首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 694 毫秒
1.
Using a 14C/3H double-labelling technique, the influence of kinetic on the length of the cell cycle of meristematic cells in haploid and diploid callus cultures of Datura innoxia was determined. The total length of the cell cycle of haploid cells as compared to that of diploid cells was reduced by 2.3 h (-kinetin) or 1.4 h (+kinetin). Furthermore, the addition of kinetin to the nutrient solution also reduces cell cycle duration at both ploidy levels. For synchronization of the cell cycle, a fluorodesoxyuridine/thymidine system was successfully employed. Apparently, the reduction of total cell cycle duration of cycling cells due to treatment with kinetin occurred at the expense of the G1phase. Nevertheless, kinetin seems to exert an influence on the transition of cells from the G2 into the M phase as well.Abbreviations FUdR fluorodeoxyuridine - HU hydroxyurea - IAA nidole acetic acid  相似文献   

2.
Summary In the yeast Saccharomyces cerevisiae the RAD2 gene is absolutely required for damage-specific incision of DNA during nucleotide excision repair and is inducible by DNA-damaging agents. In the present study we correlated sensitivity to killing by DNA-damaging agents with the deletion of previously defined specific promoter elements. Deletion of the element DRE2 increased the UV sensitivity of cells in both the G1/early S and S/G2 phases of the cell cycle as well as in stationary phase. On the other hand, increased UV sensitivity associated with deletion of the sequence-related element DRE1 was restricted to cells irradiated in G1/S. Specific binding of protein(s) to the promoter elements DRE1 and DRE2 was observed under non-inducing conditions using gel retardation assays. Exposure of cells to DNA-damaging agents resulted in increased protein binding that was dependent on de novo protein synthesis.  相似文献   

3.
The life history of Coleochaete scutata Bréb. was analyzed by Feulgen microspectrophotometry, a technique measuring DNA content in individual nuclei. By correlating nuclear DNA content with morphological structures or stages in the life history, changes in ploidy level are revealed. The microspectrophotometric study confirmed the earlier reports of a haploid vegetative thallus with mitotic division restricted primarily to the margin of the thallus. In the mitotic cycle the G1 (pre-synthesis) phase is longer in duration than the synthesis find G2 (post-synthesis) phases. Oogamous sexual reproduction results in resistant oospores which attain DNA levels of 2C 8C (1C being the DNA level of gamete nuclei).  相似文献   

4.
Abstract. Objectives: Trabectedin (ET‐743, Yondelis®) is a natural marine product, with antitumour activity, currently in phase II/III clinical trials. Previous studies have shown that cells hypersensitive to ultraviolet (UV)‐rays because of nucleotide excision repair (NER) deficiency, were resistant to trabectedin. The purpose of this study was to investigate whether this resistance was associated with different drug‐induced cell cycle perturbations. Materials and Methods: An isogenic NER‐proficient cellular system (CHO‐AA8) and a NER‐deficient one (CHO‐UV‐96), lacking functional ERCC‐1, were studied. Flow cytometric assays showed progressive accumulation of cells in G2 + M phase in NER‐proficient but not in NER‐deficient cells. Applying a computer simulation method, we realized that the dynamics of the cell cycle perturbations in all phases were complex. Results: Cells exposed to trabectedin during G1 and G2 + M first experienced a G1 block, while those exposed in S phase were delayed in S and G2 + M phases but eventually divided. In the presence of functional NER, exit from the G1 block was faster; then, cells progressed slowly through S phase and were subsequently blocked in G2 + M phase. This G2 + M processing of trabectedin‐induced damage in NER‐proficient cells was unable to restore cell cycling, suggesting a difficulty in repairing the damage. Conclusions: This might be due either to important damage left unrepaired by previous G1 repair, or that NER activity itself caused DNA damage, or both. We speculate that in UV‐96 cells repair mechanisms other than NER are activated both in G1 and G2 + M phases.  相似文献   

5.
Hog1 of Saccharomyces cerevisiae is activated by hyperosmotic stress, and this leads to cell-cycle delay in G1, but the mechanism by which cells restart from G1 delay remains elusive. We found that Whi3, a negative regulator of G1 cyclin, counteracted Hog1 in the restart from G1 delay caused by osmotic stress. We have found that phosphorylation of Ser-568 in Whi3 by RAS/cAMP-dependent protein kinase (PKA) plays an inhibitory role in Whi3 function. In this study we found that the phosphomimetic Whi3 S568D mutant, like the Δwhi3 strain, slightly suppressed G1 delay of Δhog1 cells under osmotic stress conditions, whereas the non-phosphorylatable S568A mutation of Whi3 caused prolonged G1 arrest of Δhog1 cells. These results indicate that Hog1 activity is required for restart from G1 arrest under osmotic stress conditions, whereas Whi3 acts as a negative regulator for this restart mechanism.  相似文献   

6.
The status of glyoxalase-I was explored in exponentially growing and G1 arrested temperature sensitive (ts) cell division cycle (cdc) mutants of Saccharomyces cerevisiae. It was observed that the specific activity of this enzyme was correlated with overall growth status. The activity was high in actively growing cells and was low in G1 arrested cells. Specific activities of glyoxalase-I were also low in G1 arrested prolonged stationary phase (PSP) cells of S. cerevisiae and Candida albicans. The activity of glyoxalase-I recovered when G1 arrested S. cerevisiae (ts) cells were allowed to regrow under permissive conditions. Results demonstrate that although glyoxalase-I activity is a good indicator of cell growth status, it is not involved in cell cycle regulation of this eukaryotic organism.  相似文献   

7.
Antimicrobial peptides (AMPs) are promising agents for control of bacterial and fungal infections. Traditionally, AMPs were thought to act through membrane disruption but recent experiments have revealed a diversity of mechanisms. Here we describe a novel antifungal activity for bovine pancreatic trypsin inhibitor (BPTI). BPTI has several features in common with a subset of antimicrobial proteins in that it is small, cationic and stabilized by disulphide bonds. BPTI inhibits growth of Saccharomyces cerevisiae and the human pathogen Candida albicans. Screening of the yeast heterozygous essential deletion collection identified the magnesium transporter Alr1p as a potential BPTI target. BPTI treatment of wild type cells resulted in a lowering of cellular Mg2+ levels. Populations treated with BPTI had fewer cells in S‐phase of the cell cycle and a corresponding increase of cells in G0/G1 and G2 phases. The same patterns of cell cycle arrest obtained with BPTI were also obtained with the magnesium channel inhibitor hexamine(III)cobalt chloride. Analysis of the growth inhibition of C. albicans revealed that BPTI is inhibiting growth via the same mechanism in the two yeast species. Inhibition of magnesium uptake by BPTI represents a novel mechanism of action for AMPs.  相似文献   

8.
The in vitro relationship between nutritional factors, proliferative status of tumor cells, and the cytotoxic action of cytosine arabinoside (ara-C) was investigated. The reduction in the concentration of only one essential amino acid, L-isoleucine, in the growth medium of A(T1)Cl-3 hamster fibrosarcoma cells decreased DNA synthesis in this cell population and slowed the rate of progression of G1 phase cells into S phase of the cell cycle. The complete omission of isoleucine from the growth medium blocked the progression of G1 phase cells into S phase and prevented the cytotoxic action of ara-C. The addition of isoleucine to the isoleucine-deprived cells permitted these cells to enter the S phase and restored their sensitivity to the cytotoxic action of ara-C. When G1 phase cells were placed in a medium containing reduced levels of all the amino acids and vitamins there was a prolongation of the G1 phase. Since medium with low levels of amino acids produced a delay in the entry of G1 phase cells into the S phase, the time interval in which these cells were most sensitive to the cytotoxic action of ara-C was different for G1 phase cells placed in medium with adequate levels of all the amino acids. These in vitro data indicate that nutritional factors can markedly effect the proliferation of tumor cells and the cytotoxic action of ara-C.  相似文献   

9.
Centrifugal elutriation was used to separate 9L rat brain tumour cells into fractions enriched in the G1, S, or G2/M phases of the cell cycle. Cells enriched in early G1, phase were recultured, grown in synchrony, and harvested periodically for analysis of their DNA distribution and polyamine content. Mathematical analysis of the DNA distributions indicated that excellent synchrony was obtained with low dissersion throughout the cell cycle. Polyamine accumulation began at the time of seeding, and intracellular levels of putrescine, spermidine, and spermine increased continuously during the cell cycle. In cells in the G2/M phase of the cell cycle, putrescine and spermidine levels were twice as high as in cells in the G1, phase. DNA distribution and polyamine levels were also analysed in cells taken directly from the various elutriation fractions enriched in G1, S, or G2/M. Because we did not obtain pure S or G2/M populations by elutriation or by harvesting synchronized cells, a mathematical procedure—which assumed that the measured polyamine levels for any population were linearly related to the fraction of cells in the G1, S, and G2/M phases times the polyamine levels in these phases and that polyamine levels did not vary within these phases—was used to estimate ‘true’ phase-specific polyamine levels (levels to be expected if perfect synchrony were achieved). Estimated ‘true’ phase-specific polyamine levels calculated from the data obtained from cells either sorted by elutriation or obtained from synchronously growing cultures were very similar.  相似文献   

10.
DNA repair and cell survival in haploid and its diploid derivative strains ofSaccharomyces cerevisiae were studied after 100 krad X-ray irradiation. The cells were in theG 1 stage of the cell cycle, where haploid cells had only one copy of genetic material per genome and diploid had two copies. It was found that diploid could repair double-strand breaks in its DNA after 48 hr of liquid holding which was accompanied by a four-fold rise in survival. In contrast a haploid strain failed to repair its DNA and showed no increase in survival after liquid holding. It is concluded that (1) repair of DNA double-strand breaks requires the availability of two homologous DNA duplexes, (2) restoration of cell viability during liquid holding is connected with repair of DNA double-strand breaks and (3) this repair is a slow process possibly associated with slow finding and conjugation of homologous chromosomes.  相似文献   

11.
《Journal of bryology》2013,35(4):235-239
Abstract

We measured DNA content of cell nuclei, stained with the Feulgen method, using branch tips of 11 species of Sphagnum from Svalbard, Arctic Norway, as an alternative to chromosome counting. Nine species were haploid and two were diploid, with no intraspecific variation in ploidy level. The results conformed to known chromosome numbers and/or to expectations from isozyme studies. Ploidy levels were determined for the first time in S. tundrae and S. fimbriatum ssp. concinnum (haploid) and S. arcticum and S. olafii (diploid). No mitotic divisions were observed, but unreplicated interphase nuclei still allowed precise ploidy determinations. Basic DNA contents of all Sphagnum species were very similar, and measurement of a few nuclei proved sufficient to ascertain ploidy level despite very low nuclear DNA content. Advantages of the DNA image cytometry method are: mitotic or meiotic cells are not required to be found, and only a small amount of material is required.  相似文献   

12.
The duration of the cell cycle and its component phases in cell cultures of Haplopappus gracilis was estimated by means of pulse labelling with tritiated thymidine and subsequent autoradiographic techniques. The total duration of the mitotic cycle was found to be 22.0 hours. The average durations of the following component phases were: the synthetic period (S) 6.4 hours, the postsynthetic period (G2) 4.86 hours, prophase (P) 0.64 hours, metaphase (M) 0.40 hours, anaphase + early telophase (AT) 0.36 hours, the presynthetic period (G1) 9.34 hours. The results indicate that G1 and G2 are the phases, which are most prolonged in populations of cultivated cells when compared to the same phases in root lip cells from the same species.  相似文献   

13.
Summary The effect of ozone exposure on Saccharomyces cerevisiae was studied. Factors such as ozone concentration, treatment time, media, initial cell concentration and growth phase were shown to influence ozone response in this organism. Logarithmic phase cells were much more sensitive than stationary phase cells to the lethal effect of ozone.The radiation-sensitive mutants rad3, rad6, rad51 and rad52 of S. cerevisiae were exposed, in water, to 50 ppm of ozone for 30 min. On comparing their survival curves, the rad51 and the rad52 mutants showed a greater sensitivity to ozone exposure than the wild type.  相似文献   

14.
Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P < 0.05) compared with unliganded conditions. The alterations in cell cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P < 0.05) compared with parental cells. Finally, treatment of MCF-7 cells with antiestrogens revealed that tamoxifen yields a slower cell cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.  相似文献   

15.
16.
Genetic and cytochemical investigations of the origin, development, nuclear activity, and ploidy level of Plasmodia obtained from selfed clones S-2 and B1P-33 of the heterothallic myxomycete, Didymium iridis, are presented. To demonstrate that selfing did not result from contamination of the clones, or mutations at the mating-type locus, crosses were made between F1 clones and clones of known mating types. The data were inconsistent with these two possibilities. DNA was quantified by Feulgen-DNA microspectrophotometry. All cellular phases studied (logarithmic amoebae, swarmers, and encysted amoebae) appear to be haploid, with the nuclear DNA being in the replicated (2C) state. The plasmodia are in all cases diploid; however, the data indicate that the selfed Plasmodia are in an extended G1 condition. The nuclear DNA content of these is therefore 2C, whereas that of the cross Plasmodium is 4C. Sporangial nuclei exhibit DNA in diploid replicated (4C) category.  相似文献   

17.
Genome copy number variation occurs during each mitotic and meiotic cycle and it is crucial for organisms to maintain their natural ploidy. Defects in ploidy transitions can lead to chromosome instability, which is a hallmark of cancer. Ploidy in the haploid human fungal pathogen Cryptococcus neoformans is exquisitely orchestrated and ranges from haploid to polyploid during sexual development and under various environmental and host conditions. However, the mechanisms controlling these ploidy transitions are largely unknown. During C. deneoformans (formerly C. neoformans var. neoformans, serotype D) unisexual reproduction, ploidy increases prior to the onset of meiosis, can be independent from cell-cell fusion and nuclear fusion, and likely occurs through an endoreplication pathway. To elucidate the molecular mechanisms underlying this ploidy transition, we identified twenty cell cycle-regulating genes encoding cyclins, cyclin-dependent kinases (CDK), and CDK regulators. We characterized four cyclin genes and two CDK regulator genes that were differentially expressed during unisexual reproduction and contributed to diploidization. To detect ploidy transition events, we generated a ploidy reporter, called NURAT, which can detect copy number increases via double selection for nourseothricin-resistant, uracil-prototrophic cells. Utilizing this ploidy reporter, we showed that ploidy transition from haploid to diploid can be detected during the early phases of unisexual reproduction. Interestingly, selection for the NURAT reporter revealed several instances of segmental aneuploidy of multiple chromosomes, which conferred azole resistance in some isolates. These findings provide further evidence of ploidy plasticity in fungi with significant biological and public health implications.  相似文献   

18.
In the cytosol of Saccharomyces cerevisiae, most of the free N-glycans (FNGs) are generated from misfolded glycoproteins by the action of the cytoplasmic peptide: N-glycanase (Png1). A cytosol/vacuole α-mannosidase, Ams1, then trims the FNGs to eventually form a trisaccharide composed of Manβ1,4GlcNAc β1,4GlcNAc (Man1GlcNAc2). Whether or not the resulting Man1GlcNAc2 is enzymatically degraded further, however, is currently unknown. The objective of this study was to unveil the fate of Man1GlcNAc2 in S. cerevisiae. Quantitative analyses of the FNGs revealed a steady increase in the amount of Man1GlcNAc2 produced in the post-diauxic and stationary phases, suggesting that this trisaccharide is not catabolized during this period. Inoculation of the stationary phase cells into fresh medium resulted in a reduction in the levels of Man1GlcNAc2. However, this reduction was caused by its dilution due to cell division in the fresh medium. Our results thus indicate that Man1GlcNAc2 is not enzymatically catabolized in S. cerevisiae.  相似文献   

19.
20.
The action of tubulosine on the mitotic cycle was studied using continuous labelling with tritiated thymidine. This alkaloid provokes a lengthening of the G1 and S phases and a blocking of G2 is totally reversible when the treatment is followed by recovery in normal medium. At a dose of tubulosine which induces a reversible mitostasis in the shortest possible time the lengthening of the phases of the cell cycle was estimated by three different techniques: labelled mitoses for the determination of G2; labelling intensity for the determination of S; binucleate cells for the determination of T, and an original technique using labelling index of binucleate cells for the determination of G1. The limits of the technique of labelled mitosis together with the interest of the technique aiming at the direct determination of G1 in the case of a perturbed cycle are then discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号