首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The structure of the extracellular polysaccharide (EPS) produced by the Rhizobium sp. B strain isolated from atypical nodules on alfalfa has been determined using a combination of chemical and physical techniques (methylation analysis, high pH-anion exchange chromatography (HPAEC), mass spectrometry and 1-D and 2-D NMR spectroscopy). As opposed to the EPS from other strains of Rhizobium, the EPS from the sp. B strain contains D-Glc together with L-Rha and 2-deoxy-D-arabino-hexuronic acid. It is a polymer of a repeating unit having the following structure: --> 4)-beta-D-Glcp-(1 --> 4)-alpha-L-Rhap -(1 --> 3)-beta-D-Glcp-(1 --> 4)-2-deoxy-beta-D-GlcpA-(1 -->. The polysaccharide also contains 0.6 O-acetyl groups per sugar which have not been located.  相似文献   

2.
Streptococcus thermophilus Sfi6 produces an exopolysaccharide (EPS) composed of glucose, galactose and N-acetylgalactosamine in the molar ratio of 1:2:1. The genes responsible for the EPS biosynthesis have been isolated previously and found to be clustered in a 14.5 kb region encoding 13 genes. Transfer of this gene cluster into a non-EPS-producing heterologous host, Lactococcus lactis MG1363, yielded an EPS with a similar high molecular weight, but a different structure from the EPS from the native host. The structure of the recombinant EPS was determined by means of 1H homonuclear and 1H-13C heteronuclear two-dimensional nuclear magnetic resonance (NMR) spectra and was found to be --> 3)-beta-D-Glcp-(1 --> 3)-alpha-D-Galp-(1 --> 3)-beta-D-Galp-(1 --> as opposed to --> 3)[alpha-D-Galp-(1 --> 6)]-beta-D-Glcp-(1 --> 3)-alpha-D-GalpNAc-(1 --> 3)-beta-D-Galp-(1 --> for the wild-type S. thermophilus Sfi6. Furthermore, L. lactis MG1363 (pFS101) was also lacking a UDP-N-acetylglucosamine C4-epimerase activity, which would provide UDP-GalNAc for a GalNAc incorporation into the EPS and probably caused the substitution of GalNAc by Gal in the recombinant EPS. This modification implies that (i) bacterial glycosyltransferases could potentially have multiple specificities for the donor and the acceptor sugar molecule; and (ii) the repeating unit polymerase can recognize and polymerize a repeating unit that differs in the backbone as well as in the side-chain from its native substrate.  相似文献   

3.
Erwinia chrysanthemi are gram-negative bacterial phytopathogens causing soft rots in a number of plants. The structure of the extracellular polysaccharide (EPS) produced by E. chrysanthemi strain CU643, pathogenic to Philodendron, has been determined using a combination of chemical and physical techniques including methylation analysis, high- and low-pressure gel-filtration and anion-exchange chromatography, high-pH anion-exchange chromatography, partial acid hydrolysis, mass spectrometry, and 1- and 2-D NMR spectroscopy. In contrast to the structures of the EPS reported for other strains of E. chrysanthemi, the EPS from strain CU643 is a linear polysaccharide containing L-Rhap, D-Galp, and D-GlcAp in the ratio 4:1:1. Evidence is presented for the following hexasaccharide repeat unit: -->3)-beta-D-Galp-(1-->2)-alpha-L-Rhap-(1-->4)-beta-D-GlcAp- (1-->2)-alpha-L- Rhap-(1-->2)-alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->(1 ).  相似文献   

4.
An extracellular polysaccharide (EPS) was recovered and purified from the culture fluid of a sheathed bacterium, Sphaerotilus natans. Glucose, rhamnose, and aldobiouronic acid were detected in the acid hydrolysate of EPS by thin-layer chromatography (TLC). The aldobiouronic acid was found to be composed of glucuronic acid and rhamnose by TLC and gas-liquid chromatography analyses of the corresponding neutral disaccharide. The structure of EPS was identified by methylation linkage analysis and nuclear magnetic resonance. Additionally, partial acid hydrolysates of EPS were prepared and put through fast atom bombardment-mass spectrometry to determine the sugar sequence of EPS. The resulting data showed that EPS produced by S. natans is a new gellan-like polysaccharide constructed from a tetrasaccharide repeating unit, as shown below. -->4)-alpha-D-Glcp-(1-->2)-beta-D-GlcA p-(1-->2)-alpha-L-Rha p-(1-->3)-beta-L-Rha p-(1-->.  相似文献   

5.
AIMS: To investigate the structural features and hypoglycaemic activity of an exopolysaccharide (EPS) produced by Sorangium cellulosum NUST06. METHODS AND RESULTS: The chemical structure of the EPS from S. cellulosum NUST06 was determined by gas-liquid chromatography, gas chromatography (GC), GC-mass spectrometry and nuclear magnetic resonance. The EPS was composed of a beta-D-(1-->4)-glucose backbone with alpha-D-(1-->6)-mannose side chains. The molecular weight of the EPS was approx. 2x10(5) Da. Healthy and alloxan-induced diabetic mice were used in the study. Blood glucose levels of the experimental animals during the trial period were analysed by a glucose test kit based on the glucose oxidase method. When 100 and 200 mg kg(-1) day(-1) of purified EPS was orally administered for 7 days, the serum glucose in alloxan-induced diabetic mice was reduced by 35.9 and 41.4% (P<0.01), and the serum glucose in healthy mice was reduced by 27.3 and 30.1% (P<0.05), respectively. CONCLUSIONS: The EPS produced by S. cellulosum NUST06 decreased blood glucose levels distinctly in both healthy and alloxan-induced diabetic mice. SIGNIFICANCE AND IMPACT OF THE STUDY: To elucidated the chemical structure of the EPS from S. cellulosum NUST06 and exploited the anti-diabetic potential of the EPS.  相似文献   

6.
Streptococcus thermophilus Sfi6 produces a texturizing exopolysaccharide (EPS) consisting of a -->3)[alpha-D-Galp-(1-->6)]-beta-D-Glcp-(1-->3)-alpha-D-GalpNAc-(1--> 3)-beta-D-Galp-(1--> repeating unit. We previously identified and analyzed a 14.5-kb gene cluster from S. thermophilus Sfi6 consisting of 13 genes responsible for its EPS production. Within this gene cluster, we found a central region of genes (epsE, epsF, epsG, and epsI) that showed similarity to glycosyltransferases. In this study, we investigated the sugar specificity of these enzymes. EpsE catalyzes the first step in the biosynthesis of the EPS repeating unit. It exhibits phosphogalactosyltransferase activity and transfers galactose onto the lipophilic carrier. The second step is fulfilled by EpsG, which transfers an alpha-N-acetylgalactosamine onto the first beta-galactoside. The activity of EpsF was determined by characterizing the EPS produced by an S. thermophilus epsF deletion mutant. This EPS consisted of the monosaccharides Gal, Glc, and GalNAc in an approximately equimolar ratio, thus suggesting that epsF codes for the branching galactosyltransferase. epsI probably codes for the beta-1,3-glucosyltransferase, since it is the only glycosyltransferase to which no gene has been assigned and it exhibits similarity to other beta-glycosyltransferases. EpsE shows the conserved features of phosphoglycosyltransferases, whereas EpsF and EpsG exhibit the primary structure of alpha-glycosyltransferases, belonging to glycosyltransferase family 4, whose members are conserved in all major phylogenetic lineages, including the Archaea and Eukaryota.  相似文献   

7.
The extracellular polysaccharide (EPS) was isolated from mycelial cultures of Laetiporus sulphureus var. miniatus and purified by DEAE cellulose and Sephadex G-50 column chromatography. The purified EPS (EPS-2-1) was composed of only glucose units and its molecular mass was 6.95 kDa. The chemical structure of EPS-2-1 consisted of a main chain containing (1-->4)-Glcp units with branches at the C-6 position of the chain carrying -Glcp-(1-->4)-linked residues. The effect of purified EPS on immunomodulatory genes and proteins of the Bcl-2 family was observed using cultured U937 human leukemia cells. Of note, the levels of Bax and Bad proteins treated with the EPS (4 mg/ml) were approximately 23- and 18-times higher than those in non-treated cells, respectively. These results may suggest that the EPS purified from the mushroom L. sulphureus is associated with the activation of immunomodulatory mediators, Bax and Bad proteins.  相似文献   

8.
Site-directed mutagenesis of the glucansucrase gtf180 gene from Lactobacillus reuteri strain 180 was used to transform the active site region. The alpha-D-glucan ( mEPS-PNNS) produced by the triple mutant V1027P:S1137N:A1139S differed in structure from that of the wild-type alpha-D-glucan ( EPS180). Besides (alpha1-->3) and (alpha1-->6) linkages, as present in EPS180, mEPS-PNNS also contained (alpha1-->4) linkages. Linkage analysis, periodate oxidation, and 1D/2D (1)H NMR spectroscopy of the intact mEPS-PNNS, as well as MS and NMR analysis of oligosaccharides obtained by partial acid hydrolysis of mEPS-PNNS afforded a composite model, which includes all identified structural features.  相似文献   

9.
Four exopolysaccharides (EPS) obtained from Botryosphaeria rhodina strains isolated from rotting tropical fruit (graviola, mango, pinha, and orange) grown on sucrose were purified on Sepharose CL-4B. Total acid hydrolysis of each EPS yielded only glucose. Data from methylation analysis and (13)C NMR spectroscopy indicated that the EPS from the graviola isolate consisted of a main chain of glucopyranosyl (1-->3) linkages substituted at O-6 as shown in the putative structure below: [carbohydrate structure: see text]. The EPS of the other fungal isolates consisted of a linear chain of (1-->6)-linked glucopyranosyl residues of the following structure: [carbohydrate structure: see text]. FTIR spectra showed one band at 891 cm(-1), and (13)C NMR spectroscopy showed that all glucosidic linkages were of the beta-configuration. Dye-inclusion studies with Congo Red indicated that each EPS existed in a triple-helix conformational state. beta-(1-->6)-d-Glucans produced as exocellular polysaccharides by fungi are uncommon.  相似文献   

10.
The exopolysaccharide botryosphaeran (EPS(GLC); a (1--> 3)(1-->6)-β-D-glucan from Botryosphaeria rhodina MAMB- 05) was sulfonated to produce a water-soluble fraction (EPS(GLC)-S) using pyridine and chlorosulfonic acid in formamid. This procedure was then repeated twice to produce another fraction (EPSGLC-RS) with a higher degree of substitution (DS, 1.64). The purity of each botryosphaeran sample (unsulfonated and sulfonated) was assessed by gel filtration chromatography (Sepharose CL-4B), where each polysaccharide was eluted as a single symmetrical peak. The structures of the sulfonated and re-sulfonated botryosphaerans were investigated using ultraviolet-visible (UV-Vis), Fourier-transform infrared (FT-IR), and (13)C nuclear magnetic resonance ((13)C NMR) spectroscopies. EPS(GLC) and EPS(GLC)-RS were also assayed for anticoagulation activity, and EPS(GLC)-RS was identified as an anticoagulant.  相似文献   

11.
Rhodococcus erythropolis PR4 is a marine bacterium that can degrade various alkanes including pristane, a C(19) branched alkane. This strain produces a large quantity of extracellular polysaccharides (EPS), which are assumed to play an important role in the hydrocarbon tolerance of R. erythropolis PR4. The strain produced an acidic EPS, mucoidan, together with a fatty acid-containing EPS, PR4 FACEPS. The chemical structure of the mucoidan was determined using (1)H and (13)C NMR spectroscopy and by conducting 2D DQF-COSY, TOCSY, HMQC, HMBC, and NOESY experiments. The mucoidan was shown to consist of a pentasaccharide repeating unit with the following structure: [structure: see text].  相似文献   

12.
EPS B40 from Lactococcus lactis subsp. cremoris consists of a repeating unit of-->4)-beta-D-Glcp-(1-->4)-[alpha-L-Rhap-(1 -->2)][alpha-D-Galp-1-PO4-3]-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->. A phosphatase from Trichoderma viride was able to release phosphate, but only after removal of rhamnosyl and galactosyl residues by mild CF3CO2H treatment. Purified endoV from T. viride was able to act on the backbone of the polymer, but only if rhamnosyl substituents and phosphate had been removed. After complete removal of phosphate and partial removal of rhamnosyl residues by HF treatment, incubation with endoV resulted in a homologous series of oligomers. Purification of these oligomers and subsequent characterisation by NMR demonstrated that endoV was able to cleave the beta-(1-->4) linkage between two glucopyranosyl residues when the galactopyranosyl residue towards the nonreducing end is unsubstituted. The mode of action of endoV on HF-treated EPS B40 is discussed on the basis of the subsite model described for endoV [J.-P. Vincken, G. Beldman, A.G.J. Voragen, Carbohydr. Res., 298 (1997) 299-310].  相似文献   

13.
Pseudomonas strain 1.15 was isolated from a freshwater biofilm and shown to produce considerable amounts of an acidic polysaccharide which was investigated by methylation analysis, NMR spectroscopy and ionspray mass spectrometry (ISMS). The polysaccharide was depolymerised by a bacteriophage-associated endoglucosidase and by autohydrolysis, and the resulting oligosaccharides were investigated by NMR spectroscopy and mass spectrometry. The resulting data showed that the parent repeating unit of the 1.15 exopolysaccharide (EPS) is a branched hexasaccharide. The main chain is constituted of the trisaccharide -->4)-alpha-L-Fucp-(1-->4)-alpha-L-Fucp-(1-->3)-beta-D-Glcp- (1--> and the side chain alpha-D-Galp-(1-->4)-beta-D-GlcAp-(1-->3)-alpha-D-Galp-(1-->is linked to O-3 of the first Fuc residue. The terminal non-reducing Gal carries a 1-carboxyethylidene acetal in the R configuration at the positions 4 and 6. Of the four different O-acetyl groups present in non-stoichiometric amounts, two were established to be on O-2 of the 3-linked Gal and on O-2 of the 4-linked Fuc.  相似文献   

14.
We have previously isolated a lactic acid bacterium (LAB), Pediococcus pentosaceus LP28, from the longan fruit Euphoria longana. Since the plant-derived LAB strain produces an extracellular polysaccharide (EPS), in this study, we analyzed the chemical structure and the biosynthesizing genes for the EPS.The EPS, which was purified from the LP28 culture broth, was classified into acidic and neutral EPSs with a molecular mass of about 50 kDa and 40 kDa, respectively. The acidic EPS consisted of glucose, galactose, mannose, and N-acetylglucosamine moieties. Interestingly, since pyruvate residue was detected in the hydrolyzed acidic EPS, one of the four sugars may be modified with pyruvate. On the other hand, the neutral EPS consisted of glucose, mannose, and N-acetylglucosamine; pyruvate was scarcely detected in the polysaccharide molecule.As a first step to deduce the probiotic function of the EPS together with the biosynthesis, we determined the whole genome sequence of the LP28 strain, demonstrating that the genome is a circular DNA, which is composed of 1,774,865 bp (1683 ORFs) with a GC content of 37.1%. We also found that the LP28 strain harbors a plasmid carrying 6 ORFs composed of 5366 bp with a GC content of 36.5%. By comparing all of the genome sequences among the LP28 strain and four strains of P. pentosaceus reported previously, we found that 53 proteins in the LP28 strain display a similarity of less than 50% with those in the four P. pentosaceus strains. Significantly, 4 of the 53 proteins, which may be enzymes necessary for the EPS production on the LP28 strain, were absent in the other four P. pentosaceus strains and displayed less than 50% similarity with other LAB species. The EPS-biosynthetic gene cluster detected only in the LP28 genome consisted of 12 ORFs containing a priming enzyme, five glycosyltransferases, and a putative polysaccharide pyruvyltransferase.  相似文献   

15.
Acinetobacter junii BB1A cells, grown in different media, were differentially inhibited in the presence of the copper. The minimum inhibitory concentration of Cu2+ was influenced by the nutrient status of the media. The production of extracellular polymeric substances (EPS) was stimulated by the copper present in the growth medium. The nature of the EPS was anionic showing non-Newtonian pseudoplastic behaviour. The thermal behaviour of the EPS was studied by differential scanning calorimetry. The EPS was amorphous in nature with a crystalline index of 0.16. Scanning electron micrographs revealed its porous structure. Cells grown in the presence of quorum sensing inhibitor (QSI: 4-Nitropyridine-N-oxide) did not produce EPS and were found to be more sensitive to Cu2+ than cells which produced EPS in the absence of QSI. EPS production in different media in the presence and absence of Cu2+ was determined. The production of EPS was the highest in brain heart Infusion medium and the lowest in AB minimal medium. The sorption of Cu2+ by EPS extracted from cells grown in non-copper-complexing AB medium was demonstrated by energy dispersive X-ray spectroscopy. A pertinent functional aspect of EPS in providing protection to A. junii in copper stress condition has been revealed.  相似文献   

16.
The slime-forming bacterium Methylobacterium sp. was isolated from a Finnish paper machine and its exopolysaccharide (EPS) was produced on laboratory scale. Sugar compositional analysis revealed a 100% galactan (EPS). However, FT-IR showed a very strong peak at 1611 cm(-1) showing the presence of pyruvate. Analysis of the pyruvate content revealed that, based on the sugar composition, the EPS consists of a trisaccharide repeating unit consisting of D-galactopyranose and [4,6-O-(1-carboxyethylidene)]-D-galactopyranose with a molar ratio of 1:2, respectively. Both linkage analysis and 2D homo- and heteronuclear 1H and 13C NMR spectroscopy revealed the following repeating unit: -->3)-[4,6-O-(1-carboxyethylidene)]-alpha-D-Galp-(1-->3)[4,6-O-(1-carboxyethylidene)]-alpha-D-Galp-(1-->3)-alpha-D-Galp-(1-->. By enrichment cultures from various ground and compost heap samples a polysaccharide-degrading culture was obtained that produced an endo acting enzyme able to degrade the EPS described. The enzyme hydrolysed the EPS to a large extent, releasing oligomers that mainly consisted out of two repeating units.  相似文献   

17.
《Harmful algae》2011,10(6):590-599
Prorocentrum lima (Ehrenberg) Dodge is a cosmopolitan epiphytic dinoflagellate that produces biotoxins which are causative of diarrhetic shellfish poisoning (DPS). Here we report on effects of several nitrogen (N) and phosphorous (P) limited conditions on cell yield, okadaic acid (OA) and dinophysistoxin-1 (DTX-1) contents synoptically with cell carbohydrate, exopolysaccharide (EPS) and cell protein concentrations in a P. lima strain isolated from the Sacca di Goro lagoon (Northern Adriatic Sea). Batch culture experiments were set to assess changes induced by four nitrogen-limited levels (1/3-N, 1/10-N, 1/20-N, and 1/50-N) and four phosphorus-limited levels (1/3-P, 1/10-P, 1/20-P, and 1/50-P) with respect to control nutrient conditions (f/2 medium; NO3 and PO43− concentrations: 883 and 36.3 μM, respectively; N/P ratio: 24). Low nutrients availability determined lower cell yields starting from 1/10-N and 1/3-P levels and the pattern observed was dependent on nutrient dynamics, as shown by N and P analyses performed in culture media during growth. Final cell yield decreased significantly up to 4.7- and 5.6-fold under 1/50-N and 1/50-P-limited levels with respect to control values, while cell volume increased with respect to control (up to 30% and 35% for N- and P-experiment, respectively). On overall, OA concentration ranged from 6.69 to 15.80 pg cell−1, while DTX-1 ranged from 0.12 and 0.39 pg cell−1 resulting in unusual high OA/DTX-1 ratios. The study indicates that protein, carbohydrate, EPS, and toxin concentrations displayed remarkable different patterns under the two kinds of nutrient deficiencies. The main differences can be summarised as: (i) significant decrease of cell protein concentration (up to 2-fold) under N-limitation, conversely no significant changes in protein concentration under P-limitation; (ii) significant increase of cell carbohydrate (up to 2.8-fold and 3.4-fold for N- and P-limitation, respectively) and cell OA amount (up to 1.9-fold and 2.3-fold, N- and P-limitation, respectively) under both N- and P-limitations, however different level-deficiency dependent patterns were displayed under the two nutrient conditions; (iii) significant increase of EPS concentration (up to 6.50-fold) under P-limitation, conversely no significant changes in EPS concentration under N-limitation. Data presented here indicate that P. lima adopts different eco-physiological strategies to face N-limitation or P-limitation. This study provides the first evidence for an increase in EPS production by benthic dinoflagellates under P-limited conditions; the ecological significance of this increase is discussed.  相似文献   

18.
《Process Biochemistry》2014,49(12):2030-2038
The significance of metal ion supplementation in the fermentation medium on the structure and anti-tumor activity of Tuber polysaccharides was systematically studied in the submerged fermentation of Tuber melanosporum. The lowest weight-average molecular weight (Mw) (i.e., 115.3 × 104 g/mol) of intracellular polysaccharides (IPS) was obtained when Mg2+ and K+ was added in the fermentation medium. The IPS with the lower Mw exhibited a higher inhibition ratio against S-180 tumor cells. The compact conformation of extracellular polysaccharides (EPS) was formed when only K+ was supplied in the fermentation medium. Interestingly, EPS with compact conformation exhibited a higher inhibition ratio (i.e., 59.2%) than EPS with branched polymer chain (i.e., 9.2%) against A549 tumor cells. The highest inhibition ratio for EPS with α-glycosidic linkages against the tumor cell line HepG2 reached 32.2% when Mg2+ or K+ was supplied in the fermentation medium. The addition of metal ion Mg2+, K+, and their combination to the fermentation medium is a vital factor affecting the structures of Tuber polysaccharides, which further determine their anti-tumor activities. The information obtained in this work will be useful for the efficient and directed production of polysaccharides with anti-tumor activities by the submerged fermentation of edible fungi mycelium.  相似文献   

19.
The structure of the O-antigen polysaccharide of the lipopolysaccharide from the enteroinvasive Escherichia coli O136 has been elucidated. The composition of the repeating unit was established by sugar and methylation analysis together with 1H and 13C NMR spectroscopy. Two-dimensional nuclear Overhauser effect spectroscopy (NOESY) and heteronuclear multiple-bond correlation experiments were used to deduce the sequence. The absolute configuration for the nonulosonic acid (NonA) could be determined using spin-spin coupling constants, 13C chemical shifts and NOESY. The anomeric configuration of the NonA was determined via vicinal and geminal 13C,1H coupling constants. The structure of the repeating unit of the polysaccharide from E. coli O136 is as follows, in which beta-NonpA is 5,7-diacetamido-3,5,7, 9-tetradeoxy-Lglycero-beta-Lmanno-nonulosonic acid: -->4)-beta-NonpA-(2-->4)-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->  相似文献   

20.
The neutral exopolysaccharide EPS180 produced from sucrose by the glucansucrase GTF180 enzyme from Lactobacillus reuteri 180 was found to be a (1-->3,1-->6)-alpha-D-glucan, with no repeating units present. Based on linkage analysis, periodate oxidation, and 1D/2D 1H and 13C NMR spectroscopy of the intact EPS180, as well as MS and NMR analysis of oligosaccharides obtained by partial acid hydrolysis of EPS180, a composite model, that includes all identified structural features, was formulated as follows: [Formula: see text].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号