首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Quinacrine is a fluorescence probe useful for studying the effect of local anesthetics. The interaction of quinacrine and sarcoplasmic reticulum membranes measured by fluorescence spectroscopy indicates the presence of a saturable binding site. Typical local anesthetics are able to displace quinacrine bound to heavy sarcoplasmic reticulum membranes. The effectiveness of that displacement decreases in the order dibucaine greater than tetracaine greater than benzocaine greater than lidocaine greater than procaine greater than procainamide, indicating that the size and hydrophobicity of quinacrine are major determinants in the binding process. The use of radioactive tracer and a rapid filtration technique reveals that quinacrine interacts, at lower concentrations, with sarcoplasmic reticulum membranes by blocking the Ca2+-induced Ca2+ release. Higher quinacrine concentrations also affect the Ca2+-pump activity.  相似文献   

2.
The fluorescent probe 1-anilinonaphthalene 8-sulfonate was used to examine the binding of spin-labeled local anesthetics to lipid model systems, to the membranes of human red blood cells, and rabbit sarcoplasmic reticulum. 1-Anilinonaphthalene 8-sulfonate exhibits two distinct fluorescent lifetimes when bound to these biological membranes. The shorter lifetime represents the probe associated with the purely lipid region while the longer lifetime is associated with the protein region. The spin-labeled local anesthetic quenches the fluorescence of both of these components as indicated by the decrease in the lifetimes. Since nitroxide free radicals are known to quench fluorophores upon 'contract', the results reflect the relative interaction of local anesthetics with membrane lipids and proteins. The evidence is consistent with the concept of multiple binding sites for local anesthetics in membranes. Local anesthetics, once intercalated into the bilayer, may diffuse laterally and interact with membrane components, lipid as well as proteins. In biological membranes, however, positively charged local anesthetics are better able to quench 1-anilinonaphthalene 8-sulfonate in protein regions, suggesting that the interaction between local anesthetics and membrane proteins can be electrostatic in nature.  相似文献   

3.
The interaction between 3-acyl-2-(6-doxylpalmitoyl) phosphatidyl choline used as a hydrophobic spin probe and Ca2+-dependent ATPase from sarcoplasmic reticulum membranes of rabbit and carp white skeletal muscles was studied. The spin label incorporation into ATPase preparations was performed at initial steps of ATPase isolation by incubating reticulum membranes with the spin probe in the presence of cholic acid. A comparison of the molecular mobility of the probe incorporated into ATPase preparations and into liposomes formed from ATPase phospholipids demonstrated that the presence of the protein in the membrane produces the same effect on the probe mobility as does the decrease of temperature by 10-15 degrees C. The molecular mobility of the probe in the ATPase preparation is increased during protein thermal denaturation. The breaks on the Arrhenius plots for the probe molecular mobility are revealed at the same temperatures (25 degrees for rabbit reticulum and 16 degrees for carp reticulum) as those for the ATPase activity.  相似文献   

4.
The conversion of more than 65% of the phospholipids in human erythrocyte membranes to phosphatidyl-methanol and phosphatidic acid by incubation with phospholipase D and methanol increased the dissociation constant of the fluorescence probe ANS compared to untreated membranes, but did not affect the number of binding sites and the limiting fluorescence enhancement at maximal binding (Imax). On the contrary, the cationic fluorescence probe dansylcadaverin showed additional binding sites without a change in Kd and an increase of Imax upon incubation with phospholipase D treated erythrocyte membranes compared to incubations of membranes with the original phospholipid pattern. The characteristic temperature-dependence of the quenching of the membrane protein fluorescence by a membrane-bound nitroxide-labeled stearic acid was not influenced by the modification of the phospholipids. A slight reduction of the order parameter, S, determined by ESR-spectroscopy with the same nitroxide spin-labeled fatty acid incorporated into modified membranes compared to controls was found at 40 degrees C, but not at 25 degrees C. The results were interpreted as an indication of membrane domains that retained their physical properties and lipid composition during the incubation with phospholipase D.  相似文献   

5.
To determine the structural and regulatory role of the C-terminal residues of phospholamban (PLB) in the membranes of living cells, we fused fluorescent protein tags to PLB and sarco/endoplasmic reticulum calcium ATPase (SERCA). Alanine substitution of PLB C-terminal residues significantly altered fluorescence resonance energy transfer (FRET) from PLB to PLB and SERCA to PLB, suggesting a change in quaternary conformation of PLB pentamer and SERCA-PLB regulatory complex. Val to Ala substitution at position 49 (V49A) had particularly large effects on PLB pentamer structure and PLB-SERCA regulatory complex conformation, increasing and decreasing probe separation distance, respectively. We also quantified a decrease in oligomerization affinity, an increase in binding affinity of V49A-PLB for SERCA, and a gain of inhibitory function as quantified by calcium-dependent ATPase activity. Notably, deletion of only a few C-terminal residues resulted in significant loss of PLB membrane anchoring and mislocalization to the cytoplasm and nucleus. C-terminal truncations also resulted in progressive loss of PLB-PLB FRET due to a decrease in the apparent affinity of PLB oligomerization. We quantified a similar decrease in the binding affinity of truncated PLB for SERCA and loss of inhibitory potency. However, despite decreased SERCA-PLB binding, intermolecular FRET for Val49-stop (V49X) truncation mutant was paradoxically increased as a result of an 11.3-Å decrease in the distance between donor and acceptor fluorophores. We conclude that PLB C-terminal residues are critical for localization, oligomerization, and regulatory function. In particular, the PLB C terminus is an important determinant of the quaternary structure of the SERCA regulatory complex.  相似文献   

6.
Subcellular distribution of the divalent cation-sensitive probe chlorotetracycline (CTC) was observed by fluorescence microscopy in isolated pancreatic acinar cells, dissociated hepatocytes, rod photoreceptors, and erythrocytes. In each cell type, areas containing membranes fluoresced intensely while areas containing no membranes (nuclei and zymogen granules) were not fluorescent. Cell compartments packed with rough endoplasmic reticulum or Golgi vesicles (acinar cells) or plasma membrane-derived membranes (rod outer segments) exhibited a uniform fluorescence. In contrast, cell compartments having large numbers of mitochondria (hepatocytes and the rod inner segment) exhibited a punctate fluorescence. Punctate fluorescence was prominent in the perinuclear and peri-granular areas of isolated acinar cells during CTC efflux, suggesting that under these conditions mitochondrial fluorescence may account for a large portion of acinar cell fluorescence. Fluorometry of dissociated pancreatic acini, preloaded with CTC, showed that application of the mitochondrial inhibitors antimycin A, NaCN, rotenone, or C1CCP, or of the divalent cation ionophore A23187 (all agents known to release mitochondrial calcium) rapidly decreased the fluorescence of acini. In the case of mitochondrial inhibitors, this response could be elicited before but not following the loss of CTC fluorescence induced by bethanechol stimulation. Removal of extracellular Ca2+ and Mg2+ or addition of EDTA also decreased fluorescence but did not prevent secretagogues or mitochondrial inhibitors from eliciting a further response. These data suggest that bethanechol acts to decrease CTC fluorescence at the same intracellular site as do mitochondrial inhibitors. This could be due to release of calcium from either mitochondria or another organelle that requires ATP to sequester calcium.  相似文献   

7.
The distribution of membrane-associated calcium has been determined at various stages of mitosis in Haemanthus endosperm cells with the fluorescent chelate probe chlorotetracycline (CTC). CTC fluorescence in Haemanthus has two components: punctate, because of mitochondrial and plastid membrane-Ca++; and diffuse, primarily because of Ca++ associated with endoplasmic reticulum membranes. Punctate fluorescence assumes a polar distribution throughout mitosis. Cones of diffuse fluorescence in the chromosomse-to-pole regions of the metaphase spindle appear to coincide with the kinetochore fibers; during anaphase, the cones of fluorescence coalesce and this region of the spindle exhibits uniform diffuse fluorescence. Perturbation of the cellular Ca++ distribution by treatment with lanthanum, procaine, or EGTA results in a loss of diffuse fluorescence with no accompanying change in the intensity of punctate fluorescence. Detergent extraction of cellular membranes causes a total elimination of CTC fluorescence. CTC fluorescence of freshly teased crayfish claw muscle sarcoplasmic reticulum coincides with the A bands and is reduced by perfusion with lanthanum, procaine, and EGTA in a manner similar to that for diffuse fluorescence in the endosperm cells. These results are consistent with the hypothesis that a membrane system in the chromosome-to-pole region of the mitotic apparatus functions in the localized release of sequestered Ca++, thereby regulating the mechanochemical events of mitosis.  相似文献   

8.
Small unilamellar vesicles were labeled with the fluorescent probe octadecylrhodamine B chloride and mixed with intact Spiroplasma floricola cells. The increase in fluorescence observed was interpreted as a result of the dilution of the probe in the unlabeled S. floricola membranes because of lipid mixing upon fusion. The progression of S. floricola cultures to the stationary phase of growth was accompanied by a sharp decrease in the ability of the cells to fuse with small unilamellar vesicles. Low fusogenic activity was also detected in cells from cultures that were aged in a growth medium maintained at pH 7.5 throughout the growth cycle. Chemical analysis of the cell membrane preparations isolated from cells harvested at the various phases of growth revealed that the phospholipid content and composition and the cholesterol/phospholipid molar ratio were changed very little upon aging of the cultures. Likewise, no changes in the fatty acid composition of membrane lipids were detected, with palmitic and oleic acids predominating throughout the cycle. Nonetheless, upon aging of S. floricola cultures, a pronounced increase in the levels of both cholesteryl esters, incorporated from the growth medium, and organic peroxides was observed. A decrease in both fluorescence anisotropy of diphenylhexatriene and merocyanine 540 binding to membranes of aged cells was also detected. The possible influence of these changes on the fusogenic activity of the cells is discussed.  相似文献   

9.
The lipid fluidity in heart sarcoplasmic reticulum membranes prepared from adult (12 mo.) and old (24 mo.) rats has been measured by the fluorescence probe (DPPH) and spin probe (5NS) methods at 22 and 37 degrees C. The lipid fluidity in the old rat membranes is higher than that in the adult rat ones. It has been suggested that this difference is caused by age lowering in reliability of membrane fluidity stabilization systems.  相似文献   

10.
The binding of lactate dehydrogenase (LDH) to sarcoplasmic reticulum membranes results in a 60-70% decrease of the enzyme specific activity. This binding occurs both in high (Kd = 1 microM) and low affinity sites. Addition of NADH or NAD+ and a increase of ionic strength lead to the solubilization of the bound enzyme. A similar effect is observed after addition of the fluorescent probes--anilinonaphthalene sulfonate (ANS) and auramine O (A0). The effect of ANS consists predominantly in its binding to the membrane, while that of A0 is due to the probe interaction with the enzyme. At low concentrations of toluidinylnaphthalene sulfonate (TNS) under conditions of predominant binding of the probe to the membrane, the LDH binding to microsomes is enhanced. A rise in the TNS concentration leads to the formation of the probe-LDH complex which interaction with membrane is hampered. The sites of the probes binding to the protein are located outside the enzyme active center but are, nevertheless, sensitive to it states. It is assumed that these sites of the LDH molecule are involved in its interaction with the membrane. The decline of activity of the bound enzyme is interpreted in terms of alterations of the physico-chemical properties of the medium during the enzyme transition from the solution to the perimembrane space.  相似文献   

11.
The binding of signal recognition particle (SRP) to ribosome-bound signal sequences has been characterized directly and quantitatively using fluorescence spectroscopy. A fluorescent probe was incorporated cotranslationally into the signal sequence of a ribosome.nascent chain complex (RNC), and upon titration with SRP, a large and saturable increase in fluorescence intensity was observed. Spectral analyses of SRP and RNC association as a function of concentration allowed us to measure, at equilibrium, K(d) values of 0.05-0.38 nm for SRP.RNC complexes with different signal sequences. Competitive binding experiments with nonfluorescent RNC species revealed that the nascent chain probe did not alter SRP affinity and that SRP has significant affinity for both nontranslating ribosomes (K(d) = 71 nm) and RNCs that lack an exposed signal sequence (K(d) = 8 nm). SRP can therefore distinguish between translating and nontranslating ribosomes. The very high signal sequence-dependent SRP.RNC affinity did not decrease as the nascent chain lengthened. Thus, the inhibition of SRP-dependent targeting of RNCs to the endoplasmic reticulum membrane observed with long nascent chains does not result from reduced SRP binding to the signal sequence, as widely thought, but rather from a subsequent step, presumably nascent chain interference of SRP.RNC association with the SRP receptor and/or translocon.  相似文献   

12.
Summary (1) The enzymatic removal of lipids from the vesicular membranes of the sarcoplasmic reticulum does not interfere with the fluorescence of the 1-anilino-8-naphthalenesulfonate (ANS) vesicular complex. (2) The fluorescence intensity of the ANS vesicular complex is considerably (50%) reduced by oleic acid (0.5mm) because it displaces ANS from its binding sites. (3) Stearic acid, which also combines with the membranes, interferes neither with ANS binding nor with ANS fluorescence. (4) Of all lipid compounds tested, oleylamine produces the most pronounced fluorescence enhancement of ANS. (5) The complexes formed between oleic acid and cetyltrimethyl ammonium salts or between oleic acid and polylysine produce a much higher fluorescence enhancement than the isolated components. (6) Low concentrations of ether added to ANS-containing vesicular suspensions reduce their fluorescence intensity. It returns to the initial intensity when the ether is removed. (7) A small cyclic change of the fluorescence of the vesicular ANS complex takes place during active calcium uptake.  相似文献   

13.
Binding of rat liver polyribosomes to homologous degranulated rough endoplasmic reticulum (dRER) labeled with 10-(pyren-1-yl)decanoic acid (PDA) was studied. As a consequence of the membrane association of polysomes, the excimer/monomer fluorescence intensity ratios (Ie/Im) decreased, thus indicating alterations in the dynamics and organization of lipids. These fluorescence changes were complete within approximately 1 min, in accordance with the tight binding of ribosomes to RER. In order to characterize the changes in membrane lipid dynamics in more detail, polysomes were covalently labeled with trinitrobenzenesulfonic acid so as to allow their use as F?rster-type resonance energy-transfer acceptors while utilizing PDA as a donor. Accordingly, assuming the binding of native and quencher-labeled ribosomes to the PDA-labeled membranes to be identical, we were able to discriminate fluorescence changes (a) in the proximity of the ribosome binding site from (b) those arising in the surrounding ribosome-free membrane and beyond the effective quenching radii of the TNP residues coupled to polysomes. Our data suggest that lipids in the polysome attachment site of dRER are less mobile than those in the remaining, ribosome-free membrane. In addition, there appears to be a relative enrichment of the PDA probe in the polyribosome membrane attachment sites.  相似文献   

14.
Addition of an amphipathic bee venom peptide, melittin, to sarcoplasmic reticulum (SR) vesicles isolated from rabbit skeletal muscles resulted in a fast (<1 min) blue shift in the fluorescence maximum of the melittin--SR membrane complex. Over the following 45 min the position of the fluorescence maximum did not change, but the fluorescence intensity of the melittin--SR membrane complex decreased by approximately 35% with rate constant 0.14 min-1. Melittin rapidly quenched the isotropic signal in the EPR spectrum of spin-labeled stearic acid added to SR membranes. Further changes in the spectral parameters of the spin probe bound to SR membranes in the presence of melittin indicated an increase of the viscosity of the probe microenvironment (empiric parameter T/eta was decreased by approximately 35% with rate constant 0.11 min-1). The surface potential of SR membranes measured using a pH-sensitive dye, neutral red, decreased after melittin addition from -60 to -30 mV. It was demonstrated with the use of a cross-linking agent, cupric o-phenanthroline, that melittin induced slow aggregation of Ca-ATPase protein in SR membranes; the content of enzyme in the monomeric form decreased with rate constant 0.14 min-1. It is concluded that melittin binds rapidly to SR membranes, inducing slow changes in Ca-ATPase conformation and oligomeric state as well as structural transitions in the lipid bilayer of SR membranes.  相似文献   

15.
The binding of cationic butyltrimethylammonium derivative of pyrene to bovine platelets was initially rapid and then increased gradually, unlike the bindings of other anionic and neutral derivatives of pyrene tested. The rate of increase in binding of the cationic probe depended on temperature and was due to its incorporation into the cytoplasmic side of the platelet membranes, as shown quantitatively by monitoring decrease in its extractability with albumin. The penetration into the inner membrane compartment did not reach equilibrium even after 4 h at 37 degrees C. Slow penetration of a fluorescent probe such as this is useful in studies on the physico-chemical properties of the outer layer and cytoplasmic side of the platelet membranes and their changes. Initial rapid binding of the cationic probe to platelets, representing the binding of the probe to the outer layer of the plasma membrane, was increased by ionomycin-induced platelet activation. Fluorescence spectra in the presence of a relatively high concentration of the cationic probe showed increase of the excimer of the cationic probe accompanied with the incorporation of the probe to the cytoplasmic side. On ionomycin-induced activation, the excimer-to-monomer intensity ratio of the probe in the cytoplasmic side of the platelet membranes decreased, possibly due to decrease in fluidity of the lipid layer near the probe or change in distribution of the probe.  相似文献   

16.
A fluorescent derivative of 6-mercaptoguanosine, S-(N-dansylaminoethyl)-6-mercaptoguanosine, was synthesized, and found to be a strong inhibitor of the uridine transport system of erythrocyte (Ki approximately 0.3 microM). The emission spectrum of this compound has peaks at 400 and 550 nm. The emission at 550, but not that a 400 nm, in environment-sensitive. A method was devised for preparing a suspension of erythrocyte-membrane fragments with sufficiently low light scattering so that a detailed study could be made of the fluorescence of the probe when bound to membranes. Direct binding measurements showed the existence of a tight binding site, with a dissociation constant of the same order of magnitude as the inhibition constant. Binding of probe and substrate are not mutually exclusive, but the fluorescence and affinity of the bound probe are sensitive to the presence of uridine. The emission spectrum suggests that the bound probe penetrates into the bilayer region of the membrane.  相似文献   

17.
The action of anthroylcholine bromide, a new fluorescent probe, has been studied at the cellular (contraction of intestinal muscle) and subcellular levels (binding of 3H-quinuclidinyl benzilate to brain cortex membranes, fluorescence and enzyme activity) with the following results: 1. Anthroylcholine bromide competitively antagonized the contractile effect of acetylcholine in isolated rat duodenum (pA2 = 6.12), but had no effect either on the concentration response curves to histamine or to noradrenaline in isolated guinea pig ileum and rat vas deferens. 2. Anthroylcholine bromide displaced competitively 3H-quinuclidinyl benzilate from brain cortex membranes (Ki = 0.77 mumol/l). 3. Direct binding to the muscarinic site could be measured by exploiting the fluorescence properties of the probe. Binding displaceable by atropine (approximately 20% change in fluorescence) had an apparent affinity constant similar to that found with indirect methods. In contrast, d-tubocurarine did not displace the probe from its site, and atropine- or d-tubocurarine-sensitive binding of anthroylcholine bromide to Torpedo marmorata electric organ membranes, rich in nicotinic receptors, was not observed. These properties suggest the applicability of the probe to study the distribution, structure and/or kinetic properties of the muscarinic receptor.  相似文献   

18.
The dye 10-N-nonyl acridine orange (NAO) is used to label cardiolipin domains in mitochondria and bacteria. The present work represents the first study on the binding of NAO with archaebacterial lipid membranes. By combining absorption and fluorescence spectroscopy with fluorescence microscopy studies, we investigated the interaction of the dye with (a) authentic standards of archaebacterial cardiolipins, phospholipids and sulfoglycolipids; (b) isolated membranes; (c) living cells of a square-shaped extremely halophilic archaeon. Absorption and fluorescence spectroscopy data indicate that the interaction of NAO with archaebacterial cardiolipin analogues is similar to that occurring with diacidic phospholipids and sulfoglycolipids, suggesting as molecular determinants for NAO binding to archaebacterial lipids the presence of two acidic residues or a combination of acidic and carbohydrate residues. In agreement with absorption spectroscopy data, fluorescence data indicate that NAO fluorescence in archaeal membranes cannot be exclusively attributed to bisphosphatidylglycerol and, therefore, different from mitochondria and bacteria, the dye cannot be used as a cardiolipin specific probe in archaeal microorganisms.  相似文献   

19.
The phospholipid composition of the electron transport particles and coupling factor-depleted electron transport particles of Mycobacterium phlei are the same, but they differ in contents. The accessibility of partially purified phospholipase A to these membrane phospholipids was found to be different. Treatment of membranes of Mycobacterium phlei with phospholipase A impairs the rate of oxidation as well as phosphorylation. The inhibition of phosphorylation can be reversed by washing the membranes with defatted bovine serum albumin. The reconstitution of membrane-bound coupling factor-latent ATPase activity to phospholipase A-treated depleted electron transport particles and their capacity to couple phosphorylation to oxidation of substrates remained unaffected after phospholipase A treatment. However, the pH gradient as measured by bromthymol blue was not restored after reconstitution of phospholipase A-treated depleted electron transport particles with membrane-bound coupling factor-latent ATPase. These findings show that the phosphorylation coupled to the oxidation of substrates can take place without a pronounced pH gradient in these membrane vesicles. The dye 1-anilino-8-naphthalene sulfonic acid (ANS) exhibited low levels of energized and nonenergized fluorescence in phospholipase A-treated membranes. This decrease in the level of ANS fluorescence in phospholipase A-treated membranes was found to be directly related to the amount of phospholipids cleaved. The decrease in the energy-dependent ANS response in phospholipase A-treated electron transport particles, as compared with untreated electron transport particles, was shown to be a result of a change in the apparent K-d of the dye-membrane complex, and of a decrease in the number of irreversible or slowly reversible binding sites, with no change in the relative quantum efficiency of the dye. The decrease in ANS fluorescence in phospholipase A-treated particles appears to be due to a decrease in the hydrophobicity of the membranes.  相似文献   

20.
Conformational changes produced by in vitro bovine growth hormone addition to plasma membranes of hypophysectomized rat liver proteins and lipids have been studied by circular dichroism as well as intrinsic and extrinsic fluorescence. 7,12-Dimethylbenzanthracene has been used as a fluorescent probe of changes in membrane structure. The exposure of membranes to bovine growth hormone produced a change in membrane negative ellipticity. Dimethylbenzanthracene at concentrations similar to those employed in fluorescence studies had no effect on the membrane circular dichroism spectrum. Its presence did, however, prevent a response to growth hormone. There was a decrease in peak fluorescence intensity and a peak shift when bovine growth hormone (0.5 · 10?12 M) was added to liver membranes. The addition of dimethylbenzanthracene (1.6 · 10?6 M) to membranes resulted in a decrease in the intensity of the protein fluorescence peak at 335 nm and the appearance of two peaks at 430 and 407 nm, assignable to the probe. The addition of bovine growth hormone (0.5 · 10?12 M) produced a decrease in fluorescence at 335 nm and also in the peaks at 407 and 430 nm. These data are consistent with the conclusion that bovine growth hormone produces a conformational change in rat liver plasma membrane proteins and lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号