry for the first time. The redox potential, corresponding uniquely to the so-called "low-potential form", exhibited a sigmoidal pH-dependence from pH 4.0 to 9.0, ranging from +115 to +50mV. An analysis of the pH-dependence based on model equations suggests that two histidine residues coordinating to the heme iron in the protein subunits may exert electrostatic influence on the redox potential of Cyt b559.  相似文献   

17.
The main cofactors involved in the oxygen evolution activity of Photosystem II (PSII) are located in two proteins, D1 (PsbA) and D2 (PsbD). In Thermosynechococcus elongatus, a thermophilic cyanobacterium, the D1 protein is encoded by either the psbA1 or the psbA3 gene, the expression of which is dependent on environmental conditions. It has been shown that the energetic properties of the PsbA1-PSII and those of the PsbA3-PSII differ significantly (Sugiura, M., Kato, Y., Takahashi, R., Suzuki, H., Watanabe, T., Noguchi, T., Rappaport, F., and Boussac, A. (2010) Biochim. Biophys. Acta 1797, 1491–1499). In this work the structural stability of PSII upon a PsbA1/PsbA3 exchange was investigated. Two deletion mutants lacking another PSII subunit, PsbJ, were constructed in strains expressing either PsbA1 or PsbA3. The PsbJ subunit is a 4-kDa transmembrane polypeptide that is surrounded by D1 (i.e. PsbA1), PsbK, and cytochrome b559 (Cyt b559) in existing three-dimensional models. It is shown that the structural properties of the PsbA3/ΔPsbJ-PSII are not significantly affected. The polypeptide contents, the Cyt b559 properties, and the proportion of PSII dimer were similar to those found for PsbA3-PSII. In contrast, in PsbA1/ΔPsbJ-PSII the stability of the dimer is greatly diminished, the EPR properties of the Cyt b559 likely indicates a decrease in its redox potential, and many other PSII subunits are lacking. These results shows that the 21-amino acid substitutions between PsbA1 and PsbA3, which appear to be mainly conservative, must include side chains that are involved in a network of interactions between PsbA and the other PSII subunits.  相似文献   

18.
Heng Li 《BBA》2006,1757(11):1512-1519
The state transition in cyanobacteria is a long-discussed topic of how the photosynthetic machine regulates the excitation energy distribution in balance between the two photosystems. In the current work, whether the state transition is realized by “mobile phycobilisome (PBS)” or “energy spillover” has been clearly answered by monitoring the spectral responses of the intact cells of the cyanobacterium Spirulina platensis. Firstly, light-induced state transition depends completely on a movement of PBSs toward PSI or PSII while the redox-induced one on not only the “mobile PBS” but also an “energy spillover”. Secondly, the “energy spillover” is triggered by dissociation of PSI trimers into the monomers which specially occurs under a case from light to dark, while the PSI monomers will re-aggregate into the trimers under a case from dark to light, i.e., the PSI oligomerization is reversibly regulated by light switch on and off. Thirdly, PSI oligomerization is regulated by the local H+ concentration on the cytosol side of the thylakoid membranes, which in turn is regulated by light switch on and off. Fourthly, PSI oligomerization change is the only mechanism for the “energy spillover”. Thus, it can be concluded that the “mobile PBS” is a common rule for light-induced state transition while the “energy spillover” is only a special case when dark condition is involved.  相似文献   

19.
Cytochrome b559 in various Photosystem II preparations was studled by using low temperature ESR spectroscopy. This technique was used because it is able to distinguish high from low potential forms of the cytochrome owing to the g-value differences between these species. Moreover, by using low temperature irradiation to oxidize cyt b559 we have avoided the use of redox mediators. Previous work (Ghanotakis DF., Topper J.N. and Yocum, C.F. (1984) Biochim. Biophys. Acta 767, 524–531) demonstrated that reduction and extraction of manganese of the oxygen evolving complex, which might be expected to alter the redox properties of cyt b559, occurs when certain PSII preparations are exposed to reductants. The ESR data presented here show that a mixture of high potential and lower potential cyt b559 species is observed in the oxygen evolving Photosystem II complex. Treatment of PSII membranes with 0.8 M Tris converts the high potential form(s) to those of lower potential. Exposure of the membranes to 2M NaCl shifts a significant amount of high potential cyt b559 to lower potential form(s); addition of CaCl2 reconstituted oxygen evolution activity but did not restore cyt b559 to its high potential form(s).Abbreviations Chl chlorophyll - cyt cytochrome - DCBQ 2,5-dichloro-benzoquinone - DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone - ESR electron spin resonance - OEC oxygen evolving complex - PS photosystem Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement  相似文献   

20.
Edward A. Berry  Dong-Woo Lee  Kazuo Nagai 《BBA》2010,1797(3):360-7281
Ascochlorin is an isoprenoid antibiotic that is produced by the phytopathogenic fungus Ascochyta viciae. Similar to ascofuranone, which specifically inhibits trypanosome alternative oxidase by acting at the ubiquinol binding domain, ascochlorin is also structurally related to ubiquinol. When added to the mitochondrial preparations isolated from rat liver, or the yeast Pichia (Hansenula) anomala, ascochlorin inhibited the electron transport via CoQ in a fashion comparable to antimycin A and stigmatellin, indicating that this antibiotic acted on the cytochrome bc1 complex. In contrast to ascochlorin, ascofuranone had much less inhibition on the same activities. On the one hand, like the Qi site inhibitors antimycin A and funiculosin, ascochlorin induced in H. anomala the expression of nuclear-encoded alternative oxidase gene much more strongly than the Qo site inhibitors tested. On the other hand, it suppressed the reduction of cytochrome b and the generation of superoxide anion in the presence of antimycin A3 in a fashion similar to the Qo site inhibitor myxothiazol. These results suggested that ascochlorin might act at both the Qi and the Qo sites of the fungal cytochrome bc1 complex. Indeed, the altered electron paramagnetic resonance (EPR) lineshape of the Rieske iron-sulfur protein, and the light-induced, time-resolved cytochrome b and c reduction kinetics of Rhodobacter capsulatus cytochrome bc1 complex in the presence of ascochlorin demonstrated that this inhibitor can bind to both the Qo and Qi sites of the bacterial enzyme. Additional experiments using purified bovine cytochrome bc1 complex showed that ascochlorin inhibits reduction of cytochrome b by ubiquinone through both Qi and Qo sites. Moreover, crystal structure of chicken cytochrome bc1 complex treated with excess ascochlorin revealed clear electron densities that could be attributed to ascochlorin bound at both the Qi and Qo sites. Overall findings clearly show that ascochlorin is an unusual cytochrome bc1 inhibitor that acts at both of the active sites of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号