首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathways of infection of Brassica napus roots by Leptosphaeria maculans   总被引:1,自引:0,他引:1  
Infection of Brassica napus cotyledons and leaves by germinating ascospores of Leptosphaeria maculans leads to production of leaf lesions followed by stem cankers (blackleg). Leptosphaeria maculans also causes root rot but the pathway of infection has not been described. An L. maculans isolate expressing green fluorescent protein (GFP) was applied to the petiole of B. napus plants. Hyphal growth was followed by fluorescence microscopy and by culturing of sections of plant tissue on growth media. Leptosphaeria maculans grew within stem and hypocotyl tissue during the vegetative stages of plant growth, and proliferated into the roots within xylem vessels at the onset of flowering. Hyphae grew in all tissues in the stem and hypocotyl, but were restricted mainly to xylem tissue in the root. Leptosphaeria maculans also infected intact roots when inoculum was applied directly to them and hyphae entered at sites of lateral root emergence. Hyphal entry may occur at other sites but the mechanism is uncertain as penetration structures were not observed. Infection of B. napus roots by L. maculans can occur via above- and below-ground sources of inoculum, but the relative importance of the infection pathways under field conditions is unknown.  相似文献   

2.
3.
Restriction enzyme mediated insertional mutagenesis using a plasmid, pUCATPH, that confers hygromycin resistance, generated loss-of-pathogenicity mutants of Leptosphaeria maculans, the fungus that causes blackleg disease of Brassica napus. Of 516 L. maculans transformants analysed, 12 were pathogenicity mutants. When eight of these mutants were crossed to an isolate that attacks B. napus, cosegregation of pUCATPH sequences and loss of pathogenicity was not observed, suggesting that these mutations were not linked to plasmid sequences. In seven of eight crosses analysed, progeny with the hygromycin resistance gene were hygromycin-sensitive. Sequence analysis of an amplified fragment of pUCATPH in six clones derived from one 'silenced' progeny showed mutation of GC to AT on one DNA strand, reminiscent of repeat-induced point mutation (RIP) in Neurospora crassa. One loss-of-pathogenicity mutant had pUCATPH inserted in the promoter of a gene with an open reading frame of 529 amino acids that had no database match. Reintroduction of a wild-type copy of the gene to this mutant restored the ability to form lesions on cotyledons of B. napus.  相似文献   

4.
The spectrum of resistance to isolates of Leptosphaeria maculans and the map location of a new blackleg resistance gene found in the canola cultivar Brassica napus 'Surpass 400' are described. Two blackleg resistance genes, LepR1 and LepR2, from B. rapa subsp. sylvestris and introgressed in B. napus were identified previously. 'Surpass 400' also has blackleg resistance introgressed from B. rapa subsp. sylvestris. Using 31 diverse isolates of L. maculans, the disease reaction of 'Surpass 400' was compared with those of the resistant breeding lines AD9 (which contains LepR1), AD49 (which contains LepR2), and MC1-8 (which contains both LepR1 and LepR2). The disease reaction on 'Surpass 400' was different from those observed on AD9 and MC1-8, indicating that 'Surpass 400' carries neither LepR1 nor both LepR1 and LepR2 in combination. Disease reactions of 'Surpass 400' to most of the isolates tested were indistinguishable from those of AD49, which suggested 'Surpass 400' might contain LepR2 or a similar resistance gene. Classical genetic analysis of F1 and BC1 plants showed that a dominant allele conferred resistance to isolates of L. maculans in 'Surpass 400'. The resistance gene, which mapped to B. napus linkage group N10 in an interval of 2.9 cM flanked by microsatellite markers sR12281a and sN2428Rb and 11.7 cM below LepR2, was designated LepR3. A 9 cM region of the B. napus genome containing LepR3 was found to be syntenic with a segment of Arabidopsis chromosome 5.  相似文献   

5.
Phyllosphere micro-organisms of Brassica napus were isolated and their antagonism against Leptosphaeria maculans , causal agent of blackleg disease, was tested in vitro . In paired culture, Erwinia herbicola was found to be highly antagonistic to L. maculans. Bioassay of the culture filtrate of the bacterium against the test fungus revealed that Erw. herbicola secretes an antifungal substance into the culture medium. This substance was partially thermolabile and markedly reduced the germination and germ tube length of L. maculans . Aqueous bacterial suspensions and cold-sterilized culture filtrates, when applied to the seedlings prior to inoculation, significantly reduced the severity of blackleg disease.  相似文献   

6.
A thorough understanding of the relationships between plants and pathogens is essential if we are to continue to meet the agricultural needs of the world's growing population. The identification of genes underlying important quantitative trait loci is extremely challenging in complex genomes such as Brassica napus (canola, oilseed rape or rapeseed). However, recent advances in next-generation sequencing (NGS) enable much quicker identification of candidate genes for traits of interest. Here, we demonstrate this with the identification of candidate disease resistance genes from B.?napus for its most devastating fungal pathogen, Leptosphaeria maculans (blackleg fungus). These two species are locked in an evolutionary arms race whereby a gene-for-gene interaction confers either resistance or susceptibility in the plant depending on the genotype of the plant and pathogen. Preliminary analysis of the complete genome sequence of Brassica rapa, the diploid progenitor of B.?napus, identified numerous candidate genes with disease resistance characteristics, several of which were clustered around a region syntenic with a major locus (Rlm4) for blackleg resistance on A7 of B.?napus. Molecular analyses of the candidate genes using B.?napus NGS data are presented, and the difficulties associated with identifying functional gene copies within the highly duplicated Brassica genome are discussed.  相似文献   

7.
8.
The metabolite profiles of 26 isolates of the blackleg fungus (Leptosphaeria maculans (Desm.) Ces. et de Not., asexual stage Phoma lingam (Tode ex Fr.) Desm.), obtained from diverse parts of the world (part of the International Blackleg Crucifer Network collection), were studied utilizing specific culture conditions, HPLC analysis, and a set of chemical markers. This fungus is the causative agent of blackleg disease of brassica oilseeds; a virulent strain of the pathogen has caused significant rapeseed (Brassica napus L., and B. rapa L.) and canola (B. napus L., and B. rapa L.) losses in Canada, and is also considered a serious agricultural problem worldwide. Effective surveys of blackleg epidemics require simple and reliable analytical methodology to differentiate among the diverse groups of isolates. The chemical analysis of phytotoxins and related secondary metabolites is perhaps one of the most discriminating and the least ambiguous methods for differentiation of Phoma blackleg isolates. Following HPLC analyses, the 26 isolates could be placed in three main groups, irrespective of country of origin: isolates producing phomamide and sirodesmins, isolates producing indolyl dioxopiperazines, and isolates producing polyketides. Discussion of the implications of our findings and suggestions for species reclassification are provided.  相似文献   

9.
The LmR1 locus, which controls seedling resistance to the blackleg fungus Leptosphaeria maculans in the Brassica napus cultivar Shiralee, was positioned on linkage group N7. Fine genetic mapping in a population of 2500 backcross lines identified three molecular markers that cosegregated with LmR1. Additional linkage mapping in a second population colocalized a seedling resistance gene, ClmR1, from the cultivar Cresor to the same genetic interval on N7 as LmR1. Both genes were located in a region that showed extensive inter- and intragenomic duplications as well as intrachromosomal tandem duplications. The tandem duplications seem to have occurred in the Brassica lineage before the divergence of B. rapa and B. oleracea but after the separation of Brassica and Arabidopsis from a common ancestor. Microsynteny was found between the region on N7 carrying the resistance gene and the end of Arabidopsis chromosome 1, interrupted by a single inversion close to the resistance locus. The collinear region in Arabidopsis was assayed for the presence of possible candidate genes for blackleg resistance. These data provided novel insights into the genomic structure and evolution of plant resistance loci and an evaluation of the candidate gene approach using comparative mapping with a model organism.  相似文献   

10.
BACKGROUND: Blackleg disease of Brassica napus, caused by the necrotrophic fungus Leptosphaeria maculans, causes severe yield losses in Australia, Europe and Canada. In Western Australia, it nearly destroyed the oilseed rape industry in 1972 when host genotypes and conducive environmental conditions favoured severe epidemics. The introduction of cultivars with polygenic resistance and the adoption of sound cultural practices two decades later helped to manage the disease. These were abandoned by many farmers in recent years in favour of the effective but ephemeral resistance conferred by the single dominant gene-based resistance derived from B. rapa ssp. sylvestris. Recently, several cultivars carrying this gene have collapsed widely within a period of 3 years after their commercial release. An environment conducive to the disease and the association of the pathogen with susceptible hosts in Western Australia for over 80 years together have led to the proliferation of L. maculans races, amounting to half of all races delineated to date from Europe, including the United Kingdom, Canada and Australia. SCOPE: This review demonstrates the problems that emerge when traditional cultural practices employed, along with cultivars containing polygenic resistance to a serious necrotrophic pathogen, are discarded in preference to the exclusive deployment of effective but ephemeral single dominant gene-based resistance to the disease across Southern Australia. CONCLUSIONS: Single dominant gene-based resistance currently available, on its own, will not confer durable resistance to blackleg disease in oilseed rape. Return to earlier management practices, including reliance upon polygenic resistance and induced resistance, may be the best currently available options to maintain production in regions across Southern Australia predisposed to severe epidemics.  相似文献   

11.
An introgression derived from the B genome of Brassica juncea in spring-type oilseed rape (B. napus) conferring recessively inherited cotyledon resistance against several pathotypes of the blackleg fungus Leptosphaeria maculans was mapped using PCR-based molecular markers. Resistance-associated B-genome-specific randomly amplified (RAPD) and resistance gene analog (RGA) DNA polymorphisms were converted into three sequence-specific markers (SCARs; B5-1520, C5-1000, RGALm). The flanking sequence of the RGALm locus was determined by genomic walking, leading to a 1,610-bp EcoRV fragment which showed extensive homology to known and putative resistance genes of a cluster on Arabidopsis chromosome 5. Partial sequence analysis of the genomic RAPD segment OPC-05-1700 revealed strong homology to the gibberellin 2-oxidase gene of Arabidopsis. The SCAR markers were analyzed in two segregating populations and were found to be linked in coupling to each other, and in repulsion to the resistance locus. In both populations, markers deviated significantly from a monogenic 3:1 segregation ratio, with plants lacking the markers being more frequent than expected. Although the mode of introgression is yet unknown, the recombinant individuals observed among susceptible progeny suggest homeology between the B-genome-specific segment and its B. napus counterpart. This would offer prospects for reducing the size of the introgression and further fine mapping of the resistance locus.  相似文献   

12.
Doubled haploid (DH) lines together with a cotyledon bioassay were employed for the molecular analysis of resistance to the blackleg fungus Leptosphaeria maculans in the Australian Brassica napus cultivars Shiralee and Maluka. We used bulked segregant analysis to identify 13 RAPD and two RFLP markers linked to the resistance phenotype and mapped these markers in the segregating DH population. Our data suggest the presence of a single major locus controlling resistance in the cultivar Shiralee, confirming our previous results obtained from Mendelian genetic analyses. In addition, preliminary mapping data for the cultivar Maluka also support a single locus model for resistance and indicate that the resistance genes from 'Shiralee' and 'Maluka' are either linked or possibly identical. The molecular markers identified in this study should be a useful tool for breeding blackleg resistant varieties using marker-assisted selection, and are the essential first step towards the map-based cloning of this resistance gene.  相似文献   

13.
14.
Blackleg, caused by Leptosphaeria maculans, is a major disease of oilseed rape (Brassica napus), worldwide, including Australia and France. The aims of these studies were first, to determine if higher levels of resistance to L. maculans could be generated in double haploid (DH) lines derived from spring‐type B. napus cv. Grouse, which has a good level of field resistance to blackleg; and second, to determine whether the resistance to blackleg disease of individual DH lines responds differentially to different L. maculans field populations within and between the two countries. DH lines were extracted from cv. Grouse and tested in field experiments carried out in both France and Australia against natural L. maculans populations. Extracting and screening DH lines were an effective means to select individual lines with greatly improved expression of resistance to blackleg crown canker disease in comparison with the original parental population. However, relative disease resistance rankings for DH lines were not always consistent between sites. The higher level of resistance in France was shown to be because of a high expression level of quantitative resistance in the French growing conditions. Big differences were observed for some DH lines between the 2004 and the 2005 field sites in Australia where the L. maculans populations differed by their virulence on single dominant gene‐based resistant lines derived from Brassica rapa ssp. sylvestris. This differential behaviour could not be clearly explained by the specific resistance genes until now identified in these DH lines. This investigation highlights the potential to derive DH lines with superior levels of resistance to L. maculans compared with parental populations. However, in locations with particularly high pathogen diversity, such as in southern Australia, multiyear and multisite evaluations should be performed to screen for the most efficient material in different situations.  相似文献   

15.
16.
The loculoascomycete Leptosphaeria maculans (anamorph: Phoma lingam) causes blackleg of Brassicas, including Brassica napus (canola or rapeseed). This fungus probably comprises several morphologically similar species; taxonomic relationships between them are being clarified and nomenclature is being revised. The pathotype ("A" group) responsible for major economic losses to canola has been studied in more detail than other members of this species complex and is the focus of this review. L. maculans is haploid, outcrossing, can be transformed, and has a genome size of about 34 Mb. Preliminary genetic and physical maps have been developed and three genes involved in host specificity have been mapped. As yet, few genes have been characterized. Chemical analysis of fungal secondary metabolites has aided understanding of taxonomic relationships and of the host-fungal interaction by the unraveling of pathways for detoxification of antimicrobial phytoalexins. Several phytotoxins (host and nonhost specific) have been identified and a complex pattern of regulation of their synthesis by fungal and host metabolites has been discovered.  相似文献   

17.
Brassica napus (canola) cultivars and isolates of the blackleg fungus, Leptosphaeria maculans interact in a 'gene for gene' manner whereby plant resistance (R) genes are complementary to pathogen avirulence (Avr) genes. Avirulence genes encode proteins that belong to a class of pathogen molecules known as effectors, which includes small secreted proteins that play a role in disease. In Australia in 2003 canola cultivars with the Rlm1 resistance gene suffered a breakdown of disease resistance, resulting in severe yield losses. This was associated with a large increase in the frequency of virulence alleles of the complementary avirulence gene, AvrLm1, in fungal populations. Surprisingly, the frequency of virulence alleles of AvrLm6 (complementary to Rlm6) also increased dramatically, even though the cultivars did not contain Rlm6. In the L. maculans genome, AvrLm1 and AvrLm6 are linked along with five other genes in a region interspersed with transposable elements that have been degenerated by Repeat-Induced Point (RIP) mutations. Analyses of 295 Australian isolates showed deletions, RIP mutations and/or non-RIP derived amino acid substitutions in the predicted proteins encoded by these seven genes. The degree of RIP mutations within single copy sequences in this region was proportional to their proximity to the degenerated transposable elements. The RIP alleles were monophyletic and were present only in isolates collected after resistance conferred by Rlm1 broke down, whereas deletion alleles belonged to several polyphyletic lineages and were present before and after the resistance breakdown. Thus, genomic environment and exposure to resistance genes in B. napus has affected the evolution of these linked avirulence genes in L. maculans.  相似文献   

18.
19.
20.
Blackleg disease of crucifers, caused by the fungus Leptosphaeria maculans, is a major concern to oilseed rape producers worldwide. Brassica species containing the B genome have high levels of resistance to blackleg. Brassica juncea F2 and first-backcross (B1) populations segregating for resistance to a PG2 isolate of L. maculans were created. Segregation for resistance to L. maculans in these populations suggested that resistance was controlled by two independent genes, one dominant and one recessive in nature. A map of the B. juncea genome was constructed using segregation in the F2 population of a combination of restriction fragment length polymorphism (RFLP) and microsatel lite markers. The B. juncea map consisted of 325 loci and was aligned with previous maps of the Brassica A and B genomes. The gene controlling dominant resistance to L. maculans was positioned on linkage group J13 based on segregation for resistance in the F2 population. This position was confirmed in the B1 population in which the resistance gene was definitively mapped in the interval flanked by pN199RV and sB31143F. The provisional location of the recessive gene controlling resistance to L. maculans on linkage group J18 was identified using a subset of informative F2 individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号