首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 635 毫秒
1.
The development of wetland soil characteristics andbenthic invertebrate communities were evaluated increated Spartina alterniflorasalt marshes inNorth Carolina ranging in age from 1 to 25 years-old.A combination of measurements from different-agecreated marshes as well as periodic measurements overtime on two marshes were used to (1) document rates ofwetland pedogenesis, especially soil organic matter,and, (2) explore relationships between soil andbenthic invertebrate community development. Soilmacro-organic matter (MOM, the living and dead rootand rhizome mat), organic C and N increased and bulkdensity decreased during the 25 years following marshestablishment. The most dramatic changes in bulkdensity, MOM, C and N occurred within the upper 10 cmof the soil with lesser changes below this depth.Created marshes were sinks for organic C (90–140g·m-2·yr-1) and N (7–11g·m-2·yr-1) but not for P (0–1g·m-2·yr-1). The density of benthicinvertebrates (>250 m) and subsurface-depositfeeding oligochaetes also increased over time oncreated salt marshes. Invertebrate and oligochaetedensity were strongly related to MOM content(r2= 0.83–0.87) and soil organic C(r2= 0.52–0.82) and N (r2= 0.62–0.84). Thesefindings suggest that, in created salt marshes,development of the benthic invertebrate community istied to marsh soil formation, especially accumulationof organic matter as MOM and soil. Field studies thatmanipulate the quantity and quality of soil organicmatter are needed to elucidate the relationshipbetween salt marsh pedogenesis and benthicinvertebrate community development.  相似文献   

2.
Net N mineralization rates were measured in heathlands still dominated by ericaceous dwarf shrubs (Calluna vulgaris or Erica tetralix) and in heathlands that have become dominated by grasses (Molinia caerulea or Deschampsia flexuosa). Net N mineralization was measuredin situ by sequential soil incubations during the year. In the wet area (gravimetric soil moisture content 74–130%), the net N mineralization rates were 4.4 g N m–2 yr–1 in the Erica soil and 7.8 g N m–2 yr–1 in the Molinia soil. The net nitrification rate was negligibly slow in either soil. In the dry area (gravimetric soil moisture content 7–38%), net N mineralization rates were 6.2 g N M-2 yr–1 in the Calluna soil, 10.9 g N m–2 yr–1 in the Molinia soil and 12.6 g N m–2 yr–1 in the Deschampsia soil. The Calluna soil was consistently drier throughout the year, which may partly explain its slower mineralization rate. Net nitrification was 0.3 g N m–2 yr–1 in the Calluna soil, 3.6 g N m–2 yr–1 in the Molinia soil and 5.4 g N m–2 yr–1 in the Deschampsia soil. The net nitrification rate increased proportionally with the net N mineralization rate suggesting ammonium availability may control nitrification rates in these soils. In the dry area, the faster net N mineralization rates in sites dominated by grasses than in the site dominated by Calluna may be explained by the greater amounts of organic N in the soil of sites dominated by grasses. In both areas, however, the net amount of N mineralized per gram total soil N was greater in sites dominated by Molinia or Deschampsia than in sites dominated by Calluna or Erica. This suggests that in heathlands invaded by grasses the quality of the soil organic matter may be increased resulting in more rapid rates of soil N cycling.  相似文献   

3.
The effects of phosphorus (P) enrichment ondecomposition rates were measured in a Ploading experiment conducted in an oligotrophicmarsh in the northern Everglades, USA. In thisstudy, eighteen 2.5 m2 enclosures(mesocosms) were placed in a pristineopen-water (slough) wetland and subjectedweekly to 6 inorganic P loads; 0, 0.2, 0.4,0.8, 1.6 and 3.2 g·m–2g·yr–1. Phosphorus accumulated rapidly in the benthicperiphyton and unconsolidated detrital (benthicfloc) layer and significantly higher Pconcentrations were recorded after 1 yr of Paddition. In contrast, a significant increasein surface soil (0–3 cm) TP concentrations wasmeasured in the surface soil layer only after 3yr of loading at the highest dose. Plantlitter and benthic floc/soil decompositionrates were measured using litter bags,containing sawgrass (Cladium jamaicenseCrantz) leaves, and cotton (cellulose) strips,respectively. Litter bag weight losses weresimilar among treatments and averaged 30% atthe end of the 3 yr study period. Litter Nconcentrations increased over time by anaverage of 80% at P loads < 1.6g·m–2·yr–1, and by > 120% at Ploads 1.6 g·m–2·yr–1.In contrast,litter P concentrations declined up to 50% inthe first 6 months in all P loads and onlysubsequently increased in the two highestP-loaded mesocosms. Cotton strip decaydemonstrated that benthic floc and soilmicrobial activity increased within 5 mo of Paddition with more significant treatmenteffects in the benthic than the soil layer. The influence of soil microbial transformationswas shown in porewater chemistry changes. While porewater P levels remained close tobackground concentrations throughout the study,porewater NH4 + and Ca2+increased in response to P enrichment,suggesting that one significant effect of Penrichment in this oligotrophic peat system isenhanced nutrient regeneration.  相似文献   

4.
Predictive models for phosphorus retention in wetlands   总被引:1,自引:0,他引:1  
The potential of wetlands to efficiently remove (i.e., act as a nutrient sink) or to transform nutrients like phosphorus under high nutrient loading has resulted in their consideration as a cost-effective means of treating wastewater on the landscape. Few predictive models exist which can accurately assess P retention capacity. An analysis of the north American data base (NADB) allowed us to develop a mass loading model that can be used to predict P storage and effluent concentrations from wetlands. Phosphorus storage in wetlands is proportional to P loadings but the output total phosphorus (TP) concentrations increase exponentially after a P loading threshold is reached. The threshold P assimilative capacity based on the NADB and a test site in the Everglades is approximately 1 g m–2 yr–1. We hypothesize that once loadings exceed 1 g m–2 yr–1 and short-term mechanisms are saturated, that the mechanisms controlling the uptake and storage of P in wetlands are exceeded and effluent concentrations of TP rise exponentially. We propose a One Gram Rule for freshwater wetlands and contend that this loading is near the assimilative capacity of wetlands. Our analysis further suggests that P loadings must be reduced to 1 g m–2 yr–1 or lower within the wetland if maintaining long-term low P output concentrations from the wetlands is the central goal. A carbon based phosphorus retention model developed for peatlands and tested in the Everglades of Florida provided further evidence of the proposed One Gram Rule for wetlands. This model is based on data from the Everglades areas impacted by agricultural runoff during the past 30 years. Preliminary estimates indicate that these wetlands store P primarily as humic organic-P, insoluble P, and Ca bound P at 0.44 g m–2 yr–1 on average. Areas loaded with 4.0 g m–2 yr–1 (at water concentrations>150 g·L–1 TP) stored 0.8 to 0.6 g m–2 yr–1 P, areas loaded with 3.3 g m–2 yr–1 P retained 0.6 to 0.4 g m–2 yr–1 P, and areas receiving 0.6 g m–2 yr–1 P retained 0.3 to 0.2 g m–2 yr–1. The TP water concentrations in the wetland did not drop below 50 g·L–1 until loadings were below 1 g m2 yr–1 P.  相似文献   

5.
A rich and varied meiofauna inhabits a Cornish mudflat near the mouth of the Tamar River in southwestern England. Population densities range from 117 to 943 individuals · g–1 (wet) sediment (1.4–11.4 × 106 individuals · m–2), with foraminifera, harpacticoid copepods and nematodes appearing in nearly equal numbers and comprising most of the meiofauna. Seasonally, meiofaunal numbers rise and fall with solar radiation and vary inversely with river discharge. Two species, the atestate allogromiid A and the calcareous Haynesina germanica (Ehrenberg), far outnumber other foraminifera; their population densities and growth rates reach maxima in spring and summer.Monthly rates of sediment respiration are locally variable, but clearly increase from winter (4.13 ml O2 · m–2 · h–1 in December) to spring (38.87 ml O2 · m–2 · h–1 in April). Experiments and calculations ascribe approximately 30% of this total to the meiofauna (including microfauna and microflora), 50% to bacteria and less than 20% to chemical oxidation. A tentative energy budget for the mudflat suggests that secondary production by meiofauna is small as compared with coastal environments elsewhere, and that meiofaunal production (426 Kcal · m–2 · y–1) is nearly twice meiofaunal respiration (252 Kcal · m–2 · yr–1).  相似文献   

6.
Nitrogen fixation was measured in four subarctic streams substantially modified by beaver (Castor canadensis) in Quebec. Acetylene-ethylene (C2H2 C2H4) reduction techniques were used during the 1982 ice-free period (May–October) to estimate nitrogen fixation by microorganisms colonizing wood and sediment. Mean seasonal fixation rates were low and patchy, ranging from zero to 2.3 × 10–3 µmol C2H4 · cm–2 · h–1 for wood, and from zero to 7.0 × 10–3 µmol C2H4 · g AFDM–1 · h–1 for sediment; 77% of all wood and 63% of all sediment measurements showed no C2H2 reduction. Nonparametric statistical tests were unable to show a significant difference (p > 0.05) in C2H2 reduction rates between or within sites for wood species or by sediment depth.Nitrogen contributed by microorganisms colonizing wood in riffles of beaver influenced watersheds was small (e.g., 0.207 g N · m–2 · y–1) but greater than that for wood in beaver ponds (e.g., 0.008 g N · m–2 · y–1) or for streams without beaver (e.g., 0.003 g N · m–2 · y–1). Although mass specific nitrogen fixation rates did not change significantly as beaver transform riffles into ponds, the nitrogen fixed by organisms colonizing sediment in pond areas (e.g., 5.1 g N · m–2 · y–1) was greater than that in riffles (e.g., 0.42 g N · m–2 · y–1). The annual nitrogen contribution is proportional to the amount of sediment available for microbial colonization. We estimate that total nitrogen accumulation in sediment, per unit area, is enhanced 9 to 44 fold by beaver damming a section of stream.  相似文献   

7.
Large increases in nitrogen (N) inputs to terrestrial ecosystems typically have small effects on immediate N outputs because most N is sequestered in soil organic matter. We hypothesized that soil organic N storage and the asynchrony between N inputs and outputs result from rapid accumulation of N in stable soil organic pools. We used a successional sequence on floodplains of the Tanana River near Fairbanks, Alaska to assess rates of stable N accumulation in soils ranging from 1 to 500+ years old. One-year laboratory incubations with repeated leaching separated total soil N into labile (defined as inorganic N leached) and stable (defined as total minus labile N) pools. Stable N pools increased faster (2 g N m–2 yr–1) than labile N (0.4 g N m–2 yr–1) pools during the first 50 years of primary succession; labile N then plateaued while stable and total N continued to increase. Soil C pools showed similar trends, and stable N was correlated with stable C (r2 = 0.95). From 84 to 95 % of soil N was stable during our incubations. Over successional time, the labile N pool declined as a proportion of total N, but remained large on an aerial basis (up to 38 g N m–2). The stoichiometry of stable soil N changed over successional time; C:N ratios increased from 10 to 22 over 275 years (r2 = 0.69). A laboratory 15N addition experiment showed that soils had the capacity to retain much more N than accumulated naturally during succession. Our results suggest that most soil N is retained in a stable organic pool that can accumulate rapidly but is not readily accessible to microbial mineralization. Because stable soil organic matter and total ecosystem organic matter have flexible stoichiometry, net ecosystem production may be a poor predictor of N retention on annual time scales.  相似文献   

8.
Mercury budget of an upland-peatland watershed   总被引:8,自引:2,他引:6  
Inputs, outputs, and pool sizes oftotal mercury (Hg) were measured in a forested 10 hawatershed consisting of a 7 ha hardwood-dominatedupland surrounding a 3 ha conifer-dominatedpeatland. Hydrologic inputs via throughfall andstemflow, 13±0.4 g m–2 yr–1over the entire watershed, were about doubleprecipitation inputs in the open and weresignificantly higher in the peatland than in theupland (19.6 vs. 9.8 g m–2 yr–1). Inputs of Hg via litterfall were 12.3±0.7g m–2 yr–1, not different in thepeatland and upland (11.7 vs. 12.5 g m–2yr–1). Hydrologic outputs via streamflow were2.8±0.3 g m–2 yr–1 and thecontribution from the peatland was higher despiteits smaller area. The sum of Hg inputs were lessthan that in the overstory trees, 33±3 gm–2 above-ground, and much less than eitherthat in the upland soil, 5250±520 gm–2, or in the peat, 3900±100 gm–2 in the upper 50 cm. The annual flux of Hgmeasured in streamflow and the calculated annualaccumulation in the peatland are consistent withvalues reported by others. A sink for Hg of about20 g m–2 yr–1 apparently exists inthe upland, and could be due to either or bothstorage in the soil or volatilization.  相似文献   

9.
Overwinter and snowmelt processes are thought to be critical to controllersof nitrogen (N) cycling and retention in northern forests. However, therehave been few measurements of basic N cycle processes (e.g.mineralization, nitrification, denitrification) during winter and littleanalysis of the influence of winter climate on growing season N dynamics.In this study, we manipulated snow cover to assess the effects of soilfreezing on in situ rates of N mineralization, nitrification and soilrespiration, denitrification (intact core, C2H2 – based method),microbial biomass C and N content and potential net N mineralization andnitrification in two sugar maple and two yellow birch stands with referenceand snow manipulation treatment plots over a two year period at theHubbard Brook Experimental Forest, New Hampshire, U.S.A. The snowmanipulation treatment, which simulated the late development of snowpackas may occur in a warmer climate, induced mild (temperatures >–5 °C) soil freezing that lasted until snowmelt. The treatmentcaused significant increases in soil nitrate (NO3 )concentrations in sugar maple stands, but did not affect mineralization,nitrification, denitrification or microbial biomass, and had no significanteffects in yellow birch stands. Annual N mineralization and nitrificationrates varied significantly from year to year. Net mineralization increasedfrom 12.0 g N m–2 y–1 in 1998 to 22 g N m–2 y–1 in 1999 and nitrification increased from 8 g N m–2 y–1 in 1998 to 13 g N m–2 y–1 in 1999.Denitrification rates ranged from 0 to 0.65 g N m–2 y–1. Ourresults suggest that mild soil freezing must increase soil NO3 levels by physical disruption of the soil ecosystem and not by direct stimulation of mineralization and nitrification. Physical disruption canincrease fine root mortality, reduce plant N uptake and reduce competitionfor inorganic N, allowing soil NO3 levels to increase evenwith no increase in net mineralization or nitrification.  相似文献   

10.
Summary Nitrogen mineralization, nitrification, denitrification, and microbial biomass were evaluated in four representative ecosystems in east-central Minnesota. The study ecosystems included: old field, swamp forest, savanna, and upland pin oak forest. Due to a high regional water table and permeable soils, the upland and wetland ecosystems were separated by relatively short distances (2 to 5 m). Two randomly selected sites within each ecosystem were sampled for an entire growing season. Soil samples were collected at 5-week intervals to determine rates of N cycling processes and changes in microbial biomass. Mean daily N mineralization rates during five-week in situ soil incubations were significantly different among sampling dates and ecosystems. The highest annual rates were measured in the upland pin oak ecosystem (8.6 g N m–2 yr–1), and the lowest rates in the swamp forest (1.5 g N m–2 yr–1); nitrification followed an identical pattern. Denitrification was relatively high in the swamp forest during early spring (8040 g N2O–N m–2 d–1) and late autumn (2525 g N2O–N m–2 d–1); nitrification occurred at rates sufficient to sustain these losses. In the well-drained uplands, rates of denitrification were generally lower and equivalent to rates of atmospheric N inputs. Microbial C and N were consistently higher in the swamp forest than in the other ecosystems; both were positively correlated with average daily rates of N mineralization. In the subtle landscape of east-central Minnesota, rates of N cycling can differ by an order of magnitude across relatively short distances.  相似文献   

11.
The shallow, brackish (11–18% salinity) Roskilde Fjord represents a eutrophication gradient with annual averages of chlorophyll, ranging from 3 to 25 mg chl a m–3. Nutrient loadings in 1985 were 11.3–62.4 g N m–2 yr–1 and 0.4–7.3 g P m–2 yr–1. A simple one-layer advection-diffusion model was used to calculate mass balances for 7 boxes in the fjord. Net loss rates varied from –32.2 to 17.9 g P m–2 yr–1 and from –3.3 to 66.8 g N m–2, corresponding to 74% of the external P-loading and 88% of the external N-loading to the entire estuary.Gross sedimentation rates measured by sediment traps were between 7 and 52 g p m–2 yr–1 and 50 and 426 g N M–2 yr–1, respectively. Exchangeable sediment phosphorus varied in annual average between 2.0 and 4.8 g P m–2 and exchangeable sediment nitrogen varied from 1.9 to 33.1 g N m–1. Amplitudes in the exchangeable pools followed sedimentation peaks with delays corresponding to settling rates of 0.3 m d–1. Short term nutrient exchange experiments performed in the laboratory with simultaneous measurements of sediment oxygen uptake showed a release pattern following the oxygen uptake, the changes in the exchangeable pools and the sedimentation peaks.The close benthic-pelagic coupling also exists for the denitrification with maxima during spring of 5 to 20 mmol N m–2 d–1. Denitrification during the nitrogen-limited summer period suggests dependence on nitrification. Comparisons with denitrification from other shallow estuaries indicate a maximum for denitrification in estuaries of about 250 µmol N m–2 h–2 achieved at loading rates of about 25–125 g N m–2 yr–1.  相似文献   

12.
The effects of light intensity, oxygen concentration, and pH on the rates of photosynthesis and net excretion by metalimnetic phytoplankton populations of Little Crooked Lake, Indiana, were studied. Photosynthetic rates increased from 1.42 to 3.14 mg C·mg–1 chlorophylla·hour–1 within a range of light intensities from 65 to 150E·m–2·sec–1, whereas net excretion remained constant at 0.05 mg C·mg–1 chlorophylla·hour–1. Bacteria assimilated approximately 50% of the carbon released by the phytoplankton under these conditions. Excreted carbon (organic compounds either assimilated by bacteria or dissolved in the lake water) was produced by phytoplankton at rates of 0.02–0.15 mg C·mg–1 chlorophylla·hour–1. These rates were 6%–13% of the photosynthetic rates of the phytoplankton. Both total excretion of carbon and bacterial assimilation of excreted carbon increased at high light intensities whereas net excretion remained fairly constant. Elevated oxygen concentrations in samples incubated at 150E· m–2·sec–1 decreased rates of both photosynthesis and net excretion. The photosynthetic rate increased from 3.0 to 5.0 mg C·mg–1 chlorophylla· hour–1 as the pH was raised from 7.5 to 8.8. Net excretion within this range decreased slightly. Calculation of total primary production using a numerical model showed that whereas 225.8 g C·m–2 was photosynthetically fixed between 12 May and 24 August 1982, a maximum of about 9.3 g C·m–2 was released extracellularly.  相似文献   

13.
Summary We estimated the density of subterranean termites Gnathamitermes tubiformans at 800,000 · ha-1 for a standing crop biomass of 2 kg · ha-1 Predation losses were estimated to be 5,73 kg · ha-1 · yr-1 representing the major release of nutrients from termites to surficial soil layers. Nutrient fluxes from termites to predators amounted to 410g N·ha-1·yr-1, 33 g S · ha-1 · yr-1 and 19 g P · ha-1 · yr-1. These fluxes account for 8% of the litter N, 1.5% of the litter P and 2.9% of the litter S. The termites fixed an estimated 66 g · ha-1 · yr-1 atmospheric N and returned an estimated 100 g · ha-1 · yr-1 in the surface gallery carton. Since losses of elements from subterannean termites were greater than standing crops, we estimated an annual turnover of N at 3.5 times per year, P of 2.5 times per year, and S of 2.5 per times per year.Since surface foraging, predation and alate flights are pulse regulated by rainfall, nutrient flows through subterranean termites are episodic and releases of nutrients accumulated in termite biomass preceeds or is coincident with productivity pulses of some shallow rooted plants. We propose that subterranean termites are important as regulators in desert nutrient cycles.  相似文献   

14.
A modified Rotating Biological Contactor (RBC) was used for the treatability studies of synthetic tapioca wastewaters. The RBC used was a four stage laboratory model and the discs were modified by attaching porous nechlon sheets to enhance biofilm area. Synthetic tapioca wastewaters were prepared with influent concentrations from 927 to 3600 mg/l of COD. Three hydraulic loads were used in the range of 0.03 to 0.09 m3·m–2·d–1 and the organic loads used were in the range of 28 to 306 g COD· m–2·d–1. The percentage COD removal were in the range from 97.4 to 68. RBC was operated at a rotating speed of 18 rpm which was found to be the optimal rotating speed. Biokinetic coefficients based on Kornegay and Hudson models were obtained using linear analysis. Also, a mathematical model was proposed using regression analysis.List of Symbols A m2 total surface area of discs - d m active depth of microbial film onany rotating disc - K s mg ·l–1 saturation constant - P mg·m–2·–1 area capacity - Q l·d–1 hydraulic flow rate - q m3·m–2·d–1 hydraulic loading rate - S 0 mg·l–1 influent substrate concentration - S e mg·l–1 effluent substrate concentration - w rpm rotational speed - V m3 volume of the reactor - X f mg·l–1 active biomass per unit volume ofattached growth - X s mg·l–1 active biomass per unit volume ofsuspended growth - X mg·l–1 active biomass per unit volume - Y s yield coefficient for attachedgrowth - Y A yield coefficient for suspendedgrowth - Y yield coefficient, mass of biomass/mass of substrate removed Greek Symbols hr mean hydraulic detention time - (max)A d–1 maximum specific growth rate forattached growth - (max)s d–1 maximum specific growth rate forsuspended growth - max d–1 maximum specific growth rate - d–1 specific growth rate - v mg·l–1·hr–1 maximum volumetric substrateutilization rate coefficient  相似文献   

15.
Dynamics of forest floor biomass, pattern of litter fall and nutrient return in three central Himalayan high elevation forests are described. Fresh and partially decomposed litter layer occur throughout the year. In maple and birch the highest leaf litter value was found in October and in low-rhododendron in August. The relative contribution of partially and more decomposed litter to the total forest floor remains greatest the year round. The total calculated input of litter was 627.7 g m-2 yr-1 for maple, 477.87 g m-2 yr-1 for birch and 345.9 g m-2 yr-1 for low-rhododendron forests. 49–61% of the forest floor was replaced per year with a subsequent turnover time of 1.6–2.0 yr. The annual nutrient return through litter fall amounted to (kg ha-1 yr-1) 25.5–56.1 N, 2.0–5.4 P and 9.9–23.3 K. The tree litter showed an annual replacement of 26–54% for different nutrients and it decreased towards higher elevation. The nutrient use efficiency in terms of litter produced per unit of nutrient was higher in present study compared to certain mid- and high-elevation forests of the central Himalaya.  相似文献   

16.
Elevated nitrogen (N) deposition in humid tropical regions may exacerbate phosphorus (P) deficiency in forests on highly weathered soils. However, it is not clear how P availability affects soil microbes and soil carbon (C), or how P processes interact with N deposition in tropical forests. We examined the effects of N and P additions on soil microbes and soil C pools in a N-saturated old-growth tropical forest in southern China to test the hypotheses that (1) N and P addition will have opposing effects on soil microbial biomass and activity, (2) N and P addition will alter the composition of the microbial community, (3) the addition of N and P will have interactive effects on soil microbes and (4) addition-mediated changes in microbial communities would feed back on soil C pools. Phospholipid fatty acid (PLFA) analysis was used to quantify the soil microbial community following four treatments: Control, N addition (15 g N m−2 yr−1), P addition (15 g P m−2 yr−1), and N&P addition (15 g N m−2 yr−1 plus 15 g P m−2 yr−1). These were applied from 2007 to 2011. Whereas additions of P increased soil microbial biomass, additions of N reduced soil microbial biomass. These effects, however, were transient, disappearing over longer periods. Moreover, N additions significantly increased relative abundance of fungal PLFAs and P additions significantly increased relative abundance of arbuscular mycorrhizal (AM) fungi PLFAs. Nitrogen addition had a negative effect on light fraction C, but no effect on heavy fraction C and total soil C. In contrast, P addition significantly decreased both light fraction C and total soil C. However, there were no interactions between N addition and P addition on soil microbes. Our results suggest that these nutrients are not co-limiting, and that P rather than N is limiting in this tropical forest.  相似文献   

17.
Nitrogen flux data was synthesized in developing a nitrogen flow budget for a Louisiana Barataria BasinSpartina alterniflora salt marsh. Results demonstrate the importance of spatial consideration in developing a nitrogen budget for coastal marshes. Using a mass balance approach nitrogen inputs balanced nitrogen sinks or losses from a marsh soil-plant system with a specific rooting depth. However, per unit areas on a local scale, marshes serve as a large sink for nitrogen due to rapid accretion which removes 17.O g N m–2yr–1 through subsidence below the root zone. On a larger spatial scale (regional) it is shown that the marshes do not serve as a large nitrogen sink. The rapid marsh deterioration currently occurring in the rapidly subsiding marshes of the Mississippi River deltaic plain account for a net regional loss of 12.5 g N m–2yr–1. Thus, regionally the net sink is equivalent to only 5 g N m–2yr–1 as compared to 17.0 g N m–2yr–1 on a local scale.  相似文献   

18.
Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid productivities from chemostat cultures of an isolate of Isochrysis galbana have been studied. The productivities reached in the interval of dilution rates between 0.0295 h–1 and 0.0355 h–1 were 1.5mg·1–1·h–1 for lipids, 300 g·1–1·h–1 for EPA and 130g1·1–1·h–1 for DHA. Furthermore, light attenuation by mutual shading, and agitation speed influences on growth and fatty acid composition were analysed. A model relating steady-state dilution rates to internal average light intensity has been proposed, the parameter values of which obtained by non-linear regression were: maximum specific growth rate (max)=0.0426 h–1; the affinity of cells to light (Ik) = 10.92 W·m–2; the exponent (n) = 5.13; regression coefficient (r 2)=0.9999. Correspondence to: E. Molina Grima  相似文献   

19.
The effects of grass growth and N deposition on the leaching of nutrients from forest soil were studied in a lysimeter experiment performed in the Moravian-Silesian Beskydy Mts. (the Czech Republic). It was assumed that the grass sward formed on sites deforested due to forest decline would improve the soil environment. Lysimeters with growing acidophilous grasses (Calamagrostis arundinacea and C. villosa), common on clear-cut areas, and with unplanted bare forest soil were installed in the deforested area affected by air pollution. Wet bulk deposition of sulphur in SO42– corresponded to 21.6–40.1 kg ha–1 and nitrogen in NH4+ and NO3 to 8.9–17.4 kg N ha–1, with a rain water pH of 4.39–4.59 and conductivity of 18.6–36.4 S cm–1 during the growing seasons 1997–1999. In addition, the lysimeters were treated with 50 kg N ha–1 yr–1 as ammonium nitrate during the 3 years of the experiment. Rapid growth of planted grasses resulted in a very fast formation of both above- and below-ground biomass and a large accumulation of nitrogen in the tissue of growing grasses. The greatest differences in N accumulation in aboveground biomass were observed at the end of the third growing season; in C. villosa and C. arundinacea, respectively, 2.66 and 3.44 g N m–2 after addition of nitrogen and 1.34 and 2.39 g N m–2 in control. Greater amounts of nitrogen were assessed in below-ground plant parts (9.93–12.97 g N m–2 in C. villosa and 4.29–4.39 g N m–2 in C. arundinacea). During the second and third year of experiment, the following effects were the most pronounced: the presence of growing grasses resulted in a decrease of both the acidity and conductivity of lysimetric water and in a lower amount of leached nitrogen, especially of nitrates. Leaching of base cations (Ca2+ and Mg2+) was two to three times lower than from bare soil without grasses. An excess of labile Al3+ was substantially eliminated in treatments with grasses. Enhanced N input increased significantly the acidity and losses of nutrients only in unplanted lysimeters. The leaching of N from treatments with grasses (3.9–5.6 kg N ha–1) was 31–46% of the amount of N in wet deposition. However, the amount of leached N (4.2–6.0 kg N ha–1) after N application was only 7.1–8.9% of total N input. After a short three year period, the features of soil with planted grasses indicated a slight improvement: higher pH values and Ca2+ and Mg2+ contents. The ability of these grass stands to reduce the excess nitrogen in soil is the principal mechanism modifying the negative impact on sites deforested by acid depositions. Thus it is suggested that grass sward formation partly eliminates negative processes associated with soil acidification and has a positive effect on the reduction of nutrient losses from the soil.  相似文献   

20.
Retention of nutrients in river basins   总被引:1,自引:0,他引:1  
In Denmark, as in many other European countries, the diffuse losses of nitrogen (N) and phosphorus (P) from the rural landscape are the major causes of surface water eutrophication and groundwater pollution. The export of total N and total P from the Gjern river basin amounted to 18.2 kg ha–1 and 0.63 kg P ha–1 during June 1994 to May 1995. Diffuse losses of N and P from agricultural areas were the main nutrient source in the river basin contributing 76% and 51%, respectively, of the total export.Investigations of nutrient cycling in the Gjern river basin have revealed the importance of permanent nutrient sinks (denitrification and overbank sedimentation) and temporary nutrient storage in watercourses. Temporary retention of N and P in the watercourses thus amounted to 7.2–16.1 g N m–2 yr–1 and 3.7–8.3 g P m–2 yr–1 during low-flow periods. Deposition of P on temporarily flooded riparian areas amounted from 0.16 to 6.50 g P m–2 during single irrigation and overbank flood events, whereas denitrification of nitrate amounted on average to 7.96 kg N yr–1 per running metre watercourse in a minerotrophic fen and 1.53 kg N yr–1 per linear metre watercourse in a wet meadow. On average, annual retention of N and P in 18 Danish shallow lakes amounted to 32.5 g N m–2 yr–1 and 0.30 g P m–2 yr–1, respectively, during the period 1989–1995.The results indicate that permanent nutrient sinks and temporary nutrient storage in river systems represent an important component of river basin nutrient budgets. Model estimates of the natural retention potential of the Gjern river basin revealed an increase from 38.8 to 81.4 tonnes yr–1 and that P-retention increased from –0.80 to 0.90 tonnes yr–1 following restoration of the water courses, riparian areas and a shallow lake. Catchment management measures such as nature restoration at the river basin scale can thus help to combat diffuse nutrient pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号