首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The participation of cell surface anionic sites on the interaction between tachyzoites of Toxoplasma gondii and macrophages and the process of phagosome-lysosome fusion were analyzed using cationized ferritin as a marker of cell surface anionic sites and albumin-colloidal gold as a marker for secondary lysosomes. Incubation of either the macrophages or the parasites with cationized ferritin before the interaction increased the ingestion of parasites by macrophages. Anionic sites of the macrophage's surface, labeled with cationized ferritin before the interaction, were internalized together with untreated parasites. However, after interaction with glutaraldehyde-fixed or specific antibody-coated parasites, the cationized ferritin particles were observed in endocytic vacuoles which did not contain parasites. Macrophages previously labeled with albumin-gold at 37 degrees C, were incubated in the presence of cationized ferritin at 4 degrees C and then incubated with untreated or specific antibody-coated parasites. After interaction with opsonized parasites, the colloidal gold particles were observed in the parasitophorous vacuoles while the cationized ferritin particles were observed in cytoplasmic vesicles. However, when the interaction was carried out with untreated parasites, the parasitophorous vacuoles exhibited ferritin particles while the colloidal gold particles were observed in cytoplasmic vesicles. These observations, in association with studies previously reported, suggest that the state of the parasite surface determines the mechanism of parasite entry into the macrophage, the composition of the membrane lining the parasitophorous vacuole and the ability of lysosomes to fuse with the vacuoles.  相似文献   

2.
ABSTRACT. Microsporidia of the genus Encephalitozoon undergo merogony and sporogony in a parasitophorous vacuole within the host cell. Cultured green monkey kidney cells infected with Encephalitozoon hellem were loaded with the fluorescent dyes fura-2 or BCECF in order to measure intracellular concentrations of calcium and hydrogen ions respectively. Both the parasitophorous vacuole calcium concentration and pH values resembled those of the host cell cytoplasm in infected cells. Calcein entered the parasitophorous vacuole but not other host cell vacuoles or parasite stages within the parasitophorous vacuole. The lack of a pH or calcium concentration gradient across the parasitophorous vacuole membrane and the permeability of this membrane to a large anion such as calcein suggest that the vacuole membrane surrounding E. hellem resembles that surrounding some other intracellular parasites such as Toxoplasma gondii. A potential role is discussed for the parasitophorous vacuole calcium concentration in germination in situ.  相似文献   

3.
The transfer of endocytosed simian virus 40 (SV40) to the nuclear position was investigated ultrastructurally using cationized ferritin (CF), ferritin labelled concanavalin A (Fer-Con A) and Con A as cell membrane markers. In the cells incubated with these markers and SV40 at 4 degrees C, and then chased for 2 h at 37 degrees C in serum-free medium, ferritin particles representing CF and/or Fer-Con A binding sites were found in vacuoles with SV40. The membrane of some vacuoles seemed to be in contact with the outer nuclear membrane. Several ferritin particles were located in the perinuclear cisterna and within the nucleoplasm, but not within the nuclear pores. In addition, there were vacuoles with ferritin particles and SV40 near the nuclear membrane, which looked like a single diaphragm with heterochromatins inside it. The outer nuclear and vacuole membranes were often obscure in the areas where the vacuole was very close to the diaphragm. In the case of cells incubated with CF, SV40 and Con A at 4 degrees C, chased for 2 h at 37 degrees C, and then reacted with horseradish peroxidase (HRP), HRP activity showing Con A-binding sites was also observed along the nuclear side of the inner nuclear membrane as well as in the perinuclear cisterna along the outer membrane. These results confirm that SV40-induced endocytotic vacuoles fuse with the outer nuclear membrane, and further indicate that some endocytotic vacuoles may well interact directly with the diaphragm, suggesting another path for migration of SV40 into CV-1 cell nuclei besides the path going through the process of fusion of the vacuole membrane with the outer nuclear membrane.  相似文献   

4.
ABSTRACT We immunolocalized a Toxoplasma gondii rhoptry protein (ROP1) before and after parasite host cell invasion of human fibroblasts and TG180 murine sarcoma cells by electron microscopy and immunogold labeling using either a monoclonal antibody (Tg49) or a monospecific rabbit antiserum (α249). At all stages of parasite growth ROP1 was found within the body but rarely within the peduncle of rhoptries, even in those that appeared empty. Immediately after host cell invasion ROP1 was associated with the parasitophorous vacuole membrane. Within hours after invasion the amount of ROP1 immunodetectable on the parasitophorous vacuole membrane was markedly decreased. The localization of ROP1 suggests a role in the early establishment of infection in host cells, consistent with previous work that has indicated that monoclonal antibodies to ROP1 (including the one used in these studies) interfere with the phenomenon of penetration enhancement.  相似文献   

5.
The p47 GTPases are essential for interferon-gamma-induced cell-autonomous immunity against the protozoan parasite, Toxoplasma gondii, in mice, but the mechanism of resistance is poorly understood. We show that the p47 GTPases, including IIGP1, accumulate at vacuoles containing T. gondii. The accumulation is GTP-dependent and requires live parasites. Vacuolar IIGP1 accumulations undergo a maturation-like process accompanied by vesiculation of the parasitophorous vacuole membrane. This culminates in disruption of the parasitophorous vacuole and finally of the parasite itself. Over-expression of IIGP1 leads to accelerated vacuolar disruption whereas a dominant negative form of IIGP1 interferes with interferon-gamma-mediated killing of intracellular parasites. Targeted deletion of the IIGP1 gene results in partial loss of the IFN-gamma-mediated T. gondii growth restriction in mouse astrocytes.  相似文献   

6.
Yap GS  Ling Y  Zhao Y 《Autophagy》2007,3(2):163-165
Autophagy has recently been implicated in the immune elimination of the intracellular protozoan parasite, Toxoplasma gondii. Toxoplasma and other apicomplexan parasites actively invade host cells and form nonfusogenic parasitophorous vacuoles. Nevertheless, following entry into IFN-gamma-activated effector macrophages, vesiculation of the parasite vacuole or PV membrane ensues, in a process dependent upon the activity of p47 GTPases induced by IFN-gamma signaling. Subsequent disruption of the plasma membrane of the stripped parasites precedes autophagolysosomal elimination of T. gondii. In contrast, ligation of the CD40 receptor and autocrine signaling by TNF activate a seemingly distinct, p47 GTPase-independent mechanism leading to autophagic elimination of intracellular T. gondii, without prior disruption of the pathogen vacuole. Thus, two key pathways of the cell-mediated immune response, namely IFN-gamma and CD40/CD40L, trigger a common autophagolysosomal endpoint of parasite elimination, via distinct intermediary mechanisms.  相似文献   

7.
Epimastigote and trypomastigote forms of Trypanosoma cruzi attach to the macrophage surface and are internalized with the formation of a membrane bounded vacuole, known as the parasitophorous vacuole (PV). In order to determine if components of the host cell membrane are internalized during formation of the PV we labeled the macrophage surface with fluorescent probes for proteins, lipids and sialic acid residues and then allowed the labeled cells to interact with the parasites. The interaction process was interrupted after 1 hr at 37 masculineC and the distribution of the probes analyzed by confocal laser scanning microscopy. During attachment of the parasites to the macrophage surface an intense labeling of the attachment regions was observed. Subsequently labeling of the membrane lining the parasitophorous vacuole containing epimastigote and trypomastigote forms was seen. Labeling was not uniform, with regions of intense and light or no labeling. The results obtained show that host cell membrane lipids, proteins and sialoglycoconjugates contribute to the formation of the membrane lining the PV containing epimastigote and trypomastigote T. cruzi forms. Lysosomes of the host cell may participate in the process of PV membrane formation.  相似文献   

8.
The distributions of electric charges and Concanavalin A binding sites in autophagic vacuoles and lysosomes in mouse hepatocytes were studied by utilizing a frozen ultrathin section labeling method with cationized ferritin (CF) or anionized ferritin and ferritin-conjugated Concanavalin A (Con A-F) as visual probes. Our observations revealed that the inner surface of the autophagic vacuole membrane has more anionic sites (CF binding) than other organelle membranes. This suggests that if the limiting membranes of autophagic vacuoles originate from preexisting membranes, such membranes must undergo structural and compositional alternation during the formation of the autophagic vacuoles. In contrast to CF, Con A-F showed no distinct binding to the membranes of autophagic vacuoles, but the contents of vacuoles displayed varying Con A-F binding, depending on the stage of the autophagic process. Increased binding was seen in more mature autophagic vacuoles. Since lysosomes showed a preferential accumulation of Con A-F particles, molecules with Con A-F binding sites in autophagic vacuoles may be of lysosomal origin. Con A-F distribution varied from lysosome to lysosome in the same cell, indicating heterogeneity of lysosomal contents. These results suggest that ferritin-conjugated lectin labeling methods applied to frozen, ultrathin section are a useful new approach in analyzing the natural history of autophagic vacuoles and the heterogeneity of lysosomes.  相似文献   

9.
We immunolocalized a Toxoplasma gondii rhoptry protein (ROP1) before and after parasite host cell invasion of human fibroblasts and TG180 murine sarcoma cells by electron microscopy and immunogold labeling using either a monoclonal antibody (Tg49) or a monospecific rabbit antiserum (alpha 249). At all stages of parasite growth ROP1 was found within the body but rarely within the peduncle of rhoptries, even in those that appeared empty. Immediately after host cell invasion ROP1 was associated with the parasitophorous vacuole membrane. Within hours after invasion the amount of ROP1 immunodetectable on the parasitophorous vacuole membrane was markedly decreased. The localization of ROP1 suggests a role in the early establishment of infection in host cells, consistent with previous work that has indicated that monoclonal antibodies to ROP1 (including the one used in these studies) interfere with the phenomenon of penetration enhancement.  相似文献   

10.
The interaction between the Toxoplasma parasitophorous vacuole and vimentin-type intermediate filaments in Vero cells was investigated via immunofluorescence microscopy. A significant rearrangement of host cell vimentin around the Toxoplasma parasitophorous vacuoles occurs throughout the course of infection. Host cell vimentin associates with the parasitophorous vacuoles within an hour after invasion. This vimentin overcoating of the vacuole is initiated at the host cell nuclear surface. During parasite multiplication, vimentin retains a closely defined association with the cytosolic surface of the parasitophorous vacuole. In addition, the vimentin intermediate filaments originating from the host cell nuclear surface are progressively rearranged around the enlarging parasitophorous compartment. During infections, the order of vimentin cytoskeleton is normal throughout the cell and appears redefined only at the vicinity of the parasitophorous vacuole. Depolymerization of the intermediate filaments was achieved with the phosphatase inhibitors okadaic acid and calyculin A. Disruption of the intermediate filament networks resulted in displacement of the parasitophorous vacuoles from the host cell nuclear surface. The data indicate that host cell vimentin binds to the Toxoplasma parasitophorous vacuoles and that the host intermediate filament network serves to dock the parasite compartment to the host cell nuclear surface.  相似文献   

11.
Toxoplasma gondii invades and proliferates in human umbilical vein endothelial cells (HUVEC) where it resides in a parasitophorous vacuole (PV) preventing lysosomal fusion. To study the intracellular outcome of PV containing tachyzoites of T. gondii during interaction with IFN-gamma-activated HUVEC, a quantitative analysis of the T. gondii infection and multiplication was assayed. The quantification of PVs' fusion with lysosomes, ultrastructural examination of phagosome-lysosome fusion, and the localization of NAD(P)H-oxidase activity were also investigated. HUVEC activated with IFN-gamma inhibited T. gondii infection and multiplication by 67.5% and 91.0%, respectively. After 4 hr of infection, 10.2% of IFN-gamma-activated HUVEC exhibited phagosome-lysosome fusion assayed by fluorescence microscopy, which was also observed at the ultrastructural level. Furthermore, the enzyme NAD(P)H-oxidase present at the plasma membrane of activated HUVEC was internalized together with the parasite in 38.0% of the cells. In addition, colocalization of colloidal gold particles and reaction product of NAD(P)H-oxidase in the PV of some activated HUVEC was observed. These results suggest that NAD(P)H-oxidase may participate in a mechanism by which IFN-gamma-activated HUVEC inhibit T. gondii multiplication.  相似文献   

12.
Membrane potential changes in host cell plasma membrane were analyzed and the parasitophorous vacuole membrane (PVM) potential was characterized after infection by Toxoplasma gondii. Human monocytes infested by T. gondii were stained with two membrane potential sensitive dyes, DiOC(6)(3) carbocyanine and DiSBAC(2)(3) bis-oxonol, before fluorescence emission analysis by confocal laser scanning microscopy. After 24 and 48 h of infection, 34 and 39%, respectively, of monocytes showed several parasites (from two to six) per cell. At these infection times, significant decreases in cytoplasmic emissions were observed for both DiOC(6)(3) and DiSBAC(2)(3). Thus, hyperpolarisation of the host plasma membrane would occur consecutively to infection. Inside the parasitophorous vacuole, the fluorescence intensity of DiOC(6)(3) and DiSBAC(2)(3) increased significantly from 6 to 24 h after infection and the PVM became less polarised. Involvement of different ATPases in the membrane potential of infected monocytes was evaluated with ouabain, DCCD, omeprazole and sodium orthovanadate, ATPase inhibitors. All inhibitors induced a depolarisation of the plasma membrane. In the parasitophorous vacuole compartment, DCCD, omeprazole and sodium orthovanadate but not ouabain caused a significant depolarisation of the PVM, suggesting that H(+), H(+)/K(+) and P-type ATPases were at the origin of the PVM potential. This is the first report showing the presence of ion transporters in the T. gondii PVM and the existence of at least two members of the P-type family of ion pumps: an electrogenic H(+)ATPase and an electroneutral H(+)/K(+) ATPase.  相似文献   

13.
Upon host cell invasion the apicomplexan parasite Toxoplasma gondii resides in a specialized compartment termed the parasitophorous vacuole that is derived from the host cell membrane but modified by the parasite. Despite the segregation of the parasitophorous vacuole from the host endocytic network, the intravacuolar parasite has been shown to acquire cholesterol from the host cell. In order to characterize further the role of sterol metabolism in T. gondii biology, we focused our studies on the activity of acyl-CoA:cholesterol acyltransferase (ACAT), a key enzyme for maintaining the intracellular homeostasis of cholesterol through the formation of cholesterol esters. In this study, we demonstrate that ACAT and cholesterol esters play a crucial role in the optimal replication of T. gondii. Moreover, we identified ACAT activity in T. gondii that can be modulated by pharmacological ACAT inhibitors with a consequent detrimental effect on parasite replication.  相似文献   

14.
Fluorescence microscopy, using dyes which specifically label mitochondria, endoplasmic reticulum and the Golgi complex, and transmission electron microscopy, were used to analyze the changes which occur in the organization of these structures during interaction of Toxoplasma gondii with host cells. In uninfected cells the mitochondria are long filamentous structures which radiate from the nuclear region toward the cell periphery. After parasite penetration they become shorter and tend to concentrate around the parasite-containing vacuole (parasitophorous vacuole) located in the cytoplasm of the host cell. The mitochondria of extracellular parasites, but not of those located within the parasitophorous vacuole, were also stained by rhodamine 123. Labeling with DiOC6, which binds to elements of the endoplasmic reticulum, in association with transmission electron microscopy, revealed a concentration of this structure around the parasitophorous vacuole. The membrane lining this vacuole was also stained, suggesting that components of the endoplasmic reticulum are also incorporated into this membrane. The Golgi complex, as revealed by staining with NBD-ceramide and electron microscopy, maintains its perinuclear position throughout the evolution of the intracellular parasitism.  相似文献   

15.
Summary The present study was performed to investigate whether membrane recycling via the dense apical tubules in cells of renal proximal tubules could be modified after exposure to large amounts of cationized ferritin. Proximal tubules in the rat kidney were microinfused in vivo with cationized ferritin for 10 or 30 min and then fixed with glutaraldehyde by microinfusion, or proximal tubules were microinfused with ferritin for 30 min and then fixed 2 h thereafter. The tubules were processed for electron microscopy, and the surface density and the volume density of the different cell organelles involved in endocytosis were determined by morphometry. The morphometric analyses showed that after loading of the endocytic vesicles with ferritin the surface density of dense apical tubules decreased to about 50% of the original value. However, 2 h later when ferritin had accumulated in the lysosomes the surface density of dense apical tubules had returned to control values. Furthermore, cationized ferritin was virtually absent from the Golgi region, indicating that the Golgi apparatus in these cells does not participate in membrane recycling. In conclusion, the present study shows that membrane recycling in renal proximal tubule cells can in part be inhibited by loading the endocytic vacuoles with ferritin.  相似文献   

16.
The intracellular parasite Toxoplasma gondii develops inside a parasitophorous vacuole (PV) that derives from the host cell plasma membrane during invasion. Previous electron micrograph images have shown that the membrane of this vacuole undergoes an extraordinary remodeling with an extensive network of thin tubules and vesicles, the intravacuolar network (IVN), which fills the lumen of the PV. While dense granule proteins, secreted during and after invasion, are the main factors for the organization and tubulation of the network, little is known about the source of lipids used for this remodeling. By selectively labeling host cell or parasite membranes, we uncovered evidence that strongly supports the host cell as the primary, if not exclusive, source of lipids for parasite IVN remodeling. Fluorescence recovery after photobleaching (FRAP) microscopy experiments revealed that lipids are surprisingly dynamic within the parasitophorous vacuole and are continuously exchanged or replenished by the host cell. The results presented here suggest a new model for development of the parasitophorous vacuole whereby the host provides a continuous stream of lipids to support the growth and maturation of the PVM and IVN.  相似文献   

17.
Tachyzoites of Toxoplasma gondii multiply within the parasitophorous vacuole (PV) until the lysis of the host cell. This study was undertaken to evaluate the effect of hydroxyurea (a specific drug that arrests cell division at G1/S phase) on the multiplication of T. gondii tachyzoites in infected Vero cells. Infected host cells were treated with hydroxyurea for periods varying from 5 to 48 h, and the survival and morphology of the parasite were determined. Hydroxyurea arrested intracellular T. gondii multiplication in all periods tested. After 48 h of incubation with hydroxyurea, intracellular parasites were not easily observed in Vero cells. Ultrastructural observations showed that infected host cells treated with hydroxyurea for 24 h or more presented disrupted intracellular parasites within the PV. However, the host cells exhibited a normal morphology. Our observations suggest that hydroxyurea was able to interfere with the cycle of the intracellular parasite, leading to the complete destruction of the T. gondii without affecting the host cells.  相似文献   

18.
Toxoplasma gondii is an important zoonotic parasite with a worldwide distribution. It infects about one-third of the world's population, causing serious illness in immunosuppressed individuals, fetuses, and infants. Toxoplasma gondii biology within the host cell includes several important phases: (1) active invasion and establishment of a nonfusogenic parasitophorous vacuole in the host cell, (2) extensive modification of the parasitophorous vacuolar membrane for nutrient acquisition, (3) intracellular proliferation by endodyogeny, (4) egress and invasion of new host cells, and (5) stage conversion from tachyzoite to bradyzoite and establishment of chronic infection. During these processes, T. gondii regulates the host cell by modulating morphological, physiological, immunological, genetic, and cellular biological aspects of the host cell. Overall, the infection/development predispositions of T. gondii -host cell interactions overtakes the infection resistance aspects. Upon invasion and development, host cells are modulated to keep a delicate balance between facilitating and eliminating the infection.  相似文献   

19.
Fusion of SV40-induced endocytotic vacuoles with the nuclear membrane   总被引:2,自引:0,他引:2  
The interaction between simian virus 40(SV40)-induced endocytotic vacuoles and the nuclear membrane was investigated using cationized ferritin (CF) and concanavalin A (Con A) as cell membrane markers. These markers bound to the cell surfaces of CV-1 cells together with SV40 at 4 degrees C. Following incubation of these modified cells at 37 degrees C in serum-free medium, the cell membranes showed many invaginations. After incubation for 60 min at 37 degrees C in the same medium, many various-sized vacuoles were present that contained membrane-bound CF, Con A and SV40. After 2 h of incubation at 37 degrees C, Con A was present in some areas of the perinuclear cisterna along the nuclear membrane. The control experiment, however, showed no localization of Con A-binding on the nuclear membrane. These results provide evidence that SV40-induced endocytotic vacuoles migrate toward the nucleus and fuse with its membrane.  相似文献   

20.
In vitro Eimeria bovis sporozoites invade a wide range of cell types, and in the case of bovine cells, they may develop to first-generation schizonts. Often, however, they subsequently leave their host cell to invade a new one, which seems contrary to the classical way of infecting a cell by forming a parasitophorous vacuole. Using a standard, "cell wound assay," we show that E. bovis can invade bovine endothelial cells by breaching the plasma membrane and may again leave the surviving cell. Eimeria bovis sporozoites also infected VERO and HT29 cells but obviously without damaging the plasma membrane. The same held true when bovine endothelial cells were exposed to tachyzoites of Toxoplasma gondii and Neospora caninum. According to a literature report dealing with Plasmodium yoelii sporozoites, breaching the membrane of certain host cells may be a common phenomenon for coccidian sporozoites but may not be for merozoites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号