首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Regulation of mRNA turnover is a critical control mechanism of gene expression and is influenced by ribonucleoprotein (RNP) complexes that form on cis elements. All mRNAs have an intrinsic half-life and in many cases these half-lives can be altered by a variety of stimuli that are manifested through the formation or disruption of an RNP structure. The stability of alpha-globin mRNA is determined by elements in the 3' untranslated region that are bound by an RNP complex (alpha-complex) which appears to control the erythroid-specific accumulation of alpha-globin mRNA. The alpha-complex could consist of up to six distinct proteins or protein families. One of these families is a prominent polycytidylate binding activity which consists of two highly homologous proteins, alpha-complex proteins 1 and 2 (alphaCP1 and alphaCP2). This article focuses on various methodologies for the detection and manipulation of alphaCP1 and alphaCP2 binding to RNA and details means of isolating and characterizing mRNA bound by these proteins to study mRNA turnover and its regulation.  相似文献   

3.
4.
5.
6.
7.
The Puf family of RNA-binding proteins regulates mRNA translation and decay via interactions with 3' untranslated regions (3' UTRs) of target mRNAs. In yeast, Puf3p binds the 3' UTR of COX17 mRNA and promotes rapid deadenylation and decay. We have investigated the sequences required for Puf3p recruitment to this 3' UTR and have identified two separate binding sites. These sites are specific for Puf3p, as they cannot bind another Puf protein, Puf5p. Both sites use a conserved UGUANAUA sequence, whereas one site contains additional sequences that enhance binding affinity. In vivo, presence of either site partially stimulates COX17 mRNA decay, but full decay regulation requires the presence of both sites. No other sequences outside the 3' UTR are required to mediate this decay regulation. The Puf repeat domain of Puf3p is sufficient not only for in vitro binding to the 3' UTR, but also in vivo stimulation of COX17 mRNA decay. These experiments indicate that the essential residues involved in mRNA decay regulation are wholly contained within this RNA-binding domain.  相似文献   

8.
Using the method of isolation of specific nucleic acids associated with proteins (SNAAP), we have identified 10 candidate target mRNA substrates bound by mT-STAR (mouse T-STAR protein) from testis extract. Among them, our study focused on Fabp9, a gene that is essential for male gametogenesis, and showed that mT-STAR could directly bind to Fabp9 mRNAs. The binding sites are in a short sequence of the coding region and 3′ untranslated region of Fabp9 mRNA. These suggest that mT-STAR can regulate the metabolism and expression of Fabp9. In conclusion, identification of mT-STAR-bound mRNA substrates might help to illustrate the potential spectrum of the process and provide valuable insight into the biological function of this RNA-binding protein in spermatogenesis.  相似文献   

9.
10.
11.
Many methods are available and widely used to determine specific proteins that bind to a particular RNA of interest. However, approaches to identify unknown substrate RNAs to which an RNA-binding protein binds and potentially regulates are not as common. In this article we describe a technique termed isolation of specific nucleic acids associated with proteins (SNAAP) that allows the identification of mRNAs associated with a protein. Methods are detailed for expressing and purifying fusion proteins that are used to isolate substrate mRNPs employing differential display technology. Lastly, experiments are described to confirm that the RNAs identified are indeed bonafide substrates for an RNA-binding protein. As the number of known RNA-binding proteins increases, of which many are involved in genetic disorders, it is essential that methodologies exist to identify RNA-protein interactions to better understand the manifestation of disease.  相似文献   

12.
13.
PUF proteins, a family of RNA-binding proteins, interact with the 3' untranslated regions (UTRs) of specific mRNAs to control their translation and stability. PUF protein action is commonly correlated with removal of the poly(A) tail of target mRNAs. Here, we focus on how PUF proteins enhance deadenylation and mRNA decay. We show that a yeast PUF protein physically binds Pop2p, which is a component of the Ccr4p-Pop2p-Not deadenylase complex, and that Pop2p is required for PUF repression activity. By binding Pop2p, the PUF protein simultaneously recruits the Ccr4p deadenylase and two other enzymes involved in mRNA regulation, Dcp1p and Dhh1p. We reconstitute regulated deadenylation in vitro and demonstrate that the PUF-Pop2p interaction is conserved in yeast, worms and humans. We suggest that the PUF-Pop2p interaction underlies regulated deadenylation, mRNA decay and repression by PUF proteins.  相似文献   

14.
We have investigated the RNA binding specificity of Hel-N1, a human neuron-specific RNA-binding protein, which contains three RNA recognition motifs. Hel-N1 is a human homolog of Drosophila melanogaster elav, which plays a vital role in the development of neurons. A random RNA selection procedure revealed that Hel-N1 prefers to bind RNAs containing short stretches of uridylates similar to those found in the 3' untranslated regions (3' UTRs) of oncoprotein and cytokine mRNAs such as c-myc, c-fos, and granulocyte macrophage colony-stimulating factor. Direct binding studies demonstrated that Hel-N1 bound and formed multimers with c-myc 3' UTR mRNA and required, as a minimum, a specific 29-nucleotide stretch containing AUUUG, AUUUA, and GUUUUU. Deletion analysis demonstrated that a fragment of Hel-N1 containing 87 amino acids, encompassing the third RNA recognition motif, forms an RNA binding domain for the c-myc 3' UTR. In addition, Hel-N1 was shown to be reactive with autoantibodies from patients with paraneoplastic encephalomyelitis both before and after binding to c-myc mRNA.  相似文献   

15.
RNA-binding proteins of bovine rotavirus.   总被引:23,自引:9,他引:14       下载免费PDF全文
  相似文献   

16.
MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) are important regulators of mRNA translation and stability in eukaryotes. While miRNAs can only bind their target mRNAs in association with Argonaute proteins (AGOs), RBPs directly bind their targets either as single entities or in complex with other RBPs to control mRNA metabolism. miRNA binding in 3′ untranslated regions (3′ UTRs) of mRNAs facilitates an intricate network of interactions between miRNA-AGO and RBPs, thus determining the fate of overlapping targets. Here, we review the current knowledge on the interplay between miRNA-AGO and multiple RBPs in different cellular contexts, the rules underlying their synergism and antagonism on target mRNAs, as well as highlight the implications of these regulatory modules in cancer initiation and progression.  相似文献   

17.
The cytoplasmic fates of mRNAs are influenced by interactions between RNA-binding proteins and cis regulatory motifs. In the cytoplasm, mRNAs are present as messenger ribonucleoprotein particles, which include not only proteins that bind directly to the mRNA, but also additional proteins that are recruited via protein-protein interactions. Many labs have sought to purify such particles from cells, with limited success. We here describe a simple two-step procedure to purify actively translated mRNAs, with their associated proteins, from polysomes. We use a reporter mRNA that encodes a protein with three streptavidin binding peptides at the N-terminus. The polysomal reporter mRNA, with associated proteins, is purified via binding to a streptavidin matrix. The method takes four days, and can be applied in any cell that can be genetically manipulated. Using Trypanosoma brucei as a model system, we routinely purified 8% of the input reporter mRNA, with roughly 22-fold enrichment relative to un-tagged mRNAs, a final reporter-mRNA:total-mRNA ratio of about 1:10, and a protein purification factor of slightly over 1000-fold. Although the overall reporter mRNP composition is masked by the presence of proteins that are associated with many polysomal mRNAs, our method can be used to detect association of an RNA-binding protein that binds to specifically to a reporter mRNA.  相似文献   

18.
mRNA turnover is an important regulatory component of gene expression and is significantly influenced by ribonucleoprotein (RNP) complexes which form on the mRNA. Studies of human alpha-globin mRNA stability have identified a specific RNP complex (alpha-complex) which forms on the 3' untranslated region (3'UTR) of the mRNA and appears to regulate the erythrocyte-specific accumulation of alpha-globin mRNA. One of the protein activities in this multiprotein complex is a poly(C)-binding activity which consists of two proteins, alphaCP1 and alphaCP2. Neither of these proteins, individually or as a pair, can bind the alpha-globin 3'UTR unless they are complexed with the remaining non-poly(C) binding proteins of the alpha-complex. With the yeast two-hybrid screen, a second alpha-complex protein was identified. This protein is a member of the previously identified A+U-rich (ARE) binding/degradation factor (AUF1) family of proteins, which are also known as the heterogeneous nuclear RNP (hnRNP) D proteins. We refer to these proteins as AUF1/hnRNP-D. Thus, a protein implicated in ARE-mediated mRNA decay is also an integral component of the mRNA stabilizing alpha-complex. The interaction of AUF1/hnRNP-D is more efficient with alphaCP1 relative to alphaCP2 both in vitro and in vivo, suggesting that the alpha-complex might be dynamic rather than a fixed complex. AUF1/hnRNP-D could, therefore, be a general mRNA turnover factor involved in both stabilization and decay of mRNA.  相似文献   

19.
We demonstrate that a bacteriophage protein and a spliceosomal protein can be converted into eukaryotic translational repressor proteins. mRNAs with binding sites for the bacteriophage MS2 coat protein or the spliceosomal human U1A protein were expressed in human HeLa cells and yeast. The presence of the appropriate binding protein resulted in specific, dose-dependent translational repression when the binding sites were located in the 5' untranslated region (UTR) of the reporter mRNAs. Neither mRNA export from the nucleus to the cytoplasm nor mRNA stability was demonstrably affected by the binding proteins. The data thus reveal a general mechanism for translational regulation: formation of mRNA-protein complexes in the 5' UTR controls translation initiation by steric blockage of a sensitive step in the initiation pathway. Moreover, the findings establish the basis for novel strategies to study RNA-protein interactions in vivo and to clone RNA-binding proteins.  相似文献   

20.
Small RNAs loaded into Argonaute proteins direct silencing of complementary target mRNAs. It has been proposed that multiple, imperfectly complementary small interfering RNAs or microRNAs, when bound to the 3' untranslated region of a target mRNA, function cooperatively to silence target expression. We report that, in cultured human HeLa cells and mouse embryonic fibroblasts, Argonaute1 (Ago1), Ago3, and Ago4 act cooperatively to silence both perfectly and partially complementary target RNAs bearing multiple small RNA-binding sites. Our data suggest that for Ago1, Ago3, and Ago4, multiple, adjacent small RNA-binding sites facilitate cooperative interactions that stabilize Argonaute binding. In contrast, small RNAs bound to Ago2 and pairing perfectly to an mRNA target act independently to silence expression. Noncooperative silencing by Ago2 does not require the endoribonuclease activity of the protein: A mutant Ago2 that cannot cleave its mRNA target also silences noncooperatively. We propose that Ago2 binds its targets by a mechanism fundamentally distinct from that used by the three other mammalian Argonaute proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号