首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PUMA (p53-upregulated modulator of apoptosis) is a pro-apoptotic gene that can induce rapid cell death through a p53-dependent mechanism. However, the efficacy of PUMA gene therapy to induce synovial apoptosis in rheumatoid arthritis might have limited efficacy if p53 expression or function is deficient. To evaluate this issue, studies were performed to determine whether p53 is required for PUMA-mediated apoptosis in fibroblast-like synoviocytes (FLS). p53 protein was depleted or inhibited in human FLS by using p53 siRNA or a dominant-negative p53 protein. Wild-type and p53-/- murine FLS were also examined to evaluate whether p53 is required. p53-deficient or control FLS were transfected with PUMA cDNA or empty vector. p53 and p21 expression were then determined by Western blot analysis. Apoptosis was assayed by ELISA to measure histone release and caspase-3 activation, or by trypan blue dye exclusion to measure cell viability. Initial studies showed that p53 siRNA decreased p53 expression by more than 98% in human FLS. Loss of p53 increased the growth rate of cells and suppressed p21 expression. However, PUMA still induced apoptosis in control and p53-deficient FLS after PUMA cDNA transfection. Similar results were observed in p53-/- murine FLS or in human FLS transfected with a dominant-negative mutant p53 gene. These data suggest that PUMA-induced apoptosis in FLS does not require p53. Therefore, approaches to gene therapy that involve increasing PUMA expression could be an effective inducer of synoviocyte cell death in rheumatoid arthritis regardless of the p53 status in the synovium.  相似文献   

2.
The tumor suppressor gene p53, in response to DNA damage/hypoxia, induces growth arrest and/or apoptosis. Inactivation of p53, by mutations and/or overexpression of the mdm2 gene, confers a selective advantage to tumor cells under hypoxic microenvironment during tumor progression. The mole rat, Spalax, spends its life underground at low-oxygen tensions and hence has developed a wide range of respiratory/molecular adaptations to hypoxic stress. We previously reported that the highly conserved p53 Arg(R)-174 is substituted by lysine (K) in Spalax, identical to a tumor- associated mutation. Functionality assays revealed that Spalax p53 and human R174K-mutated p53 were unable to induce human/Spalax apaf1, an apoptotic target gene, while over-activating the mdm2 gene. Moreover, cells transfected with human p53 underwent more extensive apoptosis (44.8%) as compared to Spalax p53 (23.2%) transfected cells. To support our hypothesis that the pattern of activity in Spalax is related to hypoxia-tolerance, we quantified apaf1 and mdm2 mRNA levels under normoxia (21% O2), short-acute hypoxic stress (5 h at 6% O2),and long-mild hypoxic insult (44 h at 10% O2). Results were compared to those of rats under similar conditions. Following hypoxia, Spalax apaf1 mRNA levels decreased significantly, but increased in rats. apip mRNA levels, a negative regulator of apaf1, increased in Spalax and decreased in rats. mdm2 mRNA levels under hypoxia were significantly higher in Spalax. We conclude that, similar to our previous in-vitro work, two parallel hypoxia-adaptive mechanisms evolved in Spalax: mutated p53 and p53 response element leading to a bias against apoptosis and increased mdm2, which are analogous to observations in tumor development.  相似文献   

3.
Although increasing evidence has confirmed that the apoptosis of renal tubular epithelial cells (RTECs) is a crucial contributor to the onset and development of septic acute kidney injury (AKI), the pathological mechanism by which RTEC apoptosis is upregulated during septic AKI is not entirely clear. In this study, a rat model of septic AKI was induced by a cecal ligation puncture procedure or lipopolysaccharide (LPS) injection. Four differentially expressed long noncoding RNAs (DE-Lncs) in the rat model of septic AKI were determined using RNA-sequencing and verified by qRT-PCR. Among the four DE-Lncs, the expression level of lncRNA NONRATG019935.2 (9935) exhibited the most significant reduction in both septic AKI rats and LPS-treated NRK-52E cells (a rat RTEC line). The overexpression of 9935 suppressed cell apoptosis and p53 protein level in LPS-treated NRK-52E cells, and retarded septic AKI development in the rat model of septic AKI. Mechanistically, 9935 decreased the human antigen R (HuR)-mediated Tp53 mRNA stability by limiting the combination of HuR and the 3′UTR region of Tp53 mRNA in RTECs. The overexpression of HuR abrogated the inhibitory effect of pcDNA-9935 on the LPS-induced apoptosis of NRK-52E and rat primary RTECs. In conclusion, 9935 exerts its role in septic AKI by suppressing the p53-mediated apoptosis of RTECs, and this essential role of 9935 relies on its destructive effect on HuR-mediated Tp53 mRNA stability.Subject terms: Cell biology, Molecular biology  相似文献   

4.
In this study, we identified p53 as a novel TCTP-interacting protein using TCTP as bait. Also, we determined the critical binding sites between TCTP and p53. To elucidate the functional consequence of the interaction, we developed the overexpression and inhibition system of TCTP and p53 expression. Overexpression of TCTP in lung carcinoma cells reversed p53 mediated apoptosis and inhibition of TCTP expression by small interfering RNA increased apoptosis of lung carcinoma cells. Moreover, it was observed that TCTP overexpression promotes degradation of p53. These results clearly indicate that the interaction between TCTP and p53 prevents apoptosis by destabilizing p53. Thus, TCTP acts as a negative regulator of apoptosis in lung cancer.

Structured summary

MINT-8057107, MINT-8057116: p53 (uniprotkb:P04637) physically interacts (MI:0915) with TCTP (uniprotkb:P13693) by anti bait coimmunoprecipitation (MI:0006)MINT-8057141: TCTP (uniprotkb:P13693) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by two hybrid pooling approach (MI:0398)MINT-8057126: p53 (uniprotkb:P04637) physically interacts (MI:0915) with TCTP (uniprotkb:P13693) by anti tag coimmunoprecipitation (MI:0007) MINT-8057160: TCTP (uniprotkb:P13693) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by two hybrid (MI:0018)  相似文献   

5.
6.
Summary We investigated the effect of exogenous wild-type p53 on the radiation-induced cells apoptosis and necrosis at different levels of linear energy transfer (LET) to evaluate its mechanisms. The human melanoma cell line A375, which bears wild-type p53 gene status, was used, as well as the transfectant A375 cells (A375/p53) with adenoviral vector containing the wild-type p53 gene. We exposed these cells to X-rays and to accelerated carbon-ion (C-) beams. Cellular sensitivities were determined by using clonogenic assay. Apoptotic and necrotic cell deaths were determined morphologically by dual staining (acridine orange and ethidium bromide) using fluorescence microscopy. We discovered that (1) there was no significant difference in survival fraction between A375 cells and A375/p53 cells irradiated by C-beams with greater than 32 KeV/μm LET, (2) although apoptosis in the two kinds of cells increased in an LET-dependent manner, exogenous wild-type P53 induced cell apoptosis efficiently in A375/p53 relative to A375 cells with X-rays or high-LET irradiation, and (3) by high-LET irradiation, the number of necrosis in A375 cells increased significantly (P<0.05) in comparison with A375/p53 cells. These results indicate that in high-LET irradiation apoptosis induction is p53 dependent partly and exogenous wild-type P53 plays an important role in modulating cell death type, although there was no significant difference in cellular radiosensitivities. Our observation in the study offers the potential application of high-LET radiation combined with p53 in the management of human patients with melanoma.  相似文献   

7.
8.
The present study examined whether X-ray- and CDDP-sensitivities depend on p53 gene status in human squamous cell carcinoma of the head and neck (SAS cells) showing dominant negative nature of mutant p53 protein. SAS cells were transfected with a vector carrying a mutant p53 gene (SAS/Trp248 cells) or neomycin resistant gene control vector (SAS/neo cells). Sensitivities of the transfected cells to X-ray or CDDP were measured with colony formation assay. The incidence of apoptosis by X-ray or CDDP was analyzed with Hoechst staining or DNA ladder formation assay. The activation of caspase-3 was estimated as an indicator of apoptosis by the detection of fragmentation of caspase-3 or poly (ADP ribose) polymerase (PARP) with Western blot. SAS/Trp248 cells showed X-ray- and CDDP-resistance due to the dominant negative nature of mutant p53, compared with SAS/neo cells. The incidence of DNA ladders and apoptotic bodies increased markedly in SAS/neo cells after X-ray irradiation or CDDP treatment, but increased only slightly in SAS/Trp248 cells. Fragmentation of caspase-3 and PARP was observed in SAS/neo cells, but almost no such fragmentation was observed in SAS/Trp248 cells after X-ray irradiation or CDDP treatment. The present results strongly suggest that the X-ray- and CDDP-sensitivities of human squamous cell carcinomas are p53-dependent, and that the sensitivities are tightly correlated with the induction of apoptosis through caspase-3 activation. The p53-dependent X-ray- or CDDP-sensitivity was supported by results from p53-null human lung cancer H1299 cells which were transfected with wild-type or mutant p53 gene.  相似文献   

9.
10.
11.
12.
人巨细胞病毒(human cytomegalovirus,HCMV)能诱导肿瘤细胞恶性转化且抑制肿瘤细胞凋亡,但HCMV编码的主要即刻早期调控蛋白IE86在这一过程中是否发挥关键作用仍然未知。为探究IE86对基因修饰荷胶质瘤小鼠p53表达水平及恶性胶质瘤细胞凋亡情况的影响,本研究通过PCR技术鉴定基因修饰小鼠IE86表达情况;实时定量PCR技术检测IE86和p53mRNA表达水平变化;免疫组织化学方法检测p53和p21蛋白的表达水平;TUNEL检测肿瘤组织细胞凋亡情况。结果显示,成功构建了IE86基因修饰小鼠模型;与IE86阴性组相比IE86阳性组p53表达水平上升(P0.05),但p21表达水平下降(P0.05);IE86阳性组细胞抗凋亡能力增强(P0.05)。以上结果表明,在基因修饰的小鼠中IE86持续表达但p53转录活性的指示标志p21下调,且IE86可提高恶性胶质瘤细胞抗凋亡能力。  相似文献   

13.
The biological functions of the tumor suppressor ING1 have been studied extensively in the past few years since it was cloned. It shares many biological functions with p53 and has been reported to mediate growth arrest, senescence, apoptosis, anchorage-dependent growth, chemosensitivity, and DNA repair. Some of these functions, such as cell cycle arrest and apoptosis, have been shown to be dependent on the activity of both ING1 and p53 proteins. Two recent reports by Scott and colleagues demonstrate that p33ING1 (one of the ING1 isoforms) translocates to the nucleus and binds to PCNA upon UV irradiation. Here we report that p33ING1 mediates UV-induced cell death in melanoma cells. We found that overexpression of p33ING1 increased while the introduction of an antisense p33ING1 plasmid reduced the apoptosis rate in melanoma cells after UVB irradiation. We also demonstrated that enhancement of UV-induced apoptosis by p33ING1 required the presence of p53. Moreover, we found that p33ING1 enhanced the expression of endogenous Bax and altered the mitochondrial membrane potential. Taken together, these observations strongly suggest that p33ING1 cooperates with p53 in UVB-induced apoptosis via the mitochondrial cell death pathway in melanoma cells.  相似文献   

14.
Apoptosis and apoptosis related proteins in chronic viral liver disease   总被引:10,自引:0,他引:10  
Background: Apoptosis may be an important mechanism of hepatocyte death in chronic viral liver disease. Methods: We studied apoptosis in liver biopsies from 30 patients with chronic viral hepatitis and 8 patients with viral cirrhosis by the TUNEL method. 12 cases of non-alcoholic steatohepatitis and 12 cases of primary biliary cirrhosis were used as non-viral disease controls. Immunohistochemical expression of p53, p21/waf1, bcl-2 and mdm-2 proteins was also studied in the same patients. Results: A statistically significant increase of apoptotic liver cells was found in severe chronic viral hepatitis (5.3 ± 0.3%), cirrhosis (3.4 ± 0.5%) and PBC (4.4 ± 0.4%) cases compared to patients with non-alcoholic steatohepatitis (0.8 ± 0.3%). The expression of p53 protein was increased in the cases of viral cirrhosis and in chronic severe viral hepatitis whereas in the cases of chronic mild hepatitis, PBC and non-alcoholic steatohepatitis we found no expression of p53. P21/waf1 expression was increased in severe chronic hepatitis, cirrhosis and PBC cases compared to mild hepatitis and non-alcoholic steatohepatitis cases. However no induction of mdm-2 was observed in the subgroups of chronic liver disease. Bcl-2 was expressed only in epithelium of bile ducts and mononuclear cells of the portal tracts and liver lobules. A weaker Bcl-2 expression was noted in the epithelium of bile ducts of 7/12 PBC cases. Conclusion: Our results provide evidence of increased apoptosis in severe chronic viral liver disease, suggesting that apoptotic cell death might be involved in the pathogenesis of hepatocellular damage of viral hepatitis and cirrhosis. Furthermore we analysed part of the apoptotic pathways implicated in the above process and found an increased expression of p21/waf1, probably p53 mediated, without overexpression of the apoptosis inhibiting bcl-2 and mdm-2 proteins. By contrast p21/waf1 overexpression in PBC seems to be propagated by a p53 independent mechanism.  相似文献   

15.
Osteosarcoma is the most common type of bone cancer, with a peak incidence in the early childhood. The relationship between microRNAs (miRNAs) and cancer development attracted more and more attention over the last few years. Members of the miRNA-29 family, including miRNA-29a, miRNA-29b, and miRNA-29c were shown to participate in the development of rhabdomyosarcoma and hepatocarcinogenesis. Here, it has been demonstrated miRNA-29a and miRNA-29b expression levels to be downregulated in most of the osteosarcoma tissues (23 from 30). Besides, miRNA-29a displayed ability to induce apoptosis in both U2OS and SAOS-2 osteoblastic cells. While miRNA-29 members induced apoptosis through p53 gene activation, the effect of miRNA-29a on osteoblastic cells was independent on p53 expression level. Moreover, Bcl-2 and Mcl-1 were earlier demonstrated to be the direct targets of miRNA-29 in many types of cancer tissues and cancers. In both U2OS and SAOS-2 osteoblastic cell types, overexpression of miRNA-29a also downregulated Bcl-2 and Mcl-1, while silencing of miRNA-29a increased their expression. In addition, enhanced expression of miRNA-29a increased the expression of two tumor suppressor genes, E2F1 and E2F3. In summary, data obtained highlight the role of miRNA-29a in the regulation of osteoblastic cell apoptosis by silencing Bcl-2 and Mcl-1 and inducing E2F1 and E2F3 expression.  相似文献   

16.
Cancer stem cells (CSCs) are thought to be partially responsible for cancer resistance to current therapies and tumor recurrence. Dichloroacetate (DCA), a compound capable of shifting metabolism from glycolysis to glucose oxidation, via an inhibition of pyruvate dehydrogenase kinase was used. We show that DCA is able to shift the pyruvate metabolism in rat glioma CSCs but has no effect in rat neural stem cells. DCA forces CSCs into oxidative phosphorylation but does not trigger the production of reactive oxygen species and consecutive anti-cancer apoptosis. However, DCA, associated with etoposide or irradiation, induced a Bax-dependent apoptosis in CSCs in vitro and decreased their proliferation in vivo. The former phenomenon is related to DCA-induced Foxo3 and p53 expression, resulting in the overexpression of BH3-only proteins (Bad, Noxa, and Puma), which in turn facilitates Bax-dependent apoptosis. Our results demonstrate that a small drug available for clinical studies potentiates the induction of apoptosis in glioma CSCs.  相似文献   

17.
Total knee arthroplasty is a commonly performed safe procedure and typically executed in severe knee arthritis, but it also triggers ischemia-reperfusion injury (IRI). More recently, microRNAs (miRs) have been reported to play a contributory role in IRI through the key signaling pathway. Hence, the current study aimed to investigate the effect and specific mechanism of microRNA-23b (miR-23b), murine double minute 4 (MDM4), and the p53 signaling pathway in IRI rat models. First, the IRI model was established, and the expression pattern of miR-23b, MDM4, and the p53 signaling pathway-related genes was characterized in cartilaginous tissues. Then, miR-23b mimics or inhibitors were applied for the elevation or the depletion of the miR-23b expression and siRNA-MDM4 for the depletion of the MDM4 expression in the articular chondrocytes. By means of immunohistochemistry, quantitative real-time polymerase chain reaction, and Western blot analysis, IRI rats exhibited increased miR-23b expression, activated p53 signaling pathway, and decreased MDM4 expression. MDM4 was verified as a target gene of miR-23b through. Downregulated miR-23b increased the expression of MDM4, AKT, and Bcl-2, but decreased the expression of p53, p21, and Bax. In addition, a series of cell experiments demonstrated that downregulated miR-23b promoted articular chondrocyte proliferation and cell cycle entry, but inhibited articular chondrocyte apoptosis. The absence of the effects of miR-23b was observed after MDM4 knocked down. Our results indicate that silencing miR-23b could act to attenuate IRI and reduce the apoptosis of articular chondrocytes through inactivation of the p53 signaling pathway by upregulating MDM4, which provide basic therapeutic considerations for a novel target against IRI.  相似文献   

18.
2,2-Bis(4-hydroxyphenyl)propane (bisphenol A; BPA) is an environmental endocrine-disrupting chemical. It mimics the effects of estrogen at multiple levels by activating estrogen receptors (ERs); however, BPA also affects the proliferation of human breast cancer cells independent of ERs. Although BPA inhibits progesterone (P4) signaling, the toxicological significance of its effects remain unknown. Tripartite motif-containing 22 (TRIM22) has been identified as a P4-responsive and apoptosis-related gene. Nevertheless, it has not yet been established whether exogenous chemicals change TRIM22 gene levels. Therefore, the present study investigated the effects of BPA on P4 signaling and TRIM22 and TP53 expression in human breast carcinoma MCF-7 cells. In MCF-7 cells incubated with various concentrations of P4, TRIM22 messenger RNA (mRNA) levels increased in a dose-dependent manner. P4 induced apoptosis and decreased viability in MCF-7 cells. The knockdown of TRIM22 abolished P4-induced decreases in cell viability and P4-induced apoptosis. P4 increased TP53 mRNA expression and p53 knockdown decrease the basal level of TRIM22 and P4 increased TRIM22 mRNA expression independent of p53 expression. BPA attenuated P4-induced increases in the ratio of cell apoptosis in a concentration-dependent manner, and the P4-induced decreases in cell viability was abolished in the presence of 100 nM and higher BPA concentrations. Furthermore, BPA inhibited P4-induced TRIM22 and TP53 expression. In conclusion, BPA inhibited P4-induced apoptosis in MCF-7 cells via the inhibition of P4 receptor transactivation. TRIM22 gene has potential as a biomarker for investigating the disruption of P4 signaling by chemicals.  相似文献   

19.
PNAS-4, a novel pro-apoptotic gene, was activated during the early response to DNA damage. Our previous study has shown that PNAS-4 induces S phase arrest and apoptosis when overexpressed in A549 lung cancer cells. However, the underlying action mechanism remains far from clear. In this work, we found that PNAS-4 expression in lung tumor tissues is significantly lower than that in adjacent lung tissues; its expression is significantly increased in A549 cells after exposure to cisplatin, methyl methane sulfonate, and mitomycin; and its overexpression induces S phase arrest and apoptosis in A549 (p53 WT), NCI-H460 (p53 WT), H526 (p53 mutation), and Calu-1 (p53−/−) lung cancer cells, leading to proliferation inhibition irrespective of their p53 status. The S phase arrest is associated with up-regulation of p21Waf1/Cip1 and inhibition of the Cdc25A-CDK2-cyclin E/A pathway. Up-regulation of p21Waf1/Cip1 is p53-independent and correlates with activation of ERK. We further showed that the intra-S phase checkpoint, which occurs via DNA-dependent protein kinase-mediated activation of Chk1 and Chk2, is involved in the S phase arrest and apoptosis. Gene silencing of Chk1/2 rescues, whereas that of ATM or ATR does not affect, S phase arrest and apoptosis. Furthermore, human PNAS-4 induces DNA breaks in comet assays and γ-H2AX staining. Intriguingly, caspase-dependent cleavage of Chk1 has an additional role in enhancing apoptosis. Taken together, our findings suggest a novel mechanism by which elevated PNAS-4 first causes DNA-dependent protein kinase-mediated Chk1/2 activation and then results in inhibition of the Cdc25A-CDK2-cyclin E/A pathway, ultimately causing S phase arrest and apoptosis in lung cancer cells.  相似文献   

20.
All-trans-retinoic acid (RA) plays an important physiological role in embryonic development and is teratogenic in large doses in almost all species. p53, a tumor suppressor gene encodes phosphoproteins, which regulate cellular proliferation, differentiation, and apoptosis. Temporal modulation of p53 by retinoic acid was investigated in murine embryonic stem cells during differentiation and apoptosis. Undifferentiated embryonic stem cells express a high level of p53 mRNA and protein followed by a decrease in p53 levels as differentiation proceeds. The addition of retinoic acid during 8–10 days of differentiation increased the levels of p53 mRNA and protein, accompanied by accelerated neural differentiation and apoptosis. Marked increase in apoptosis was observed at 10–20 h after retinoic acid treatment when compared with untreated controls. Retinoic acid-induced morphological differentiation resulted in predominantly neural-type cells. Maximum increase in p53 mRNA in retinoic acid-treated cells occurred on day 17, whereas maximum protein synthesis occurred on days 14–17, which coincided with increased neural differentiation and proliferation. Increased p53 levels did not induce p21 transactivation, interestingly a decrease in p21 was observed on day 17 on exposure to retinoic acid. The level of p53 declined by day 21 of differentiation. The results demonstrated that retinoic acid-mediated apoptosis preceded the changes in p53 expression, suggesting that p53 induction does not initiate retinoic acid-induced apoptosis during development. However, retinoic acid accelerated neural differentiation and increased the expression of p53 in proliferating neural cells, corroborated by decreased p21 levels, indicating the importance of cell type and stage specificity of p53 function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号