首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Predatory gastropod drill holes are an abundant and easily identifiable signal of predation in ancient and modern molluscan shell assemblages. Many workers have used drill holes to interpret patterns of predation intensity and success in fossil assemblages. These studies are predicated on the assumption that the relative abundances of drilled and undrilled shells in an assemblage accurately reflect those of the community from which the shells were originally derived. The underlying assumption is that drilled and undrilled shells are transported into shell accumulations in the same manner. If this assumption is false, shell accumulations do not represent taphonomically unbiased samples, but rather preferentially sorted deposits from which conclusions about drilling predation cannot be made. To test the hypothesis that drilled and undrilled gastropod shells transport at different flow velocities, multiple transport trials were conducted on two morphologically distinct taxa, Olivella biplicata and Euspira lewisii. Individual specimens were placed in a recirculating flume tank and observed from rest (in stable orientation) until they were transported downstream. During each trial, flow velocity was slowly and incrementally increased, so as to avoid pulses of acceleration, until shells began to move downstream. Drilled and undrilled specimens of both taxa demonstrate statistically significant correlations between shell mass and average transport velocity. Similarly sized drilled and undrilled specimens of both taxa do not exhibit significant differences in transport velocity. These results indicate that predatory drill holes do not change the hydrodynamic properties of gastropod shells. Therefore, gastropod shell assemblages are not likely to be affected by differential transport and sorting of drilled and undrilled shells.  相似文献   

2.
Drill holes made by predators in prey shells are widely considered to be the most unambiguous bodies of evidence of predator-prey interactions in the fossil record. However, recognition of traces of predatory origin from those formed by abiotic factors still waits for a rigorous evaluation as a prerequisite to ascertain predation intensity through geologic time and to test macroevolutionary patterns. New experimental data from tumbling various extant shells demonstrate that abrasion may leave holes strongly resembling the traces produced by drilling predators. They typically represent singular, circular to oval penetrations perpendicular to the shell surface. These data provide an alternative explanation to the drilling predation hypothesis for the origin of holes recorded in fossil shells. Although various non-morphological criteria (evaluation of holes for non-random distribution) and morphometric studies (quantification of the drill hole shape) have been employed to separate biological from abiotic traces, these are probably insufficient to exclude abrasion artifacts, consequently leading to overestimate predation intensity. As a result, from now on, we must adopt more rigorous criteria to appropriately distinguish abrasion artifacts from drill holes, such as microstructural identification of micro-rasping traces.  相似文献   

3.
The Cambrian Explosion is arguably the most extreme example of a biological radiation preserved in the fossil record, and studies of Cambrian Lagerstätten have facilitated the exploration of many facets of this key evolutionary event. As predation was a major ecological driver behind the Explosion – particularly the radiation of biomineralising metazoans – the evidence for shell crushing (durophagy), drilling and puncturing predation in the Cambrian (and possibly the Ediacaran) is considered. Examples of durophagous predation on biomineralised taxa other than trilobites are apparently rare, reflecting predator preference, taphonomic and sampling biases, or simply lack of documentation. The oldest known example of durophagy is shell damage on the problematic taxon Mobergella holsti from the early Cambrian (possibly Terreneuvian) of Sweden. Using functional morphology to identify (or perhaps misidentify) durophagous predators is discussed, with emphasis on the toolkit used by Cambrian arthropods, specifically the radiodontan oral cone and the frontal and gnathobasic appendages of various taxa. Records of drill holes and possible puncture holes in Cambrian shells are mostly on brachiopods, but the lack of prey diversity may represent either a true biological signal or a result of various biases. The oldest drilled Cambrian shells occur in a variety of Terreneuvian‐aged taxa, but specimens of the ubiquitous Ediacaran shelly fossil Cloudina also show putative drilling traces. Knowledge on Cambrian shell drillers is sorely lacking and there is little evidence or consensus concerning the taxonomic groups that made the holes, which often leads to the suggestion of an unknown ‘soft bodied driller’. Useful methodologies for deciphering the identities and capabilities of shell drillers are outlined. Evidence for puncture holes in Cambrian shelly taxa is rare. Such holes are more jagged than drill holes and possibly made by a Cambrian ‘puncher’. The Cambrian arthropod Yohoia may have used its frontal appendages in a jack‐knifing manner, similar to Recent stomatopod crustaceans, to strike and puncture shells rapidly. Finally, Cambrian durophagous and shell‐drilling predation is considered in the context of escalation – an evolutionary process that, amongst other scenarios, involves predators (and other ‘enemies’) as the predominant agents of natural selection. The rapid increase in diversity and abundance of biomineralised shells during the early Cambrian is often attributed to escalation: enemies placed selective pressure on prey, forcing phenotypic responses in prey and, by extension, in predator groups over time. Unfortunately, few case studies illustrate long‐term patterns in shelly fossil morphologies that may reflect the influence of predation throughout the Cambrian. More studies on phenotypic change in hard‐shelled lineages are needed to convincingly illustrate escalation and the responses of prey during the Cambrian.  相似文献   

4.
The fossil record of drill holes in marine invertebrates has received a considerable amount of interest from paleontologists, primarily due to its importance for reconstructing the history of interactions between drilling predators and their prey. Such drill holes have been described in numerous studies of Paleozoic brachiopods but rarely in those focusing on brachiopods of the post-Paleozoic, a striking pattern given that in the late Mesozoic and Cainozoic drilling gastropods diversified and frequencies of drilled molluscs increased dramatically. During the past several years, however, drilled brachiopods were reported in several studies of the Mesozoic and Cainozoic, suggesting that this phenomenon may be more common than has been previously assumed. Here we report on 10 genera of brachiopods from four Cainozoic basins in Australia of which 7 shows evidence of having been drilled by predators. Of 298 specimens examined, 38 contain a single complete hole. Drilled specimens were identified in all 4 basins and in all stratigraphic units. When considered in the context of recent reports of drilled Cainozoic brachiopods, these Australian brachiopods further imply that drilling predation on these invertebrates was geographically, taxonomically and temporally widespread.  相似文献   

5.
6.
Drilling predation represents one of the most widely studied biotic interactions preserved in the fossil record, and complete and incomplete drill holes have been commonly used to explore spatial and temporal patterns of this phenomenon. While such patterns are generally viewed solely in terms of the interactions between predator and prey, they might also be affected by extrinsic ecological factors. Recent experiments have demonstrated that in the presence of a secondary predator (crab), the incomplete drilling frequency increases indicating increasing abandonment of the prey, and drilling frequency decreases implying a decrease in successful attacks. Here, we tested whether the effect of secondary predators on drilling frequencies can be detected in the fossil record. Using fossil molluscs from six Plio-Pleistocene localities, we found that repair scar frequencies, a proxy for activity of durophagous predators, correlate directly with incomplete drill hole frequencies and inversely with complete drill hole frequencies. These results suggest that the activity and success of drilling predators is influenced not just by the prey, but also by secondary predators.  相似文献   

7.
Shells of the freshwater gastropods Gyraulus trochiformis (Planorbidae or ramshorn snails) and Bania pseudoglobula (formerly Pseudamnicola, Hydrobiidae) from Miocene Steinheim Basin in SW Germany contain small holes with a mean diameter of 0.8 mm. Analyses of comparable holes are so far unknown from fossil or extant assemblages of freshwater shells. This analysis of the perforated shells suggests that the holes were not formed by post‐depositional or pure taphonomic processes. Instead, they were most likely produced by predators. This analysis widens the means for identification of predation on freshwater snail shells that can be used in other palaeolimnological studies. The co‐occurrence of fish teeth and perforated shells in the studied samples as well as the perforation features suggest that the predator was either barbel or tench fish. The correlation between shell sizes and hole diameters suggests a size relationship between predator and prey that may generally be related to gape‐limited fish predators. The co‐occurrence of perforated shells in these lake sediments with a dominance of large and armoured shells suggest that these larger shells with protuberances and knobs could not be crushed by the gape‐limited fish predators. This analysis is the basis for a hypothesis that the endemic evolution of Gyraulus in Lake Steinheim, with some varied forms of shell thickness and morphology, was triggered by a predator–prey relationship based on adaptations to avoid shell‐breaking predators.  相似文献   

8.
Predatory traces, in which the tracemaker has damaged the prey animal's skeleton to kill and consume it, have a deep fossil history and have received much scientific attention. Several types of predatory traces have been assigned to ichnotaxa, but one of the most studied predatory traces, the wedge-shaped excision produced as a result of attacks mainly by crustaceans on the apertures of gastropod shells, has yet to be described as an ichnotaxon. We propose the ichnogenus Caedichnus to describe the shell damage produced by aperture peeling behavior. Caedichnus is produced by predators that are unable to crush their prey's shells outright. Depending on the predator's peeling ability and the prey's withdrawal depth within the shell, the trace can extend through several whorls of the shell. Aperture peel attacks may fail, allowing such damage to be repaired by surviving gastropods. Thus, the types of attacks that produce Caedichnus may exert selective pressure on prey to evolve better-defended shells (in the case of gastropods) or to inhabit better-defended shells (in the case of hermit crabs). The identification of these trace fossils will enhance our understanding of how predation influences the morphological, and even behavioral, evolution of prey organisms.  相似文献   

9.
The recent invasion of a naticid predator (Laguncula pulchella) and associated changes in the death assemblages of bivalve prey (Ruditapes philippinarum) provide a baseline for interpreting predator–prey interactions in the fossil record. This article presents quantitative data on size‐frequency distributions (SFDs) of living and death assemblages, prey size selectivity and drillhole site selectivity from the Tona Coast, northern Japan. Before the appearance of the predator, the SFD of the death assemblage exhibited a right‐skewed platykurtic distribution, and there were very few predatory drillholes. Once the predator appeared, frequencies of predatory drillholes increased, particularly in the smallest size class (2–10 mm shell length). Furthermore, juvenile peaks in the SFDs of death assemblages sharpened, and thus, SFDs exhibited strongly right‐skewed leptokurtic distributions. These changes suggest that intense naticid predation precluded juvenile clams from growing to adulthood, and thus, many dead shells of juvenile clams were introduced into the sediment. The changes in SFDs may also indicate intensification of predation pressure in the fossil record. No temporal shifts in prey size selectivity and drillhole site selectivity were noted, despite substantial changes in the demographics of Ruditapes philippinarum. This suggests that lack of specific size classes of preferred prey species is unlikely to be a primary factor accounting for size mismatches between predator and prey, because, in such situations, naticid predators probably attack other prey species. Therefore, such a factor is unlikely to primarily explain the less stereotypical predatory behaviour (i.e. low prey size selectivity and low drillhole site selectivity), which has been frequently recognized in fossil assemblages. Such less stereotypical predatory behaviour in fossil assemblages is likely to be explained by other factors, such as the existence of multiple predator taxa and lack of specific size classes of all available prey.  相似文献   

10.
Abundant information on drilling predation upon fossil bivalves, gastropods, and brachiopods has been accumulated during the past several decades, but very little is known about the predation on marine, infaunal carnivorous scaphopods. A survey of over 440 specimens of the scaphopod Dentalium gracile collected from the Upper Cretaceous Millwood Member (Campanian) of the Pierre Shale at a site near Russell, Manitoba displays a drilling percentage of approximately 35%. This figure is higher than previously reported for the scaphopods of similar age elsewhere, but is comparable to or lower than that of the sub-Holocene (34–61%). The difference in drilling percentage among different collections may be taxon-related or affected by the composition and structure of the fossil community. Morphologically, the drill-holes, produced by predatory drilling, are beveled with a countersunk profile of clean sharp edges. The drill-hole inner margin is ovate whereas the outer margin is nearly circular. Among the Manitoba specimens, drill-holes seem to be more common on the lateral side. Presumably due to the lack of effective defense strategy, the prey effectiveness is low (∼3.2%). There is no correlation between drill-hole dimension and scaphopod prey size, indicating that predator size does not correlate with the prey size. Nearly 480 specimens of cephalopods, pelecypods, and gastropods were also collected from the same community. There were only a total of 16 drill-holes on this additional material. Over 400 specimens of the only naticid Euspira obliquata were recovered from the same site and are believed to be the predators of the scaphopods and other molluscs. The low percentage (∼2.5%) of drilling on the abundant gastropod E. obliquata may indicate mistaken or opportunistic attacks by the predator, or that the cannibalism is not common in this community.  相似文献   

11.
We report quantitative analyses of drilling predation on the free-living, tube-dwelling serpulid polychaete Ditrupa arietina from the Cope Cabo marine succession (Pliocene, Spain). Tubes of D. arietina are abundant in the sampled units: 9 bulk samples from 5 horizons yielded ~5925 specimens of D. arietina. Except for fragmentation, tubes were well preserved. Complete specimens ranged from 3.1 to 13.4 mm in length and displayed allometric growth patterns, with larger specimens being relatively slimmer. Drilled Ditrupa tubes were observed in all samples. Drillholes, identified as Oichnus paraboloides, were characterized by circular to elliptical outline (drillhole eccentricity increased with its diameter), parabolic vertical profile, outer diameter larger than inner diameter, penetration of one tube wall only, narrow range of drill-hole sizes, and non-random (anterior) distribution of drillholes. A total of 233 drilled specimens were identified, with drilling frequencies varying across horizons from 2.7% to 21% (3.9% for pooled data). Many tube fragments were broken across a drillhole suggesting that the reported frequencies are conservative and that biologically-facilitated (drill-hole induced) fragmentation hampers fossil preservation of complete serpulid tubes. No failed or repaired holes were observed. Multiple complete drillholes were present (3.9%). Drilled specimens were significantly smaller than undrilled specimens and tube length and drill-hole diameter were weakly correlated. The results suggest that drillholes were produced by a size-selective, site-stereotypic predatory organism of unknown affinity. The qualitative and quantitative patterns reported here are mostly consistent with previous reports on recent and fossil Ditrupa and reveal parallels with drilling patterns documented for scaphopod mollusks, a group that is ecologically and morphologically similar to Ditrupa. Consistent with previous studies, the results suggest that free-dwelling serpulid polychaetes are preyed upon by drilling predators and may provide a viable source of data on biotic interactions in the fossil record.  相似文献   

12.
Traces of drilling predation by naticid gastropods were observed on 51 valves of the free-lying, semi-infaunal oyster Pycnodonte dissimilaris (Gryphaeidae) from the Paleocene Hornerstown Formation, in New Jersey. Stereotypic behavior of the predator is indicated by the highly constrained placement of drill holes, 94% of which are centrally located on the oyster shells. Predator—prey mismatches in size, involving small predators that drilled through the upper valves of relatively large oysters, are documented by comparison of outer borehole diameter, as an index of predator size, with the sizes of the oyster shells. Results of this analysis suggest that at least some prey were drilled epifaunally, as they were too large to be manipulated and buried by the predator. This indicates, together with reports of epifaunal drilling by living naticids, that such behavior is geographically and stratigraphically more widespread in the Naticidae than has previously been acknowledged. This in turn suggests that epifaunal drilling of prey is a plesiomorphic, opportunistic mode of behavior, conserved in the evolution of the Naticidae, that has permitted subsequent escalation or expansion in range of naticid foraging from a more narrowly defined infaunal paradigm into exposed intertidal refugia.  相似文献   

13.
Coevolution of a marine gastropod predator and its dangerous bivalve prey   总被引:2,自引:0,他引:2  
The fossil record of the interaction between the predatory whelk Sinistrofulgur and its dangerous hard‐shelled bivalve prey Mercenaria in the Plio‐Pleistocene of Florida was examined to evaluate the hypothesis that coevolution was a major driving force shaping the species interaction. Whelks use their shell lip to chip open the shell of their prey, often resulting in breakage to their own shells, as well as to their prey. Mercenaria evolved a larger shell in response to an intensifying level of whelk predation. Reciprocally, an increase in attack success (ratio of successful to unsuccessful attacks) and degree of stereotypy of attack position by the predator suggest reciprocal adaptation by Sinistrofulgur to increase efficiency in exploiting hard‐shelled prey. A decrease in prey effectiveness (ratio of unsuccessful to total whelk predation attempts) and an increase in the minimum boundary of a size refuge from whelk predation for Mercenaria may indicate that predator adaptation has outpaced prey antipredatory adaptation. Evolutionary size increase in Sinistrofulgur most likely occurred in response to prey adaptation to decrease the likelihood of feeding‐induced shell breakage and unsuccessful predation when encounters with damage‐inducing prey occur, coupled with (or reinforced by) an evolutionary response to the whelk's own predators. Predator adaptation to Mercenaria best explains temporal changes in whelk behaviour to decrease performance loss (shell breakage) associated with feeding on hard‐shelled prey; this behavioural change limits attacks on prey to when the whelk's shell lip is thickest and most resistant to breakage. Despite evidence of reciprocal adaptation between predator and prey, the contribution of Mercenaria to Sinistrofulgur evolution is likely only a component of the predator's response to dangerous bivalve prey. This study highlights the importance of understanding the interactions among several species in order to provide the appropriate context to test evolutionary hypotheses about any specific pair of species. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80 , 409–436.  相似文献   

14.
Examination of modern gastropod associations from the low intertidal zone of Isla Santa Cruz suggests that fossil rocky intertidal deposits from this tropical locality will be taphonomically compromised in three ways: (1) Marine hermit crabs, by their use of empty gastropod shells, will mix the shells from varying tidal heights and habitats, thus facilitating mixed associations of such shells in the fossil record, (2) encrusting organisms on crab-inhabited shells are abundant, while boring organisms are almost non-existent, indicating possible differences in postmortem shell retention, and (3) intertidal shells are further taphonomically altered by terrestrial hermit crabs, which transport the shells onto land as well as physically modify the shells. Gastropod fossils from beach and terrace deposits on Isla Santa Fe are interpreted to be a mixed assemblage of rocky intertidal assemblage with few shells indicating influence from marine hermit crabs. Modification of the shell by marine and terrestrial hermit crabs was also evident. A unique polish to the shells at one locality is attributed to the marine iguanas and is only found in the terrace site biologically bulldozed by egg-laying iguanas. Few studies exist on modern rocky intertidal associations in the Galápagos, and the fossil record of rocky shores may provide a baseline for future studies in how community structure has changed over since the advent of humans. Galapagos, C oenobita C ompressus , gastropods, humans, Gulf of California, bionts, nutrients.
Sally E. Walker, Department of Geology, The University of Georgia, Athens, Georgia, USA; 8th September, 1994; revised 28th June, 1995.  相似文献   

15.
Shell damage left by predators constitutes an important source of information on predator–prey interactions. However, recognition of the origins of shell damage can often be controversial, and needs to be assessed cautiously. More specifically, differentiation between predation- and abiotic-induced shell damage remains challenging. Here, we show the results of tumbling experiments using a bivalve species Dreissena polymorpha in order to determine rates and patterns of shell damage induced by physical forces in high-energy conditions. It is demonstrated that, in contrast to durophagous fish and crab predation, abiotic-induced fragmentation and damage are typically characterized by the presence of distinct abrasive scratches and wear scars on the surface of shell fragments. Furthermore, fragmented shells typically reveal a wide size distribution, and a different degree of sphericity and roundness resulting from abrasion. Importantly, large shell fragments commonly display smooth edges. These data suggest that durophagous predation, which typically induces fragmentation into large and angular shell fragments bearing no wear scars, can be reliably recognized both in present-day environments and in the fossil record.  相似文献   

16.
Here, we present evidence of possible vertebrate predation on freshwater bivalves from the Lower Cretaceous strata of the Cameros Basin (Spain). The described collection contains the largest number of vertebrate‐inflicted shell injuries in freshwater bivalve shells yet reported in the Mesozoic continental record. Several types of shell damage on fossil shells of Protopleurobema numantina (Bivalvia: Unionoida) are described and their respective modes of formation interpreted in the context of morphological attributes of the shell injuries and the inferred tooth morphology of predators that could have inflicted such injuries. Detailed study of these bite marks shows similarities with the well‐documented injuries in the shells of marine molluscs, namely ammonoids, that have likewise been attributed to reptilian predators. The most parsimonious interpretation suggests crocodiles as the vertebrates interacting with the bivalves in the Cameros Basin. □Barremian–Aptian; bite marks; freshwater bivalves; predation; reptile; Unionoida.  相似文献   

17.
Shell fragmentation patterns that result from attacks by durophagous predators on hard‐shelled marine invertebrates are a rich source of indirect evidence that have proved useful in interpreting predation pressure in the fossil record and recent ecology. The behaviour and effectiveness of predators are known to be variable with respect to prey size. It is less well understood if variable predator–prey interactions are reflected in shell fragmentation patterns. Therefore, we conducted experimental trials to test the behavioural response of a living crab, Carcinus maenas, during successful predatory attacks on the blue mussel Mytilus edulis on two prey size categories. Further, we examined resultant shell fragments to determine whether specific attack behaviours by C. maenas could be successfully deduced from remaining mussel shells. In contrast to previous studies, we observed no significant differences in attack behaviour by the predators attributable to prey size. In most experimental predation events, crabs employed an ad hoc combination of five mechanisms of predation previously described for this species. We identified seven categories of shell breakage in predated mussels, but none of these were unambiguously correlated with specific attack behaviour. Combined attack behaviours may produce shell breakage patterns that have previously been assumed to be attributable to a single behaviour. While specific patterns of shell breakage are clearly attributable to durophagy, the results of this study provide important insights into the limitations of indirect evidence to interpret ecological interactions.  相似文献   

18.
Research on drilling predation, one of the most studied biological interactions in the fossil record, has been concentrated on prey with calcareous skeletons (e.g. molluscs, echinoids, rhynchonelliform brachiopods). Based on a compilation of literature sources and surveys of paleontological collections of the Florida Museum of Natural History and the National Museum of Natural History, we provide a tentative evaluation of the post‐Palaeozoic history of drilling predation on the organophosphatic brachiopods of the family Lingulidae. Despite temporal, geographical and methodological limitations of the data assembled here, the results indicate that lingulide brachiopods have been subject to drilling predation since at least the Eocene. Variation in drilling frequencies at the locality level suggests that lingulides may occasionally experience somewhat elevated predation pressures from drilling organisms. Overall, however, drilling predation on lingulide brachiopods has been infrequent in the Cenozoic and may have been absent in the Mesozoic. The Mesozoic‐to‐Cenozoic increase in drilling frequencies on lingulides is similar to the trends observed in other marine benthic invertebrates and consistent with the hypothesis that predation pressures increased through time in marine ecosystems.  相似文献   

19.
The brachiopod Cardiarina cordata, collected from a Late Pennsylvanian (Virgilian) limestone unit in Grapevine Canyon (Sacramento Mts., New Mexico), reveals frequent drillings: 32.7% (n = 400) of these small, invariably articulated specimens (<2 mm size) display small (<0.2 mm), round often beveled holes that are typically single and penetrate one valve of an articulated shell. The observed drilling frequency is comparable with frequencies observed in the Late Mesozoic and Cenozoic. The drilling organism displayed high valve and site selectivity, although the exact nature of the biotic interaction recorded by drill holes (parasitism vs. predation) cannot be established. In addition, prey/host size may have been an important factor in the selection of prey/host taxa by the predator/parasite. These results suggest that drilling interactions occasionally occurred at high (Cenozoic-like) frequencies in the Paleozoic. However, such anomalously high frequencies may have been restricted to small prey/host with small drill holes. Small drillings in C. cordata, and other Paleozoic brachiopods, may record a different guild of predators/parasites than the larger, but less common, drill holes previously documented for Paleozoic brachiopods, echinoderms, and mollusks.  相似文献   

20.
The ability to assign lethal traces left on prey to particular durophagous predators enhances our understanding of predation pressure in the fossil record. To determine whether stone crabs (Menippe mercenaria Say 1818) leave diagnostic traces in the act of feeding on hard clams (Mercenaria mercenaria Linnaeus 1758), live clams were offered to crabs in laboratory aquaria over several months and the fragments produced during predation were examined for diagnostic breakage patterns. These fragments were then compared both macroscopically and using scanning electron microscopy to the fracture patterns produced by tumbling clams in a rock tumbler which simulated breakage during transport in the surf zone, and crushing clams using an Instron which simulated breakage resulting from sediment compaction. Fossil specimens of Mercenaria mercenaria were also examined to determine whether the criteria for recognizing predation traces generated experimentally could be recognized. While not all acts of predation produce diagnostic traces, when larger fragments (greater than 50% shell remaining) are produced during feeding, predatory-diagnostic breakage ranges from 70 to 80%. Macroscopic breakage patterns generated during the predation experiments were also present in fossil specimens. Damage caused by abiotic mechanisms (tumbling and crushing) is highly unlikely to be confused with damage produced by this predator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号