首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Mitogen-activated protein kinases (MPKs) play important roles in biotic and abiotic stress responses. In the present study, we identified a tomato MPK gene, SlMPK4, a possible homolog of Arabidopsis AtMPK4, and performed functional analysis to examine its possible roles in biotic and abiotic responses. Expression of SlMPK4 was induced by infection with Botrytis cinerea and by exogenous application of jasmonic acid and ethylene precursor 1-amino cyclopropane-1-carboxylic acid. Knockdown of the endogenous SlMPK4 expression through virus-induced gene silencing in tomato plants (TRV-SlMPK4) resulted in increased susceptibility to B. cinerea. Expression of defense-related genes SlPR1a and SlPR1b were up-regulated in the SlMPK4-silenced plants. Furthermore, silencing of the SlMPK4 gene also resulted in reduced tolerance against drought stress, leading to earlier wilting symptom under drought stress condition, as compared with the control plants. These results suggest important roles for SlMPK4 in disease resistance against B. cinerea and tolerance to drought stress.  相似文献   

10.
11.
12.
13.
14.
Plant cell wall modification is a critical component in stress responses. Endo‐1,4‐β‐glucanases (EGs) take part in cell wall editing processes, e.g. elongation, ripening and abscission. Here we studied the infection response of Solanum lycopersicum and Arabidopsis thaliana with impaired EGs. Transgenic TomCel1 and TomCel2 tomato antisense plants challenged with Pseudomonas syringae showed higher susceptibility, callose priming and increased jasmonic acid pathway marker gene expression. These two EGs could be resistance factors and may act as negative regulators of callose deposition, probably by interfering with the defence‐signalling network. A study of a set of Arabidopsis EG T‐DNA insertion mutants challenged with P. syringae and Botrytis cinerea revealed that the lack of other EGs interferes with infection phenotype, callose deposition, expression of signalling pathway marker genes and hormonal balance. We conclude that a lack of EGs could alter plant response to pathogens by modifying the properties of the cell wall and/or interfering with signalling pathways, contributing to generate the appropriate signalling outcomes. Analysis of microarray data demonstrates that EGs are differentially expressed upon many different plant–pathogen challenges, hormone treatments and many abiotic stresses. We found some Arabidopsis EG mutants with increased tolerance to osmotic and salt stress. Our results show that impairing EGs can alter plant–pathogen interactions and may contribute to appropriate signalling outcomes in many different biotic and abiotic plant stress responses.  相似文献   

15.
16.
Cytokinins are phytohormones that regulate many developmental and environmental responses. The Medicago truncatula cytokinin receptor MtCRE1 (Cytokinin Response 1) is required for the nitrogen-fixing symbiosis with rhizobia. As several cytokinin signaling genes are modulated in roots depending on different biotic and abiotic conditions, we assessed potential involvement of this pathway in various root environmental responses. Phenotyping of cre1 mutant roots infected by the Gigaspora margarita arbuscular mycorrhizal (AM) symbiotic fungus, the Aphanomyces euteiches root oomycete, or subjected to an abiotic stress (salt), were carried out. Detailed histological analysis and quantification of cre1 mycorrhized roots did not reveal any detrimental phenotype, suggesting that MtCRE1 does not belong to the ancestral common symbiotic pathway shared by rhizobial and AM symbioses. cre1 mutants formed an increased number of emerged lateral roots compared to wild-type plants, a phenotype which was also observed under non-stressed conditions. In response to A. euteiches, cre1 mutants showed reduced disease symptoms and an increased plant survival rate, correlated to an enhanced formation of lateral roots, a feature previously linked to Aphanomyces resistance. Overall, we showed that the cytokinin CRE1 pathway is not only required for symbiotic nodule organogenesis but also affects both root development and resistance to abiotic and biotic environmental stresses.  相似文献   

17.
Oligogalacturonides (OGs) are endogenous elicitors of defense responses released after partial degradation of pectin in the plant cell wall. We have previously shown that, in Arabidopsis (Arabidopsis thaliana), OGs induce the expression of PHYTOALEXIN DEFICIENT3 (PAD3) and increase resistance to the necrotrophic fungal pathogen Botrytis cinerea independently of signaling pathways mediated by jasmonate, salicylic acid, and ethylene. Here, we illustrate that the rapid induction of the expression of a variety of genes by OGs is also independent of salicylic acid, ethylene, and jasmonate. OGs elicit a robust extracellular oxidative burst that is generated by the NADPH oxidase AtrbohD. This burst is not required for the expression of OG-responsive genes or for OG-induced resistance to B. cinerea, whereas callose accumulation requires a functional AtrbohD. OG-induced resistance to B. cinerea is also unaffected in powdery mildew resistant4, despite the fact that callose accumulation was almost abolished in this mutant. These results indicate that the OG-induced oxidative burst is not required for the activation of defense responses effective against B. cinerea, leaving open the question of the role of reactive oxygen species in elicitor-mediated defense.  相似文献   

18.
Citrus is the most important tree fruit crop in the world. However, citrus production is affected by both biotic and abiotic stresses, including drought, extreme temperature, salinity, citrus canker, citrus tristeza virus, and Huanglongbing (or citrus greening), among others. These stresses can severely influence growth and development of both rootstocks and/or scions of citrus trees, thus reducing both fruit production and fruit quality. Modern advances in the tools of plant biotechnology and advances in genomics play important roles in understanding how citrus crops can cope with diseases and adverse environmental conditions. Within the last decades, much progress has been made in identifying and cloning of genes involved in resistance to biotic and abiotic stresses as well in genetic transformation of Citrus and its related genera, such as Poncirus trifoliata and Fortunella spp. In this review, we will provide information on advances and insights on genetic transformation protocols as well as availability of characterized genes involved in resistance to both abiotic and biotic stresses. This will be followed with a discussion on perspectives of future developments in this field.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号