首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pressure microprobe was used to determine whether the turgor pressure in tomato (Lycopersicon esculentum Mill., variety “Castelmart”) pericarp cells changed during fruit ripening. The turgor pressure of cells located 200 to 500 micrometers below the fruit epidermis was uniform within the same tissue (typically ± 0.02 megapascals), and the highest turgors observed (<0.2 megapascals) were much less than expected, based on tissue osmotic potential (−0.6 to −0.7 megapascals). These low turgor values may indicate the presence of apoplastic solutes. In both intact fruit and cultured discs of pericarp tissue, a small increase in turgor preceded the onset of ripening, and a decrease in turgor occurred during ripening. Differences in the turgor of individual intact fruit occurred 2 to 4 days before parallel differences in their ripening behavior were apparent, indicating that changes in turgor may reflect physiological changes at the cell level that precede expression of ripening at the tissue level.  相似文献   

2.
Abstract This study reports on the effect of water deficit on the tissue water relations and leaf growth of six corn cultivars, growing in glasshouse conditions, in order to understand growth responses to drought of tropical corn. A mild water-stress treatment was imposed slowly; plants reached a minimum pre-dawn leaf water potential of about –1.5 MPa by day 12 after watering was withheld. Analysis of the water relation characteristics of growing leaves using the pressure–volume technique demonstrated that under water deficits all the cultivars changed their moisture-release curves compared with irrigated plants. Osmotic potential at full turgor was lowered in water-stressed plants of all the genotypes and the degree of such change was between 0.34 MPa and 0.58 MPa. Thus, turgor pressure was lost at a lower water potential in water-stressed plants than in irrigated plants of all the varieties. Volumetric elastic moduli were also increased under water deficits and the increase ranged between 10% and 141% among the cultivars. In all the genotypes, the stress imposed led to a reduction of leaf area and dry matter accumulation. Leaf expansion was very sensitive to low turgor pressure and it ceased when turgor reached 0.2 MPa. Thus, varieties able to maintain a higher degree of turgor pressure (i.e. by osmotic adjustment) under water deficits may be able to prolong leaf growth.  相似文献   

3.
Does turgor limit growth in tall trees?   总被引:16,自引:2,他引:14  
The gravitational component of water potential contributes a standing 0.01 MPa m?1 to the xylem tension gradient in plants. In tall trees, this contribution can significantly reduce the water potential near the tree tops. The turgor of cells in buds and leaves is expected to decrease in direct proportion with leaf water potential along a height gradient unless osmotic adjustment occurs. The pressure–volume technique was used to characterize height‐dependent variation in leaf tissue water relations and shoot growth characteristics in young and old Douglas‐fir trees to determine the extent to which growth limitation with increasing height may be linked to the influence of the gravitational water potential gradient on leaf turgor. Values of leaf water potential (Ψl), bulk osmotic potential at full and zero turgor, and other key tissue water relations characteristics were estimated on foliage obtained at 13.5 m near the tops of young (approximately 25‐year‐old) trees and at 34.7, 44.2 and 55.6 m in the crowns of old‐growth (approximately 450‐year‐old) trees during portions of three consecutive growing seasons. The sampling periods coincided with bud swelling, expansion and maturation of new foliage. Vertical gradients of Ψl and pressure–volume analyses indicated that turgor decreased with increasing height, particularly during the late spring when vegetative buds began to swell. Vertical trends in branch elongation, leaf dimensions and leaf mass per area were consistent with increasing turgor limitation on shoot growth with increasing height. During the late spring (May), no osmotic adjustment to compensate for the gravitational gradient of Ψl was observed. By July, osmotic adjustment had occurred, but it was not sufficient to fully compensate for the vertical gradient of Ψl. In tall trees, the gravitational component of Ψl is superimposed on phenologically driven changes in leaf water relations characteristics, imposing potential constraints on turgor that may be indistinguishable from those associated with soil water deficits.  相似文献   

4.
The water relations parameters involved in assimilate flow into developing wheat (Triticum aestivum L.) grains were measured at several points from the flag leaf to the endosperm cavity in normally watered (Psi approximately -0.3 MPa) and water-stressed plants (Psi approximately -2 MPa). These included direct measurement of sieve tube turgor and several independent approaches to the measurement or calculation of water potentials in the peduncle, grain pericarp, and endosperm cavity. Sieve tube turgor measurements, osmotic concentrations, and Psi measurements using dextran microdrops showed good internal consistency (i.e. Psi = Psi(s) + Psi(p)) from 0 to -4 MPa. In normally watered plants, crease pericarp Psi and sieve tube turgor were almost 1 MPa lower than in the peduncle. This suggests a high hydraulic resistance in the sieve tubes connecting the two. However, observations concerning exudation rates indicated a low resistance. In water-stressed plants, peduncle Psi and crease pericarp Psi were similar. In both treatments, there was a variable, approximately 1-MPa drop in turgor pressure between the grain sieve tubes and vascular parenchyma cells. There was little between-treatment difference in endosperm cavity sucrose or osmotic concentrations or in the crease pericarp sucrose pool size. Our results re-emphasize the importance of the sieve tube unloading step in the control of assimilate import.  相似文献   

5.
C. M. Deom  S. Quan  X. Z. He 《Protoplasma》1997,198(1-2):1-8
Summary The turgor pressure of growing pollen tubes of the lily (Lilium longiflorum Thunb.) has been recorded using a turgor pressure probe. Insertion of the probe's micropipette was routinely accomplished, providing recording periods of 20 to 30 min. Probe insertion did not affect tube growth. The stable turgor values ranged between 0.1 and 0.4 MPa, the mean value being 0.209 ± 0.064 MPa (n=106). A brief increase in turgor, generated by injection of oil through the pressure probe, caused the tube to burst at its tip. Burst pressures ranged between 0.19 and 0.58 MPa, that is, individual lily pollen tubes do not withstand turgor pressure approaching twice their regular turgor pressure. In contrast, parallel experiments using the incipient plasmolysis technique yielded a mean putative turgor pressure of 0.79 MPa either using sucrose (n=24) or mannitol (n=25). Surprisingly, turgor pressure was not significantly correlated with tube growth rate which ranged from zero to 13 m/min. Nor did it correlate with tube length over the tested range of 100 to 1600 m. In addition the influence of the medium's osmolality was surprisingly low: raising the external osmotic pressure from 0.36 to 1.08 MPa, with sucrose or mannitol, only caused mean turgor pressure to decline from 0.27 to 0.18 MPa. We conclude that growing lily pollen regulates its turgor pressure remarkably well despite substantial variation in tube growth rate, tube length, and osmotic milieu.  相似文献   

6.
Regulation of tomato fruit growth by epidermal cell wall enzymes   总被引:12,自引:0,他引:12  
Water relations of tomato fruit and the epidermal and pericarp activities of the putative cell wall loosening and tightening enzymes Xyloglucan endotransglycosylase (XET) and peroxidase were investigated, to determine whether tomato fruit growth is principally regulated in the epidermis or pericarp. Analysis of the fruit water relations and observation of the pattern of expansion of tomato fruit slices in vitro , has shown that the pericarp exerts tissue pressure on the epidermis in tomato fruit, suggesting that the rate of growth of tomato fruit is determined by the physical properties of the epidermal cell walls. The epidermal activities of XET and peroxidase were assayed throughout fruit development. Temporal changes in these enzyme activities were found to correspond well with putative cell wall loosening and stiffening during fruit development. XET activity was found to be proportional to the relative expansion rate of the fruit until growth ceased, and a peroxidase activity weakly bound to the epidermal cell wall appeared shortly before cessation of fruit expansion. No equivalent peroxidase activity was detected in pericarp tissue of any age. It is therefore plausible that the expansion of tomato fruit is regulated by the combined action of these enzyme activities in the fruit epidermis.  相似文献   

7.
Frensch J  Hsiao TC 《Plant physiology》1994,104(1):247-254
Transient responses of cell turgor (P) and root elongation to changes in water potential were measured in maize (Zea mays L.) to evaluate mechanisms of adaptation to water stress. Changes of water potential were induced by exposing roots to solutions of KCl and mannitol (osmotic pressure about 0.3 MPa). Prior to a treatment, root elongation was about 1.2 mm h-1 and P was about 0.67 MPa across the cortex of the expansion zone (3-10 mm behind the root tip). Upon addition of an osmoticum, P decreased rapidly and growth stopped completely at pressure below approximately 0.6 MPa, which indicated that the yield threshold (Ytrans,1) was just below the initial turgor. Turgor recovered partly within the next 30 min and reached a new steady value at about 0.53 MPa. The root continued to elongate as soon as P rose above a new threshold (Ytrans,2) of about 0.45 MPa. The time between Ytrans,1 and Ytrans,2 was about 10 min. During this transition turgor gradients of as much as 0.15 MPa were measured across the cortex. They resulted from a faster rate of turgor recovery of cells deeper inside the tissue compared with cells near the root periphery. Presumably, the phloem was the source of the compounds for the osmotic adjustment. Turgor recovery was restricted to the expansion zone, as was confirmed by measurements of pressure kinetics in mature root tissue. Withdrawal of the osmoticum caused an enormous transient increase of elongation, which was related to only a small initial increase of P. Throughout the experiment, the relationship between root elongation rate and turgor was nonlinear. Consequently, when Y were calculated from steady-state conditions of P and root elongation before and after the osmotic treatment, Yss was only 0.21 MPa and significantly smaller compared with the values obtained from direct measurements (0.42-0.64 MPa). Thus, we strongly emphasize the need for measurements of short-term responses of elongation and turgor to determine cell wall mechanics appropriately. Our results indicate that the rate of solute flow into the growth zone could become rate-limiting for cell expansion under conditions of mild water stress.  相似文献   

8.
Spatial distribution of cell turgor pressure, cell osmotic pressure and relative elemental growth rate were measured in growing tall fescue leaves ( Festuca arundinacea ). Cell turgor pressure (measured with a pressure probe) was c . 0.55 MPa in expanding cells but increased steeply (+0.3 MPa) in cells where elongation had stopped. However, cell osmotic pressure (measured with a picolitre osmometer) was almost constant at 0.85 MPa throughout the leaf. The water potential difference between the growth zone and the mature zone (0.3 MPa) was interpreted as a growth-induced water potential gradient. This and further implications for the mechanism of growth control are discussed.  相似文献   

9.
Turgor regulation and effects of high NaCl and water deficiton growth and internal solutes were studied after transferringtobacco cells from control culture medium (osmotic pressure= 0.13–0.15 MPa at time of transfer) to culture mediumcontaining either 82 mol m–3 NaCl or 150 mol m–3melibiose (osmotic pressure of media = 0.62 MPa). Followingtransfer to media with higher osmotic pressure, expansion rateand turgor pressure were reduced. Within 24 h of imposing thewater deficit, expansion rate had returned to that of cellsin control culture medium. However, by 24 h, turgor pressurehad only risen from 0.2 MPa to 0.65 MPa in the NaCl treatmentand to 0.53 MPa in the melibiose treatment, while it was 0.73MPa in the control treatment. Furthermore, turgor pressure remainedwithin 0.05 MPa of these respective values for the rest of the(75 h) experiment. These results suggest differences in bothcell wall properties (extensibility and/or threshold turgor)and the level at which turgor is maintained for cells in thevarious treatments. Solutes contributing nearly all (82–97%) of the osmoticpressure in cells were identified. The initial (up to 24 h)increases in turgor pressure were mainly due to increases insolute concentrations caused by relatively slow expansion rates.However, increased Na+ and Cl uptake contributed toincreased turgor pressure in the NaCl treatment and caused turgorpressure of cells in this treatment to increase faster thanin the melibiose treatment. Likewise, expansion rate rose morequickly in the NaCl than in the melibiose treatment. After 24h, maximum expansion rate was reached and concentrations ofmost internal solutes began to decrease. Nevertheless, turgorpressure remained relatively constant. The constancy of turgorpressure was due to increased glucose uptake rates relativeto controls, with consequent increases in concentrations ofsucrose, glucose and fructose and, in cells in the melibiosetreatment, of organic acids. Glucose uptake was slower in theNaCl than in the melibiose treatment but higher turgor pressurewas maintained in the NaCl treatment due to high uptake of Na+and Cl. Glucose uptake appears to respond to a systemof turgor regulation, but further experiments are required toconfirm this and to determine whether Na+ and Cl uptakealso respond to a system of turgor regulation. Key words: Salinity, water deficit, growth  相似文献   

10.
Total water potential (ψ), solute potential, and turgor potential of field-grown muskmelon (Cucumis melo L.) fruit tissue (pericarp) and seeds were determined by thermocouple psychrometry at 5-day intervals from 10 to 65 days after anthesis (DAA). Fruit maturity occurred between 44 and 49 DAA, and seed germination ability developed between 35 and 45 DAA. Pericarp ψ was essentially constant at approximately −0.75 megapascal (MPa) from 10 to 25 DAA, then decreased to a minimum value of −1.89 MPa at 50 DAA before increasing to −1.58 MPa at 65 DAA. Seed ψ remained relatively constant at approximately −0.5 MPa from 10 to 30 DAA then decreased to −2.26 MPa at 50 to 60 DAA before increasing to −2.01 MPa at 65 DAA. After a rapid increase to 20 DAA, seed fresh weight declined until 30 DAA due to net water loss, despite continuing dry weight gain. As fruit and seed growth rates decreased, turgor potential initially increased, then declined to small values when growth ceased. A disequilibrium in ψ was measured between seeds and pericarp both early and late in development. From 20 to 40 DAA, the ψ gradient was from the seed to the tissue, coinciding with water loss from the seeds. From 50 to 65 DAA, seed ψ decreased, causing a reversal of the ψ gradient and a slight increase in seed water content. The partitioning of solutes between symplast and apoplast may create and maintain ψ gradients between the pericarp and seed. The low solute potential within the pericarp due to solute accumulation and loss of cellular compartmentation during ripening and sensecence may be involved in prevention of precocious germination of mature seeds.  相似文献   

11.
Phaseolus vulgaris plants with expanding primary leaves weresubjected to dark-light or light-dark transition at a root temperatureof 25 °C, or to root cooling to 10 °C. Illuminationor darkening caused rapid changes in water flux through theplants and in epidermal turgor pressure when analysed by pressureprobe. However, these were not concurrent with variations inbulk leaf water potential and turgor pressure as determinedby the pressure chamber method. In addition, the turgor pressureof epidermis measured with the pressure probe was invariably0.05 to 0.15 MPa lower than that measured in bulk tissue withthe pressure chamber. Cooling roots to 10°C induced waterstress and wilting. Both techniques indicated a decrease ofturgor pressure, but a 20-30 min lag was observed with the pressurechamber. Due to stomatal closure and decreased transpiration,root-cooled plants regained cell turgor after 5-7 h of cooling,but bulk tissue and epidermal turgor (as well as leaf growthrate) remained significantly lower than control levels. Thesefindings indicate that changes in turgor pressure as the resultof hydraulic signalling are sufficient to explain the rapidchanges in growth rate following illumination or cooling reportedin earlier work (Sattin et al 1990). They also indicate thatdata obtained by use of the pressure chamber must be treatedwith caution. Key words: Phaseolus vulgaris, expansion growth, water relations, hydraulic signalling, pressure probe, pressure chamber  相似文献   

12.
The relationship between cell elongation, change in turgor andcell osmotic pressure was investigated in the sub-apical regionof hypocotyls of developing sunflower seedlings (Helianthusannuus L.) that were grown in continuous white light. Cell turgorwas measured with the pressure probe. The same hypocotyl sectionswere used for determination of osmotic pressure of the tissuesap. Acceleration of cell elongation during the early phaseof growth was accompanied by a 25% decrease in both turgor andosmotic pressure. During the linear phase of growth both pressuresremained largely constant. The difference between turgor andosmotic pressure (water potential) was –0.10 to –0.13MPa. Excision of one cotyledon had no effect on growth, turgorand osmotic pressure. However, after removal of both cotyledonscell elongation ceased and a substantial decrease in both pressureswas measured. In addition, we determined the longitudinal tissuepressure in seedlings from which one or both cotyledons hadbeen removed. Tissue pressure and turgor were very similar quantitiesunder all experimental conditions. Our results demonstrate thatturgor and cell osmotic pressure show a parallel change duringdevelopment of the stem. Cessation of cell elongation afterremoval of the cotyledons is attributable to a decrease in turgor(tissue) pressure, which provides the driving force for growthin the hypocotyl of the intact plant. Key words: Cell elongation, Helianthus annuus, osmotic pressure, tissue pressure, turgor  相似文献   

13.
Salt-spray stimulated growth in strand-line species   总被引:2,自引:0,他引:2  
The response to salt spray and soil salinity of two sand dune strandline species ( Cakile maritima Scop. and Salsola kali L.) and two salt marsh strand-line species ( Atriplex hastata L. and A. littoralis L.) was compared in sand-compost cultures. The growth of the salt-marsh species remained unaffected, while the growth of the sand dune species Cakile maritima was strongly reduced by NaCl (150 and 300 m M ) absorbed via the root system. All four species were resistant to airborne salinity, and under conditions of low soil fertility, salt spray increased the dry matter production, especially of the sand dune species. Mineral analysis revealed foliar uptake of Na, K, Cl, Ca and Mg. Na and Cl ions absorbed from seawater droplets induced succulence. Both salt spray and soil salt increased the methylated quaternary ammonium compound content in the shoot tissue. Under non-saline conditions a considerable amount of these osmotic solutes was still present, while turgor pressure potential in these plants was rather low. The relation between salt, compatible osmotic solutes, turgor pressure potential and growth is discussed. Next to the major constituents of seawater, Na and Cl, especially magnesium and to a lesser extent, calcium, accumulated in the shoot tissue. Based on the positive growth response of the sand dune species to airborne salt, they should be termed 'aerohalophytes', whereas 'soil halophytes' should be used when referring to the Atriplex species, which are more specifically adapted to the increased salinity of salt marsh soils.  相似文献   

14.
Acclimation of leaf growth to low water potentials in sunflower   总被引:18,自引:5,他引:13  
Abstract Leaf growth is one of the most sensitive of plant processes to water deficits and is frequently inhibited in field crops. Plants were acclimated for 2 weeks under a moderate soil water deficit to determine whether the sensitivity of leaf growth could be altered by sustained exposure to low water potentials. Leaf growth under these conditions was less than in the controls because expansion occurred more slowly and for less of the day than in control leaves. However, acclimated leaves were able to grow at leaf water potentials (Ψ1) low enough to inhibit growth completely in control plants. This ability was associated with osmotic adjustment and maintenance of turgor in the acclimated leaves. Upon rewatering, the growth of acclimated leaves increased but was less than the growth of controls, despite higher concentrations of cell solute and greater turgor in the acclimated leaves than in controls. Therefore, factors other than turgor and osmotic adjustment limited the growth of acclimated leaves at high ψ1 Four potentially controlling factors were investigated and the results showed that acclimated leaves were less extensible and required more turgor to initiate growth than control leaves. The slow growth of acclimated leaves was not due to a decrease in the water potential gradient for water uptake, although changes in the apparent hydraulic conductivity for water transport could have occurred. It was concluded that leaf growth acclimated to low ψ1, by adjusting osmotically, and the concomitant maintenance of turgor permitted growth where none otherwise would occur. However, changes in the extensibility of the tissue and the turgor necessary to initiate growth caused generally slow growth in the acclimated leaves.  相似文献   

15.
Summary Transgenic tobacco (Nicotiana tabaccum L. cv. Samsun NN) expressing a yeast invertase in the vacuole provides a novel tool for studying the role of turgor, osmotic pressure, and cell wall properties during cell expansion. The plants used showed increased osmolarity and an increased cell size in young leaves. Their advantage is that they allow long-term analysis and undisturbed conditions. Cell expansion rate was maximal in leaf six of the transgenic plants and in leaf eleven of wild-type plants. Turgor rose to 0.52 ± 0.04 MPa (n=45) and 0.35 ± 0.03 MPa (n=45) in transgenic and wild-type plants, respectively. It was maximal where elongation rates were highest. Thus, elevated cell expansion rate was, at least in part, related to an enhancement in turgor. However, comparison between turgor and relative expansion rates showed that higher turgor pressures were required to achieve similar cell expansion rates in transformed plants as in the wild-type. This finding underlines the importance of the yield threshold and, thus, of the cell wall in growth regulation. This conclusion is further supported by the observation that the cell walls of transgenic plants were up to 77% thicker than the wild-type, but not qualitatively modified.  相似文献   

16.
The growing cells of hydroponic maize roots expand at constant turgor pressure (0.48 MPa) both when grown in low-(0.5 mol m-3 CaCl2) or full-nutrient (Hoagland's) solution and also when seedlings are stressed osmotically (0.96 MPa mannitol). Cell osmotic pressure decreases by 0.1–0.2 MPa during expansion. Despite this, total solute influx largely matches the continuously-varying volume expansion-rate of each cell. K+ in the non-osmotically stressed roots is a significant exception-its concentration dropping by 50% regardless of the presence or absence of K+ in the nutrient medium. This corresponds to the drop in osmotic pressure. Nitrate appears to replace Cl- in the Hoagland-grown cells.Analogous insensitivity of solute gradients to external solutes is observed in the radial distribution of water and solutes in the cortex 12 mm from the tip. Uniform turgor and osmotic pressures are accompanied by opposite gradients of K+ and Cl-, outwards, and hexoses and amino acids, inwards, for plants grown in either 0.5 mol m-3 CaCl2 or Hoagland's solution (with negligible Cl-). K+ and Cl- levels within both gradients were slightly higher when the ions were available in the medium. The gradients themselves are independent of the direction of solute supply. In CaCl2 solution all other nutrients must come from the stele, in Hoagland's solution inorganic solutes are available in the medium.24 h after osmotic stress, turgor pressure is recovered at all points in each gradient by osmotic adjustment using organic solutes. Remarkably, K+ and Cl- levels hardly change, despite their ready availability. Hexoses are responsible for some 50% of the adjustment with mannitol for a further 30%. Some 20% of the final osmotic pressure remains to be accounted for. Proline and sucrose are not significantly involved. Under all conditions a standing water potential step of 0.2 MPa between the rhizodermis and its hydroponic medium was found. We suggest that this is due to solute leakage.Abbreviations EDX energy dispersive X-ray microanalysis - water potential - 11-1 cell osmotic pressure - P turgor pressure  相似文献   

17.
Despite the importance of understanding plant growth, the mechanisms underlying how plant and fruit growth declines during drought remain poorly understood. Specifically, it remains unresolved whether carbon or water factors are responsible for limiting growth as drought progresses. We examine questions regarding the relative importance of water and carbon to fruit growth depending on the water deficit level and the fruit growth stage by measuring fruit diameter, leaf photosynthesis, and a proxy of cell turgor in olive (Olea europaea). Flow cytometry was also applied to determine the fruit cell division stage. We found that photosynthesis and turgor were related to fruit growth; specifically, the relative importance of photosynthesis was higher during periods of more intense cell division, while turgor had higher relative importance in periods where cell division comes close to ceasing and fruit growth is dependent mainly on cell expansion. This pattern was found regardless of the water deficit level, although turgor and growth ceased at more similar values of leaf water potential than photosynthesis. Cell division occurred even when fruit growth seemed to stop under water deficit conditions, which likely helped fruits to grow disproportionately when trees were hydrated again, compensating for periods with low turgor. As a result, the final fruit size was not severely penalized. We conclude that carbon and water processes are able to explain fruit growth, with importance placed on the combination of cell division and expansion. However, the major limitation to growth is turgor, which adds evidence to the sink limitation hypothesis.  相似文献   

18.
Abstract. Leaf expansion of four sunflower cultivars ( Helianthus annuus L. cvs. Hysun 31, Havasupai, Hopi and Seneca) was monitored continuously in a growth cabinet through the final stages of a drying cycle and then throughout the first 2 days after rewatering in order to study the responses of leaf expansion to water deficits. Comparable plants were also measured throughout a diurnal cycle in a glasshouse.
In the cabinet, leaf extension was faster in the dark than in the light, but an extended dark period suppressed leaf extension. At similar leaf water potentials, the rate of leaf extension was greater in the light than in the dark, but as the osmotic potential was lower in the light than in the dark, the relationship between turgor pressure and leaf extension rate was similar in both environments. Throughout the drying and recovery cycles turgor and leaf extension rate was positively correlated: no significant differences among cultivars were observed.
In the plants grown and measured in the glasshouse, leaf expansion occurred at lower leaf water potentials in stressed than in unstressed plants, but the relationship between leaf expansion and turgor was similar in both stressed and unstressed plants as a result of a lowering of the osmotic potential in the former. Diurnal turgor maintenance resulting from osmotic adjustment was almost half that occurring during a complete drying cycle. During the day, the leaf expansion rate increased linearly with turgor pressure in all cultivars: the expansion rate per unit turgor pressure was greater in the glasshouse than in the growth cabinet. Nocturnal leaf expansion in the stressed and unstressed plants was not, however, correlated with turgor pressure.  相似文献   

19.
While solute transport and ethylene production by plant tissue are sensitive to the osmotic concentration of the solution bathing the tissue, the influence of tissue water relations and specifically tissue turgor potential on the kinetics of 1-aminocyclopropane-1-carboxylic acid (ACC) uptake into the vacuolar compartment and ethylene production have not been examined. 1-Aminocyclopropane-1-carboxylic acid transport and ethylene production were examined in tomato (Lycopersicon esculentum Mill. cv. Liberty) pericarp slices incubated in solutions having a range of mannitol, polyethylene glycol 3350 and ethylene glycol concentrations known to affect tissue water relations. Tissue osmotic and turgor potentials were derived from osmolality measurements of cell saps recovered by freeze-thawing and corrected for the contribution of the free-space solution. When relatively nonpermeable (mannitol or polyethylene glycol 3350) osmotica were used, both ACC uptake and ethylene production were greatest at a solution osmolality of 230 milliosmolal where tissue turgor potential ranged between 120 and 140 kPa. At higher and lower turgor potentials, the high-affinity saturating component of ACC uptake and ethylene production were inhibited, and ACC efflux from the vacuolar compartment was increased. The inhibition of ACC uptake was evident as a decrease in Vmax with no effect on Km. Turgor potential changes caused by adjusting solution osmolality with mannitol or polyethylene glycol 3350 were accompanied by changes in the osmotic potential and water potential of the tissue. The effects of turgor potential vs the osmotic and water potentials of tomato pericarp slices were differentiated by comparing responses to nonpermeable osmotica and mixtures of nonpermeable and permeable osmotica. Ethylene glycol-mannitol mixtures had effects on the osmotic potential and water potential of the tissue similar to those of nonpermeable osmotica but had less effect on tissue turgor, ACC transport and ethylene production. Incubating tissue in solutions without nonpermeable osmotica osmotically shocked the tissue. Increasing solution osmolality with ethylene glycol in the absence of nonpermeable osmotica increased tissue turgor and ethylene production. The present study indicates that tissue turgor is an important factor affecting the kinetics of ACC uptake into the vacuolar compartment and ethylene production in tomato pericarp slices.  相似文献   

20.
The quantitative relationship between turgor and the pressureexerted by the inner tissues (cortex, vascular tissue, and pith)on the peripheral cell walls (longitudinal tissue pressure)was investigated in hypocotyls of sunflower seedlings (Helianthusannuus L.) In etiolated hypocotyls cell turgor pressures, asmeasured with the pressure probe, were in the range 0·38to 0·55 MPa with an average of 0·48 MPa. In irradiatedhypocotyls turgor pressures varied from 0·40 to 0·57MPa with a, mean at 0·49 MPa. The pressure exerted bythe inner tissues on the outer walls was estimated by incubatingpeeled sections in a series of osmotic test solutions (polyethyleneglycol 8000). The length change was measured with a transducer.In both etiolated and irradiated hypocotyls an external osmoticpressure of 0·5 MPa was required to inhibit elongationof the inner tissues, i.e. the average cell turgor and the longitudinaltissue pressure are very similar quantities. The results indicatethat the turgor of the inner tissues is displaced to and borneby the thick, growth-limiting peripheral cell walls of the hypocotyl. Key words: Helianthus annuus, hypocotyl growth, tissue pressure, turgor pressure, wall stress  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号