首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 920 毫秒
1.
Catt  J.A.  Howse  K.R.  Christian  D.G.  Lane  P.W.  Harris  G.L.  Goss  M.J. 《Plant and Soil》1998,203(1):57-69
Nitrate losses in drainflow were measured over five years on eight hydrologically isolated field plots, pairs of which had the following cropping regimes: (a) a 3-yr unfertilised, ungrazed grass ley followed by winter and spring cereals, (b) mixed cropping including winter cover crops, spring cereals, winter cereals, winter fallow and spring beans, (c) a similar sequence to (b) but with a winter fallow replacing the cover crop in the first year and a winter cover crop replacing the fallow in the third year, and (d) continuous winter cereals (control plots). Less nitrate was lost in winter drainflow from winter cover crops than from the winter fallows, but over all five years less nitrate was leached from the continuous cereal plots than from those with mixed cropping. Most of the extra nitrate lost from the mixed cropping regimes probably resulted from mineralisation of the cover crop residues, which occurred at times when subsequent crops could not take advantage of the mineral nitrogen released. Crops grown after the grass ley and cover crops did not benefit from their residues, in terms of either grain yield or of total nitrogen uptake. We conclude that on heavy clay soils in UK a cropping regime of continuous winter cereals offers the best compromise between profitable crop production and minimised nitrate loss to surface waters.  相似文献   

2.
This paper reports results from a 3-year field experiment which examined Nitrogen (N) leaching loss from land under various set-aside managements. Four treatments were examined: three ploughed plots which were sown with wheat, ryegrass or maintained fallow; the fourth treatment was unploughed and natural weed growth (volunteers) permitted. The l-year set-aside was followed by two winter wheat test crops. Ceramic suction cups were installed at a depth of 90 cm and used to collect drainage water. N leaching loss was calculated by multiplying drainage volume, calculated from meteorological data, by its inorganic N concentration.Set-aside management significantly affected N leaching loss over the three years. During the set-aside year, the peak nitrate concentration from the unploughed treatment growing volunteer weeds was significantly lower than that from ploughed plots. Of the latter, by the spring, crop (i.e. wheat and ryegrass) assimilation of N significantly reduced N concentration compared to the fallow. The four set-aside treatments had a carry-over effect to the following year (first wheat test crop) resulting in significant differences in N losses. Leaching following the ryegrass treatment was very small and we believe that the grass residues minimised rates of net-N mineralization.The influence of set-aside management continued to the second wheat test crop where N loss was greater under the all wheat rotation because take-all had reduced yield and therefore crop N uptake.  相似文献   

3.
Nitrogen (N) export from soils to streams and groundwater under the intensifying cropping schemes of the Pampas is modest compared to intensively cultivated basins of Europe and North America; however, a slow N enrichment of water resources has been suggested. We (1) analyzed the fate of fertilizer N and (2) evaluated the contribution of fertilizer and soil organic matter (SOM) to N leaching under the typical cropping conditions of the Pampas. Fertilizer N was applied as 15N-labeled ammonium sulfate to corn (in a corn/soybean rotation) sown under zero tillage in filled-in lysimeters containing two soils of different texture representative of the Pampean region (52 and 78 kg N ha-1, added to the silt loam and sandy loam soil, respectively). Total fertilizer recovery at corn harvest averaged 84 and 64% for the silt loam and sandy loam lysimeters, respectively. Most fertilizer N was removed with plant biomass (39%) or remained immobilized in the soil (29 and 15%, for the silt loam and sandy loam soil, respectively) whereas its loss through drainage was negligible (<0.01%). We presume that the unaccounted fertilizer N losses were related to volatilization and denitrification. Throughout the corn growing season, subsequent fallow and soybean crop, which took place during an exceptionally dry period, the fertilizer N immobilized in the organic pool remained stable, and N leaching was scarce (7.5 kg N ha-1), similar at both soils, and had a low contribution of fertilizer N (0–3.5%), implying that >96% of the leached N was derived from SOM mineralization. The inherent high SOM of Pampean soils and the favorable climatic conditions are likely to propitiate year-round production of nitrate, favoring its participation in crop nutrition and leaching. The presence of 15N in drainage water, however, suggests that fertilizer N leaching could become significant in situations with higher fertilization rates or more rainy seasons.  相似文献   

4.
Summary Ammonium nitrate fertilizer, labelled with15N, was applied in spring to winter wheat growing in undisturbed monoliths of clay and sandy loam soil in lysimeters; the rates of application were respectively 95 and 102 kg N ha−1 in the spring of 1976 and 1975. Crops of winter wheat, oilseed rape, peas and barley grown in the following 5 or 6 years were treated with unlabelled nitrogen fertilizer at rates recommended for maximum yields. During each year of the experiments the lysimeters were divided into treatments which were either freelydrained or subjected to periods of waterlogging. Another labelled nitrogen application was made in 1980 to a separate group of lysimeters with a clay soil and a winter wheat crop to study further the uptake of nitrogen fertilizer in relation to waterlogging. In the first growing season, shoots of the winter wheat at harvest contained 46 and 58% of the fertilizer nitrogen applied to the clay and sandy loam soils respectively. In the following year the crops contained a further 1–2% of the labelled fertilizer, and after 5 and 6 years the total recoveries of labelled fertilizer in the crops were 49 and 62% on the clay and sandy loam soils respectively. In the first winter after the labelled fertilizer was applied, less than 1% of the fertilizer was lost in the drainage water, and only about 2% of the total nitrogen (mainly nitrate) in the drainage water from both soils was derived from the fertilizer. Maximum annual loss occurred the following year but the proportion of tracer nitrogen in drainage was nevertheless smaller. Leaching losses over the 5 and 6 years from the clay and sandy loam soil were respectively 1.3 and 3.9% of the original application. On both soils the percentage of labelled nitrogen to the total crop nitrogen content was greater after a period of winter waterlogging than for freely-drained treatments. This was most marked on the clay soil; evidence points to winter waterlogging promoting denitrification and the consequent loss of soil nitrogen making the crop more dependent on spring fertilizer applications.  相似文献   

5.
Thomsen  Ingrid K.  Kjellerup  Viggo  Jensen  Bendt 《Plant and Soil》1997,197(2):233-239
Two animal slurries either labelled with 15N in the urine or in the faeces fraction, were produced by feeding a sheep with unlabelled and 15N-labelled hay and collecting faeces and urine separately. The slurries were applied (12 g total N -2) to a coarse sand and a sandy loam soil confined in lysimeters and growing spring barley (Hordeum vulgare L). Reference lysimeters without slurry were supplied with15 NH4 15NO3 corresponding to the inorganic N applied with the slurries (6 g N m-2). In the second year, all lysimeters received unlabelled mineral fertilizer (6 g N m-2) and grew spring barley. N harvested in the two crops (grain + straw) and the loss of nitrate by leaching were determined. 15N in the urine fraction was less available for crop uptake than mineral fertilizer 15N. The first barley crop on the sandy loam removed 49% of the 15N applied in mineral fertilizer and 36% of that applied with urine. The availability of fertilizer 15N (36%) and urine15 N (32%) differed less on the coarse sand. Of the15 N added with the faeces fraction, 12–14% was taken up by the barley crop on the two soils. N mineralized from faeces compensated for the reduced availability of urine N providing a similar or higher crop N uptake in manured lysimeters compared with mineral fertilized ones.About half of the total N uptake in the first crop originated from the N applied either as slurry or mineral fertilizer. The remaining N was derived from the soil N pool. Substantially smaller but similar proportions of15 N from faeces, urine and fertilizer were found in the second crop. The similar recoveries indicated a slow mineralization rate of the residual faeces N since more faeces was left in the soil after the first crop.More N was lost by leaching from manured lysimeters but as a percentage of N applied, losses were similar to those from mineral fertilizer. During the first and second winter, 3–5% and 1–3%, respectively, of the 15N in slurry and mineral fertilizer was leached as nitrate. Thus slurry N applied in spring just before sowing did not appear to be more prone to loss by nitrate leaching than N given in mineral fertilizer. Slurry N accounted for a higher proportion of the N leached, however, because more N was added in this treatment.  相似文献   

6.
Macdonald  A.J.  Poulton  P.R.  Stockdale  E.A.  Powlson  D.S.  Jenkinson  D.S. 《Plant and Soil》2002,246(1):123-137
An earlier paper (Macdonald et al., 1997; J. Agric. Sci. (Cambridge) 129, 125) presented data from a series of field experiments in which 15N-labelled fertilizers were applied in spring to winter wheat, winter oilseed rape, potatoes, sugar beet and spring beans grown on four different soils in SE England. Part of this N was retained in the soil and some remained in crop residues on the soil surface when the crop was harvested. In all cases the majority of this labelled N remained in organic form. In the present paper we describe experiments designed to follow the fate of this `residual' 15N over the next 2 years (termed the first and second residual years) and measure its value to subsequent cereal crops. Averaging over all of the initial crops and soils, 6.3% of this `residual' 15N was taken up during the first residual year when the following crop was winter wheat and significantly less (5.5%) if it was spring barley. In the second year after the original application, a further 2.1% was recovered, this time by winter barley. Labelled N remaining after potatoes and sugar beet was more available to the first residual crop than that remaining after oilseed rape or winter wheat. By the second residual year, this difference had almost disappeared. The availability to subsequent crops of the labelled N remaining in or on the soil at harvest of the application year decreased in the order: silty clay loam>sandy loam>chalky loam>heavy clay. In most cases, only a small proportion of the residual fertilizer N available for plant uptake was recovered by the subsequent crop, indicating poor synchrony between the mineralization of 15N-labelled organic residues and crop N uptake. Averaging over all soils and crops, 22% of the labelled N applied as fertilizer was lost (i.e., unaccounted for in harvested crop and soil to a depth of 100 cm) by harvest in the year of application, rising to 34% at harvest of the first residual year and to 35% in the second residual year. In the first residual year, losses of labelled N were much greater after spring beans than after any of the other crops.  相似文献   

7.
Recent increases in nitrate concentrations in the Suwannee River and associated springs in northern Florida have raised concerns over the contributions of non-point sources. The Middle Suwannee River Basin (MSRB) is of special concern because of prevalent karst topography, unconfined aquifers and sandy soils which increase vulnerability of the ground water contamination from agricultural operations- a billion dollar industry in this region. Potato (Solanum tuberosum L.) production poses a challenge in the area due to the shallow root system of potato plants, and low water and nutrient holding capacity of the sandy soils. A four-year monitoring study for potato production on sandy soil was conducted on a commercial farm located in the MSRB to identify major nitrogen (N) loss pathways and determine their contribution to the total environmental N load, using a partial N budget approach and the potato model SUBSTOR. Model simulated environmental N loading rates were found to lie within one standard deviation of the observed values and identified leaching loss of N as the major sink representing 25 to 38% (or 85 to 138 kg ha-1 N) of the total input N (310 to 349 kg ha-1 N). The crop residues left in the field after tuber harvest represented a significant amount of N (64 to 110 kg ha-1N) and posed potential for indirect leaching loss of N upon their mineralization and the absence of subsequent cover crops. Typically, two months of fallow period exits between harvest of tubers and planting of the fall row crop (silage corn). The fallow period is characterized by summer rains which pose a threat to N released from rapidly mineralizing potato vines. Strategies to reduce N loading into the groundwater from potato production must focus on development and adoption of best management practices aimed on reducing direct as well as indirect N leaching losses.  相似文献   

8.
This paper reports on the search for inoculum sources of Mycocentrospora acerina on caraway (Carum carvi L.). Obvious suspects are cover crops of biennial caraway and preceding crops of annual caraway. Other suspects are weeds in or alongside the field. Finally, survival structures of the fungus, chlamydospore chains, packed in plant debris or naked, are suspected. M. acerina is able to infect many plant species, including cover crops of caraway such as spinach for seed production and peas. However, the agronomical suitability of a crop to serve as a cover crop of biennial caraway proved to be a more important factor in determining caraway yield than the susceptibility of the cover crop to M. acerina. This finding was corroborated by the fact that spinach and peas as preceding crops had no significant effects on M. acerina development in spring caraway sown the next year. Dill, barley and four weed species were found as new hosts of M. acerina. The role of weed hosts, susceptible crops and plant debris in the survival of the fungus in years without caraway is discussed. Caraway sown on soil containing infested caraway straw, infested debris of other plant species or chlamydospores grown in pure culture, became infected by M. acerina. Only high inoculum densities of chlamydospores in the soil caused severe damping-off of caraway seedlings. The opportunity for disease management by agronomical means is quite limited.  相似文献   

9.
Trindade  H.  Coutinho  J.  Van Beusichem  M.L.  Scholefield  D.  Moreira  N. 《Plant and Soil》1997,195(2):247-256
Nitrate leaching from a double-cropping forage system was measured over a 2-year period (June 1994–May 1996) in the Northwest region of Portugal using ceramic cup samplers. The crops were grown for silage making and include maize (from May to September) and a winter crop (rest of the year) consisting of a mixture of cereals and Italian ryegrass. The experiment was performed on two different sites with a history of many years under the same crop and fertiliser management, but differing in the amounts of N applied as fertiliser and by regular cattle slurry applications. The annual nitrate leaching losses measured ranged from 154 to 338 kg N ha-1. These amounts lead to annual mean concentrations between 22 and 41 mg -N L-1 in the drained water. The coarse textured soils (sandy loams) and the climatic conditions of the region with more than 600 mm of drainage concentrated between October and March, tended to promote the leaching of all the nitrate-N left in the soil after the maize crop plus the N released by mineralization during the winter period. On these soils, the minimum amount of drainage (necessary to provide the complete leaching of all the nitrate-N in the soil profile in the end of summer), seems to be between 300 and 400 mm. The winter crops removed important quantities of N (83–116 kg N ha-1) but, due to their late establishment in autumn they did not succeed in taking up the nitrate-N left in the soil after the maize crop. Approaches for reducing the nitrate leaching losses in this particular system are discussed.  相似文献   

10.
Tribouillois  Hélène  Cohan  Jean-Pierre  Justes  Eric 《Plant and Soil》2016,401(1-2):347-364
Background and aims

During the fallow period, non-legume cover crop species can capture mineral nitrogen (N) and thus decrease nitrate leaching, whereas legume cover crop species can provide a green manuring service that increases N availability for the subsequent crop. The aim of our study was to investigate the ability of bispecific mixtures to simultaneously produce these two services of N management in relation to their interspecific interactions.

Methods

Three field experiments were conducted at contrasting sites from summer to autumn to evaluate 25 mixtures and 10 sole crops. We measured biomass, N acquisition, C:N ratio and soil mineral N. Ecosystem services were assessed using both experimental data and simulation model predictions.

Results

Overall, prediction of N mineralized from cover crop residues was significantly higher for mixtures than for non-legume sole crops. Predictions of nitrate leached after mixtures did not differ significantly from those after non-legume sole crops and remained significantly lower than those under bare soil, especially for mixtures with turnip rape which benefitted greatly from being in mixtures.

Conclusions

Some of the mixtures provided a choice of compromises between the two ecosystem services, which helps define solutions for adapting mixture choice according to the site’s soil and climate characteristics and to fallow period management.

  相似文献   

11.
The growing interest in the use of alternative biomass products for fuel production requires a thorough understanding of the environmental impacts associated with the production of these bioenergy crops. Corn silage is a potential bioenergy feedstock; however, water quality implications for its utilization as a biofeedstock are not understood. The objective of this work was to evaluate water quality impacts associated with corn silage production. The GLEAMS-NAPRA model was used to quantify runoff, percolation, erosion, nitrate-nitrogen, total phosphorus, and pesticide losses attributed to the production of corn silage with and without winter cover crops for two tillage options (conventional tillage and no till) on three Indiana soils. Results revealed that corn silage would generate greater annual surface runoff (1 to 6 mm) and percolation (1 to 20 mm) compared with corn grain and grain plus stover cropping systems. Silage/winter cereal rye cover crop reduced annual surface runoff and percolation and was strongly influenced by increases in evapotranspiration, when compared with continuous silage production. Silage managed with winter cereal rye cover crop influenced water quality by reducing annual nitrate losses with runoff from a low of 14 % to a high of 27 %, with relatively no effect because of tillage management. No-till practice on silage system produced significantly greater phosphorus losses (7.46 to 18.07 kg/ha) in comparison to silage/cereal rye, corn grain, and grain plus stover harvest (p?<?0.05). For every 1,000 l of ethanol produced from corn silage, erosion losses ranged from 0.07 to 0.95 t/ha for conventional tillage practices and from 0.06 to 0.83 t/ha for no-till practices. The feasibility of cropping systems such as corn silage/cereal rye could contribute to large-scale biomass production but should be further investigated.  相似文献   

12.
Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha(-1), referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N 0, N 2, and N 3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency's drinking water standard of 10 mg N l(-1) even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during the high N leaching period for vetch cover crop treatment and for the control without the cover crops. The correlation, however, failed for other cover crops largely because of variable effectiveness of the cover crops in reducing NO3 leaching during the 5 years of this study. Further research is needed to determine if relay cover crops planted into standing summer crops is a more appropriate approach than fall seeding in this region to gain sufficient growth of the cover crop by fall. Testing with other main crops that have earlier harvest dates than corn is also needed to further validate the effectiveness of the bicultures to increase soil N availability while protecting the water quality.  相似文献   

13.
Summary The effects of winter waterlogging and a subsequent drought on the growth of winter barley and winter wheat have been examined. We used lysimeters containing soil monoliths with facilities to control the water table and a mobile shelter to control rainfall. Winter wheat was grown on a clay and on a sandy loam, but winter barley only on the clay soil. Lysimeters were either freely-drained during the winter or waterlogged with the water table 10 cm below the soil surface from 2 December until 31 March (that could occur by rainfall with a return period of 2 to 3 years). The lysimeters then were either irrigated so that the soil moisture deficit did not exceed 84 mm, or subjected to drought by limiting rainfall (equivalent to a 1 in 10 dry year in the driest area of England) so that the deficits reached maximum values of 150 mm in the clay and 159 mm in the sandy loam by harvest.Winter waterlogging restricted tillering and restricted the number of ears for all crops; grain yield of the winter barley was decreased by 219 g/m2 (30%), and that of winter wheat by 170 g/m2 (24%) and 153 g/m2 (21% on the clay and sandy loam respectively.The drought treatment reduced the straw weight of winter barley by 75 g/m2 (12%) but did not significantly depress the grain yield. For winter wheat on the clay, where the soil was freely-drained during the winter, drought depressed total shoot weight by 344 g/m2 (17%) and grain weight by 137 g/m2 (17%), but after winter waterlogging, drought did not further depress total or grain weight. In contrast, the winter wheat on the sandy loam was not significantly affected by drought.From these results, which are discussed in relation to other experiments in the United Kingdom, it seems that winter waterlogging is likely to cause more variation in the yield of winter barley and winter wheat than drought.  相似文献   

14.
Field experiments were carried out in 1987 on winter wheat crops grown on three types of soil. 15N-labelled urea, 15NH4NO3 or NH4 15NO3 (80 kg N ha-1) was applied at tillering. The soils (chalky soil, hydromorphic loamy soil, sandy clay soil) were chosen to obtain a range of nitrogen dynamics, particularly nitrification. Soil microbial N immobilization and crop N uptake were measured at five dates. Shortly after fertilizer application (0–26 days), the amount of N immobilized in soil were markedly higher with labelled urea or ammonium than that with nitrate in all soils. During the same period, crop 15N uptake occurred preferentially at the expense of nitrate. Nitrification differed little between soils, the rates were 2.0 to 4.7 kg N ha-1 day-1 at 9°C daily mean temperature. The differences in immobilization and uptake had almost disappeared at flowering and harvest. 15N recovery in soil and crop varied between 50 and 100%. Gaseous losses probably occurred by volatilization in the chalky soil and denitrification in the hydromorphic loamy soil. These losses affected the NH4 + and NO3 - pools differently and determined the partitioning of fertilizer-N between immobilization and absorption.  相似文献   

15.
The effects of competition from volunteer barley (Hordeum vulgare) on the growth and yield of oilseed rape (Brassica napus) were investigated in four experiments over three seasons. The growth of rape in the autumn was reduced by 50 - 91 % by competition from 400 barley plants m-2. A lower barley density of 200 plants m-2 had less effect but still reduced growth of rape by 65 - 81% in two of the experiments and 25 - 40% in the other two. During winter and spring the barley decreased in vigour and in the spring the rape started to recover, especially on the early drilled (23 - 30 August) plots. The rape sown in mid-September recovered less quickly. In Experiment 3, herbicides applied in November to control barley did not result in increased growth of rape in winter but led to greater recovery in spring. The barley died during the winter in Experiments 2 and 4, even in the absence of herbicides. Despite the marked effects of barley on the growth of rape in the autumn, yields on plots that had previously contained 200 barley plants m-2 were reduced by a maximum of only 16% in three of the experiments. In Experiment 3, where the barley was most competitive, this density and 400 plants m-2 lowered yields by 39% and 78%, respectively. Where a herbicide was used in November to control the barley these yield losses were reduced to 5%. In many rape crops the cost of herbicide treatment would be greater than the financial returns from the expected increase in yield resulting from the control of weeds. Possible reasons for the small loss in yield of rape from barley densities that had substantial effects on the growth of rape in the autumn are discussed.  相似文献   

16.
Thirty-three gal D–D or chloropicrin/acre (371 l/ha) injected during winter into well-drained, sandy soils controlled Longidorus attenuatus, Trichodorus spp. and other migratory root-parasitic nematodes and resulted in greatly increased yields of sugar beet for at least 3 years; 2 years of bare fallow was less effective than soil fumigation. Trichodorus spp. multiplied more on sugar beet than on barley, whereas L. attenuatus multiplied more on barley and clover than on sugar beet.  相似文献   

17.
Greenhouse tests were conducted to determine the effects of soil temperature and texture on development of Pratylenchus scribneri and the pathogenicity and reproductive rates of this nematode on selected crop plants. In a sandy loam soil, greatest numbers of P. scribneri were found at 30 and 35 C on sudangrass and sugarbeet, respectively. In a silty clay loam, the nematode reproduced best at 35 C on sugarbeet. Higher populations of P. scribneri were found in the sandy loam than silty clay loam soil at corresponding temperatures. In a pathogenicity test, top and root growth of sudangrass and barley were suppressed by the nematode, whereas no significant growth inhibition was found on wheat and alfalfa. Tests with other vegetable and field crops indicated wide variance in nematode reproduction.  相似文献   

18.
Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log10 (J2 + 1)/500 cm3 soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log10(J2 + 1)/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18°C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10°C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty.  相似文献   

19.
Associations between habitat and animal distributions are widely used to make conservation recommendations. However, short‐term studies do not allow investigation of temporal variation in associations as habitats change or populations decline. Here we quantify changes in the habitat attributes and distribution of breeding territories in a multiple‐brooded, crop‐nesting farmland bird, the Corn Bunting Emberiza calandra, over a 20‐year period during which the study population declined by 91%. Corn Buntings were positively associated with weedy fields, overhead wires, spring cereals and, in early summer, with winter barley and forage grass. Territory associations with wires (positive) and fallow (positive in early summer, negative in late summer) were stronger in later years when the population was smaller. Trends in the proportions of males holding territories into late summer (decline), and mated polygynously or not at all (increases), suggested that habitat quality declined and became more spatially variable in later years. Field size increased and weed abundance within fields declined, reducing the availability of field‐boundary song‐posts, invertebrate‐rich foraging habitats and physical cover for nests within crops. Conservation recommendations are for weed‐rich or under‐sown spring cereals and winter barley combined with late‐cut hay and fallow, especially when offered close to song‐posts such as overhead wires. We also demonstrate the value of long‐term studies by comparing our 20‐year analysis with 3‐year periods at the start, middle and end of this period, and expose some risks of conservation recommendations derived from short studies.  相似文献   

20.
李凤山 《生物多样性》2002,10(4):393-398
于1996年1月对西藏中南部越冬黑颈鹤的食性和谷物性食物的可获得性进行了研究。青梨(Hordeum vulgare),春小麦(Triticum spp.),冬小麦(Triticum spp.)是该地区的3种主要作物。对黑颈鹤粪便的分析表明,越冬黑颈鹤取食大量的农作物,尤其是小麦散落从粒,而冬小麦苗仅上鹤类食物组成的很小一部分。秋收后的翻耕,放牧等农业活动影响地面上作物残物(种子,叶,秆或根)及谷粒残物(裸粒,穗稃)的数量,农地翻耕掩埋了大部分的作物残物。未翻耕青梨地与小麦地上的作物残物覆盖比值相似。谷物残物的密度在未翻耕的小麦地上最大,为了最大限度地增加黑颈鹤的冬季食物来源,减少人为活动对黑颈鹤的干扰,我们建议:在秋收后不要翻耕河流两侧的青梨地和小麦地;在冬小麦种植地区,冬小麦应仅仅种植在主要公路两侧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号