首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new fossil penguin skeleton from the La Meseta Formation collected at the locality DPV 13/84 (Seymour Island, Antarctic Peninsula) from the crinoid horizon located 40 m above the base of the 145 m-thick Submeseta Allomember (Late Eocene–Early Oligocene?) is described. The specimen is assigned to the species Palaeeudyptes klekowskii Myrcha, Tatur and del Valle, 1990; it is the most complete penguin skeleton ever recovered from Antarctica. Discoveries like this one are significant for the study of the anatomy and evolution of penguins, in particular regarding the Antarctic species included in the genus Palaeeudyptes Huxley, 1859. P. klekowskii closely resembles its smaller congeneric species P. gunnari ( Wiman, 1905), with only the relative concavity of the margo medialis distinguishing the tarsometatarsi of both taxa. However, the results of a geometric morphometric analysis show some intra- and inter-specific variations, making possible the systematic assignment of the majority of the specimens. Size variation is congruent with the presence of two different species.  相似文献   

2.
Various terrestrial tetrapods convergently evolved to gigantism (large body sizes and masses), the most extreme case being sauropod dinosaurs. Heavy weight-bearing taxa often show external morphological features related to this condition, but also adequacy in their limb bone inner structure: a spongiosa filling the medullary area and a rather thick cortex varying greatly in thickness along the shaft. However, the microanatomical variation in such taxa remains poorly known, especially between different limb elements. We highlight for the first time the three-dimensional microstructure of the six limb long bone types of a sauropod dinosaur, Nigersaurus taqueti. Sampling several specimens of different sizes, we explored within-bone, between-bones, and size-related variations. If a spongiosa fills the medullary area of all bones, the cortex is rather thin and varies only slightly in thickness along the shaft. Zeugopod bones appear more compact than stylopod ones, whereas no particular differences between serially homologous bones are found. Nigersaurus' pattern appears much less extreme than that in heavy terrestrial taxa such as rhinoceroses, but is partly similar to observations in elephants and in two-dimensional sauropod data. Thus, microanatomy may have not been the predominant feature for weight-bearing in sauropods. External features, such as columnarity (shared with elephants) and postcranial pneumaticity, may have played a major role for this function, thus relaxing pressures on microanatomy. Also, sauropods may have been lighter than expected for a given size. Our study calls for further three-dimensional investigations, eventually yielding a framework characterizing more precisely how sauropod gigantism may have been possible.  相似文献   

3.

Background

Ichthyosaurs are Mesozoic reptiles considered as active swimmers highly adapted to a fully open-marine life. They display a wide range of morphologies illustrating diverse ecological grades. Data concerning their bone microanatomical and histological features are rather limited and suggest that ichthyosaurs display a spongious, “osteoporotic-like” bone inner structure, like extant cetaceans. However, some taxa exhibit peculiar features, suggesting that the analysis of the microanatomical and histological characteristics of various ichthyosaur long bones should match the anatomical diversity and provide information about their diverse locomotor abilities and physiology.

Methodology/Principal Findings

The material analyzed for this study essentially consists of mid-diaphyseal transverse sections from stylopod bones of various ichthyosaurs and of a few microtomographic (both conventional and synchrotron) data. The present contribution discusses the histological and microanatomical variation observed within ichthyosaurs and the peculiarities of some taxa (Mixosaurus, Pessopteryx). Four microanatomical types are described. If Mixosaurus sections differ from those of the other taxa analyzed, the other microanatomical types, characterized by the relative proportion of compact and loose spongiosa of periosteal and endochondral origin respectively, seem to rather especially illustrate variation along the diaphysis in taxa with similar microanatomical features. Our analysis also reveals that primary bone in all the ichthyosaur taxa sampled (to the possible exception of Mixosaurus) is spongy in origin, that cyclical growth is a common pattern among ichthyosaurs, and confirms the previous assumptions of high growth rates in ichthyosaurs.

Conclusions/Significance

The occurrence of two types of remodelling patterns along the diaphysis, characterized by bone mass decrease and increase respectively is described for the first time. It raises questions about the definition of the osseous microanatomical specializations bone mass increase and osteoporosis, notably based on the processes involved, and reveals the difficulty in determining the true occurrence of these osseous specializations in ichthyosaurs.  相似文献   

4.
Graviportal taxa show an allometric increase of the cross‐sectional area of supportive bones and are assumed to display microanatomical changes associated with an increase in bone mass. This evokes osteosclerosis (i.e. an increase in bone compactness observed in some aquatic amniotes). The present study investigates the changes in bones' microanatomical organization associated with graviportality and how comparable they are with aquatically acquired osteosclerosis aiming to better understand the adaptation of bone to the different associated functional requirements. Bones of graviportal taxa show microanatomical changes that are not solely attributable to allometry. They display a thicker cortex and a proportionally smaller medullary cavity, with a wider transition zone between these domains. This inner cancellous structure may enable to better enhance energy absorption and marrow support. Moreover, the cross‐sectional geometric parameters indicate increased resistance to stresses engendered by bending and torsion, as well as compression. Adaptation to a graviportal posture should be taken into consideration when analyzing possibly amphibious taxa with a terrestrial‐like morphology. This is particularly important for palaeoecological inferences about large extinct tetrapods that might have been amphibious and, more generally, for the study of early stages of adaptation to an aquatic life in amniotes.  相似文献   

5.
Adaptation to aquatic or semi-aquatic habits has been demonstrated in several distantly related mammalian clades worldwide during the Cenozoic, but curiously none has been conclusively evidenced inland for South America although a few South American native ungulates (SANU) have been proposed as possible subaquatic taxa. These taxa mostly correspond to large-sized herbivorous forms among astrapotheres, pyrotheres, and some toxodontid notoungulates, found at the end of the Paleogene and/or beginning of the Neogene. As no clear argument was provided for these ecological hypotheses, an analysis of the microanatomical features of long bones of some of these taxa in a comparative context was conducted in order to address the question of the paleoecology of these organisms. Our study highlights a variety of osseous specializations in the stylopod bones of SANU, and notably that Parastrapotherium, Pyrotherium, and Nesodon are affected by bone mass increase. If the microanatomical features of Parastrapotherium and Nesodon evoke what is observed in some terrestrial or semi-aquatic graviportal taxa, the very high compactness of Pyrotherium suggests extreme functional requirements in this taxon such as a graviportal hyperspecialization. This study thus evidences the occurrence of several convergent adaptations to graviportality and/or subaquatic habits within SANU and contributes to an important step towards a better integration of South American endemic mammals in large-scaled paleoecological studies.  相似文献   

6.
The extinct parareptilian clade of pareiasaurs was in the past often presented to constitute a morphocline from larger, less armoured forms to smaller, well armoured forms, indicating that the osteoderm cover became an increasingly prominent aspect in the post‐cranial skeleton of these animals. Here, we describe microanatomical and microstructural aspects of osteoderms of the three pareiasaur taxa Bradysaurus, Pareiasaurus and Anthodon from the Permian of South Africa. A generalized mode of osteoderm formation, consistent with intramembraneous skeletogenesis, is hypothesized to be present in all pareiasaurs. Few characters are shared between pareiasaur dermal armour and turtle shell bones and osteoderms. Otherwise, there is strong evidence from microanatomy and histology (i.e. absence of structures that formed via metaplasia of dermal tissue) that indicates nonhomology between pareiasaur dermal armour and the armour of living eureptiles. Analysis with bone profiler revealed no clear connection between bone compactness and lifestyle in the amniote osteoderm sample.  相似文献   

7.
Analyses of mitochondrial DNA and morphological variation were performed on specimens of all five currently recognised Syngnathus pipefish species from the eastern Pacific Ocean with type localities currently considered to lie within the Californian marine biogeographic province: kelp pipefish Syngnathus californiensis, bay pipefish S. leptorhynchus, barred pipefish S. auliscus, barcheek pipefish S. exilis and chocolate pipefish S. euchrous. Results consistently differentiate S. auliscus from the other species and fail to distinguish all other specimens as distinct species, as indicated by extensive morphological overlap as well as incomplete lineage sorting and considerably low genetic divergence for 16s and coI genes(<1%). This study presents a taxonomic revision of eastern Pacific Syngnathus spp. and proposes the synonymy of S. leptorhynchus, S. euchrous and S. exilis, under the senior synonym, S. californiensis. There is still a need to study populations of Syngnathus spp. from north and south of the Californian province to assess whether these too are synonyms of the two-species recognised here.  相似文献   

8.

Background

The paleoecology of desmostylians has been discussed controversially with a general consensus that desmostylians were aquatic or semi-aquatic to some extent. Bone microanatomy can be used as a powerful tool to infer habitat preference of extinct animals. However, bone microanatomical studies of desmostylians are extremely scarce.

Methodology/Principal Findings

We analyzed the histology and microanatomy of several desmostylians using thin-sections and CT scans of ribs, humeri, femora and vertebrae. Comparisons with extant mammals allowed us to better understand the mode of life and evolutionary history of these taxa. Desmostylian ribs and long bones generally lack a medullary cavity. This trait has been interpreted as an aquatic adaptation among amniotes. Behemotops and Paleoparadoxia show osteosclerosis (i.e. increase in bone compactness), and Ashoroa pachyosteosclerosis (i.e. combined increase in bone volume and compactness). Conversely, Desmostylus differs from these desmostylians in displaying an osteoporotic-like pattern.

Conclusions/Significance

In living taxa, bone mass increase provides hydrostatic buoyancy and body trim control suitable for poorly efficient swimmers, while wholly spongy bones are associated with hydrodynamic buoyancy control in active swimmers. Our study suggests that all desmostylians had achieved an essentially, if not exclusively, aquatic lifestyle. Behemotops, Paleoparadoxia and Ashoroa are interpreted as shallow water swimmers, either hovering slowly at a preferred depth, or walking on the bottom, and Desmostylus as a more active swimmer with a peculiar habitat and feeding strategy within Desmostylia. Therefore, desmostylians are, with cetaceans, the second mammal group showing a shift from bone mass increase to a spongy inner organization of bones in their evolutionary history.  相似文献   

9.
We have studied the annual variation in food intake of three sub-Antarctic ice fish species (Champsocephalus gunnari, Chaenocephalus aceratus, and Pseudochaenichthys georgianus) and three high-Antarctic ice fish species (Chionodraco rastrospinosus, Cryodraco antarcticus, and Chaenodraco wilsoni). Stomach content analyses were conducted during bottom trawl surveys around the South Shetland Islands in 1998, 2001, 2002, 2003, and 2007, the South Orkney Islands in 1999 and 2009, and off the north-western Antarctic Peninsula in 2002, 2006, and 2006/2007 in order to obtain further insight into the amount of food of Antarctic demersal fish consume during summer. Annual variation in food intake was comparatively low within an area in the krill-feeding species C. gunnari and C. wilsoni. Food intake was much more variable, by a factor of 2 or 3 among years and areas, in larger C. aceratus and C. antarcticus, which rely heavily on fish as their dietary source. Food consumption was intermediate in the two species P. georgianus and C. rastrospinosus, which rely on both krill and fish.  相似文献   

10.
The size structure of coral populations is influenced by biotic and physical factors, as well as species-specific demographic rates (recruitment, colony growth, mortality). Coral reefs surrounding Moorea Island are characterized by strong environmental gradients at small spatial scales, and therefore, we expected that the size structure of coral populations would vary greatly at this scale. This study aimed at determining the degree of spatial heterogeneity in the population size structure of two coral taxa, Pocillopora meandrina and massive Porites spp., among depths (6, 12, and 18 m) and among locations (Vaipahu, Tiahura and Haapiti) representing different exposure to hydrodynamic forces. Our results clearly underlined the strong heterogeneity in the size structure of both P. meandrina and massive Porites spp., with marked variation among depths and among locations. However, the lack of any consistent and regular trends in the size structure along depths or among locations, and the lack of correlation between size structure and mean recruitment rates may suggest that other factors (e.g., stochastic life history processes, biotic interactions, and disturbances) further modify the structure of coral populations. We found that the size structure of P. meandrina was fundamentally different to that of massive Porites spp., reflecting the importance of life history characteristics in population dynamics. Handling editor: I. Nagelkerken  相似文献   

11.
Microfungi were isolated from soils, mosses, algae and lichens in the Windmill Islands region of Antarctica. From a total of 1,228 isolates, 22 genera were identified. The most frequently isolated fungi from mosses were Mycelia sterilia (47% of total isolates), Phoma spp. (18%), Penicillium spp. (11%), Chrysosporium spp. (7%) and Thelebolus microsporus (6%). Mycelia sterilia, Penicillium spp., Mortierella spp., Chrysosporium cf. pannorum and Thelebolus microsporus were also frequently isolated from algae. Fungal distribution and diversity were poor in samples of lichens, compared to samples from mosses and algae. The frequency of occurrence of microfungi was most often associated with strong biotic influence. There was a marked increase in fungal diversity in human-disturbed sites. Twelve taxa were restricted to soils from near the Australian Casey Station, suggesting significant introduction of fungi into this environment by human activities. Away from the station, fungal distribution appeared to be related to substrata and nutrient status rather than dispersal opportunities. Suggestions for future research and the need for constant monitoring to clarify the role of human disturbance on Antarctic fungi are discussed. Received: 1 April 1997 / Accepted: 17 August 1997  相似文献   

12.

Background

During their evolution in the Late Cretaceous, mosasauroids attained a worldwide distribution, accompanied by a marked increase in body size and open ocean adaptations. This transition from land-dwellers to highly marine-adapted forms is readily apparent not only at the gross anatomic level but also in their inner bone architecture, which underwent profound modifications.

Methodology/Principal Findings

The present contribution describes, both qualitatively and quantitatively, the internal organization (microanatomy) and tissue types and characteristics (histology) of propodial and epipodial bones in one lineage of mosasauroids; i.e., the subfamily Mosasaurinae. By using microanatomical and histological data from limb bones in combination with recently acquired knowledge on the inner structure of ribs and vertebrae, and through comparisons with extant squamates and semi-aquatic to fully marine amniotes, we infer possible implications on mosasaurine evolution, aquatic adaptation, growth rates, and basal metabolic rates. Notably, we observe the occurrence of an unusual type of parallel-fibered bone, with large and randomly shaped osteocyte lacunae (otherwise typical of fibrous bone) and particular microanatomical features in Dallasaurus, which displays, rather than a spongious inner organization, bone mass increase in its humeri and a tubular organization in its femora and ribs.

Conclusions/Significance

The dominance of an unusual type of parallel-fibered bone suggests growth rates and, by extension, basal metabolic rates intermediate between that of the extant leatherback turtle, Dermochelys, and those suggested for plesiosaur and ichthyosaur reptiles. Moreover, the microanatomical features of the relatively primitive genus Dallasaurus differ from those of more derived mosasaurines, indicating an intermediate stage of adaptation for a marine existence. The more complete image of the various microanatomical trends observed in mosasaurine skeletal elements supports the evolutionary convergence between this lineage of secondarily aquatically adapted squamates and cetaceans in the ecological transition from a coastal to a pelagic lifestyle.  相似文献   

13.
The summer diet of two species of icefishes (Channichthyidae) from the South Shetland Islands and Elephant Island, Champsocephalus gunnari and Chaenocephalus aceratus, was investigated from 2001 to 2003. Champsocephalus gunnari fed almost exclusively on krill (Euphausia superba) in all years. The importance of other taxa (Themisto gaudichaudii, mysids, myctophids) in the diet was negligible. The average feeding rate of Champsocephalus gunnari inferred from an exponential gastric evacuation model was between 1.0 and 1.5% body weight per day. Most of the stomachs of Chaenocephalus aceratus were empty. Stomachs with food contained mainly krill, mysids and fish. Among the fish taken, locally abundant species formed the bulk of the diet: Gobionotothen gibberifrons in 2001, Lepidonotothen larseni and Champsocephalus gunnari in 2002 and L. larseni in 2003. An ontogenetic shift in feeding preference of Chaenocephalus aceratus was observed: fish smaller than 30 cm fed on krill and mysids, while larger animals relied primarily on fish.  相似文献   

14.
An articulated wing belonging to Palaeeudyptes gunnari containing mineralized skin was found in Lutetian (middle Eocene) sediments from Seymour Island, Antarctica. It shows the connective tissues, morphology and density of the feather follicles, and a groove pattern left by the feather calami resting on the skin. Analysis of the preserved surfaces indicates a composition of calcium phosphate. This is the most complete and only articulated wing described for this species and represents the first record of a neornithine bird preserving three-dimensional integument. Plumage density of the wing MLP 14-I-10-22, estimated by counting the follicles under a stereoscopic microscope, is lower than that of the modern Emperor penguin.  相似文献   

15.
Abstract: Patterns of bone deposition are reported and deduced from mid‐shaft sections of 21 limb bones of the dicynodont Placerias hesternus from the Placerias Quarry (Upper Triassic), Arizona, USA. All sampled elements of P. hesternus have a large medullary cavity completely filled with bony trabeculae surrounded by dense cortical bone. Dense Haversian bone extends from the perimedullary region to at least the mid‐cortex in all sampled bones. Primary bone in the outer cortex of limb elements of P. hesternus is generally zonal fibrolamellar with a peripheral layer of parallel‐fibred bone. These data suggest periodic rapid osteogenesis followed by slower growth. Among dicynodonts, this strategy is most similar to growth previously reported in other Triassic (Lystrosaurus, Wadiasaurus) and some Permian taxa (Oudenodon, Tropidostoma). An external fundamental system (EFS), suggesting complete or near complete cessation of appositional growth, is present in the largest tibia. This is the first report of EFS in dicynodonts and may represent the attainment of maximum size in P. hesternus. Slow‐growing peripheral bone was observed in elements of varying size in our sample and may support a differential growth pattern between P. hesternus individuals from this locality. A complete growth series of P. hesternus, analysis of Placerias specimens from other localities, and further sampling of other Upper Triassic dicynodonts are needed to better understand a more complete picture of the growth and remodelling patterns that we have initially investigated.  相似文献   

16.
We report the discovery of three new species of Osedax in the deep Southern Ocean, expanding the diversity and geographical range of this genus of bone‐eating worms. Osedax rogersi sp. n. and Osedax crouchi sp. n. were found on a whale skeleton at 1444 m in the Kemp Caldera in the East Scotia Sea during the Chemosynthetic Ecosystems of the Southern Ocean (ChEsSo) project. The recently described species, Osedax antarcticus, found on whale bones implanted at a depth of 550–650 m off Smith Island in the Bransfield Strait, was also found inhabiting the whale skeleton in the Kemp Caldera. Osedax crouchi as well as another new species Osedax nordenskjoeldi sp. n. have also been found on the implanted whale bones off Smith Island. These two localities are approximately 1800 km apart demonstrating a wide distribution of species within the genus. We describe the three new species, O. rogersi, O. crouchi and Onordenskjoeldi and report the second record of O. antarcticus. We also present a new phylogenetic analysis for Osedax, including data examining genetic connectivity between the Scotia Arc and the Bransfield Strait.  相似文献   

17.
Plant communities were studied on Barton Peninsula around King Sejong Station on King George Island, maritime Antarctic. The objective of this study was to document the occurrence and distribution of plant assemblages to provide the bases for monitoring the effects of environmental changes and human impact on the vegetation of this area. Approximately 47% of the investigated area was covered by vegetation. Crustose lichens showed the highest mean cover (21%) among vegetation components. The total mean cover of the four dominant taxa, together with the other three major subdominant components, i.e., Usnea spp., Andreaea spp. and Sanionia georgico-uncinata, was 78.2% of the total cover of all the species. Lichen cover and species diversity increased with altitude and the time of exposure from snow. Lichens contributed substantially more to the increased species density and diversity than did bryophytes. Ten plant communities were recognized within the study area. All of them belong to the Antarctic cryptogam tundra formation; they were grouped into four subformations: fruticose lichen and moss cushion subformation, crustose lichen subformation, moss carpet subformation and moss hummock subformation. The moss turf subformation was not found on this region. The Antarctic herb tundra formation was also not found; however, the populations of both Antarctic vascular plants have rapidly expanded around Barton Peninsula in recent years, which may allow development of the Antarctic herb tundra formation in the future.  相似文献   

18.
A study of the temperate rain forests of New Zealand and Tasmania showed that their soil testate amoebae communities are composed of five groups of taxa: (1) seven taxa characteristic of wet acidic soils and Sphagnum peatlands (i.e., Amphitemidae, Apodera, Alcodera, Certesella, Cyphoderia, Placocista); (2) a group of 16 species of predatory Nebelids and Heleopera spp., characteristic of Sphagnum and rainforests; (3) a group of 17 species of litter and soil Euglypha, excluding the smallest ones; (4) a diverse population of other morphotypes common in other biomes; and (5) a population of small euryoecious taxa – Cryptodifflugia and Pseudodifflugia spp., Euglypha rotunda, E. laevis, Corythion and Trinema spp. This fifth group, with other r‐selected protists (e.g., colpodid ciliates) appears in all habitats. Soil testate communities of other rainforests are composed of the same five groups and are distinguished by the first three assemblages. The fourth and fifth groups, often supplemented with a few Euglypha species, comprise the soil testate amoebae of other biomes. Nebelids and Heleopera, incorporating prey idiosomes into their shells, add an additional link to the role of Euglyphids in the silica cycle. Three Gondwanan Nebelid genera, Apodera, Alcodera, and Certesella were frequently observed, and the discovery of Alcodera cockayni in Tasmania extends its recorded distribution in the Southern Hemisphere.  相似文献   

19.
《Comptes Rendus Palevol》2014,13(7):555-560
A tarsometatarsus and a fragmented humerus of striking dimensions recently collected in the Late Eocene locality DPV 13/84 Submeseta Formation-level 38 Submeseta II-, Seymour (Marambio) Island, Antarctic Peninsula were both assigned to Palaeeudyptes klekowskii. According to estimates, the tarsometatarsus would belong to the largest and most massive penguin described so far. This bird was probably a piscivorous penguin, with high diving ability for catching prey. Although the humerus is not an appropriate element for body mass or body length assessments, it also belonged to a huge penguin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号