首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The fossil record holds a wealth of ecological data, including data on biotic interactions. For example, holes in the skeletons of invertebrates produced by drilling activities of their enemies are widely used for exploring the intensity of such interactions through time because they are common and easily distinguished from non-biotic holes or holes produced by other types of interactions. Such drill holes have been described in numerous studies of Palaeozoic brachiopods but rarely in those focusing on brachiopods of the post-Palaeozoic, a striking pattern given that in the late Mesozoic and Cenozoic drilling gastropods diversified and frequencies of drilled molluscs increased dramatically. During the past several years, however, drilled brachiopods were reported in several studies of the Mesozoic and Cenozoic, suggesting that this phenomenon may be more common than has been previously assumed. Here we report on drilled brachiopods from a Pliocene locality in Algeria where 90 of 261 (34.5%) specimens of Megerlia truncata show evidence of predatory drilling. These data confirm that Cenozoic drilling frequencies of brachiopods may be locally high and, when taken together with other published data, that drilling frequencies are highly heterogeneous in space and time.  相似文献   

2.
The brachiopod Cardiarina cordata, collected from a Late Pennsylvanian (Virgilian) limestone unit in Grapevine Canyon (Sacramento Mts., New Mexico), reveals frequent drillings: 32.7% (n = 400) of these small, invariably articulated specimens (<2 mm size) display small (<0.2 mm), round often beveled holes that are typically single and penetrate one valve of an articulated shell. The observed drilling frequency is comparable with frequencies observed in the Late Mesozoic and Cenozoic. The drilling organism displayed high valve and site selectivity, although the exact nature of the biotic interaction recorded by drill holes (parasitism vs. predation) cannot be established. In addition, prey/host size may have been an important factor in the selection of prey/host taxa by the predator/parasite. These results suggest that drilling interactions occasionally occurred at high (Cenozoic-like) frequencies in the Paleozoic. However, such anomalously high frequencies may have been restricted to small prey/host with small drill holes. Small drillings in C. cordata, and other Paleozoic brachiopods, may record a different guild of predators/parasites than the larger, but less common, drill holes previously documented for Paleozoic brachiopods, echinoderms, and mollusks.  相似文献   

3.
4.
Abstract:  Little is known about predation of Mesozoic and Cenozoic articulated brachiopods, but it is far from clear whether this is because they suffered very little predation pressure or because there have been few attempts to search for evidence of it. A study of 248 museum specimens of the large Pliocene terebratulid Apletosia maxima from the Coralline Crag (UK) has revealed that more than 16 per cent of them show evidence of having been attacked by predators. The styles of damage can be attributed to drilling muricid gastropods (most of which were successful) and failed crushing attacks probably by decapods. Brachiopods are usually thought to offer a poor tissue yield to potential predators, but in this instance it appears that A. maxima was attractive to predators even though they were living with a rich molluscan fauna. It is suggested that the mass of adductor and diductor muscles (likely to be spicule-free) of these particularly large brachiopods may have made them profitable. Further studies of post-Palaeozoic brachiopod faunas are required, particularly those from mixed shallow-water communities, before it can be established whether articulated brachiopods have or have not been driven into refugia by increasing predation pressure.  相似文献   

5.
Research on drilling predation, one of the most studied biological interactions in the fossil record, has been concentrated on prey with calcareous skeletons (e.g. molluscs, echinoids, rhynchonelliform brachiopods). Based on a compilation of literature sources and surveys of paleontological collections of the Florida Museum of Natural History and the National Museum of Natural History, we provide a tentative evaluation of the post‐Palaeozoic history of drilling predation on the organophosphatic brachiopods of the family Lingulidae. Despite temporal, geographical and methodological limitations of the data assembled here, the results indicate that lingulide brachiopods have been subject to drilling predation since at least the Eocene. Variation in drilling frequencies at the locality level suggests that lingulides may occasionally experience somewhat elevated predation pressures from drilling organisms. Overall, however, drilling predation on lingulide brachiopods has been infrequent in the Cenozoic and may have been absent in the Mesozoic. The Mesozoic‐to‐Cenozoic increase in drilling frequencies on lingulides is similar to the trends observed in other marine benthic invertebrates and consistent with the hypothesis that predation pressures increased through time in marine ecosystems.  相似文献   

6.
Predatory gastropod drill holes are an abundant and easily identifiable signal of predation in ancient and modern molluscan shell assemblages. Many workers have used drill holes to interpret patterns of predation intensity and success in fossil assemblages. These studies are predicated on the assumption that the relative abundances of drilled and undrilled shells in an assemblage accurately reflect those of the community from which the shells were originally derived. The underlying assumption is that drilled and undrilled shells are transported into shell accumulations in the same manner. If this assumption is false, shell accumulations do not represent taphonomically unbiased samples, but rather preferentially sorted deposits from which conclusions about drilling predation cannot be made. To test the hypothesis that drilled and undrilled gastropod shells transport at different flow velocities, multiple transport trials were conducted on two morphologically distinct taxa, Olivella biplicata and Euspira lewisii. Individual specimens were placed in a recirculating flume tank and observed from rest (in stable orientation) until they were transported downstream. During each trial, flow velocity was slowly and incrementally increased, so as to avoid pulses of acceleration, until shells began to move downstream. Drilled and undrilled specimens of both taxa demonstrate statistically significant correlations between shell mass and average transport velocity. Similarly sized drilled and undrilled specimens of both taxa do not exhibit significant differences in transport velocity. These results indicate that predatory drill holes do not change the hydrodynamic properties of gastropod shells. Therefore, gastropod shell assemblages are not likely to be affected by differential transport and sorting of drilled and undrilled shells.  相似文献   

7.
Polinices pulchellus were size-selective in their choice of Cerastoderma edule. Large predators (12-15.9 mm shell length) selected both larger and a wider size range of cockles than smaller individuals (4-11.9 mm shell length). Considerable overlap occurred in the sizes of cockles frequently drilled by different size classes of snails, indicating that certain sizes of cockles may be most profitable to a wide range of predator sizes. Consumption rates were highest during July and August and were closely related to seawater temperature. Inner and outer drill hole diameters were both correlated with predator size, and the morphology of the drill hole was geometrically similar across a range of predator sizes. Polinices pulchellus showed no preference for either the left or right valve and drilled most cockles in the centre of the shell valve. The relationship between the distance of the drill hole from the umbo and prey size was unaffected by predator size, such that predators of different sizes were not found to drill cockles in different positions. When disturbed during drilling, incomplete drill holes were abandoned and, when drilling resumed, it occurred in new locations on the surface of the shell valve. The findings of this study highlight the stereotyped nature of drilling behaviour seen in the family Naticidae.  相似文献   

8.
The Cambrian Explosion is arguably the most extreme example of a biological radiation preserved in the fossil record, and studies of Cambrian Lagerstätten have facilitated the exploration of many facets of this key evolutionary event. As predation was a major ecological driver behind the Explosion – particularly the radiation of biomineralising metazoans – the evidence for shell crushing (durophagy), drilling and puncturing predation in the Cambrian (and possibly the Ediacaran) is considered. Examples of durophagous predation on biomineralised taxa other than trilobites are apparently rare, reflecting predator preference, taphonomic and sampling biases, or simply lack of documentation. The oldest known example of durophagy is shell damage on the problematic taxon Mobergella holsti from the early Cambrian (possibly Terreneuvian) of Sweden. Using functional morphology to identify (or perhaps misidentify) durophagous predators is discussed, with emphasis on the toolkit used by Cambrian arthropods, specifically the radiodontan oral cone and the frontal and gnathobasic appendages of various taxa. Records of drill holes and possible puncture holes in Cambrian shells are mostly on brachiopods, but the lack of prey diversity may represent either a true biological signal or a result of various biases. The oldest drilled Cambrian shells occur in a variety of Terreneuvian‐aged taxa, but specimens of the ubiquitous Ediacaran shelly fossil Cloudina also show putative drilling traces. Knowledge on Cambrian shell drillers is sorely lacking and there is little evidence or consensus concerning the taxonomic groups that made the holes, which often leads to the suggestion of an unknown ‘soft bodied driller’. Useful methodologies for deciphering the identities and capabilities of shell drillers are outlined. Evidence for puncture holes in Cambrian shelly taxa is rare. Such holes are more jagged than drill holes and possibly made by a Cambrian ‘puncher’. The Cambrian arthropod Yohoia may have used its frontal appendages in a jack‐knifing manner, similar to Recent stomatopod crustaceans, to strike and puncture shells rapidly. Finally, Cambrian durophagous and shell‐drilling predation is considered in the context of escalation – an evolutionary process that, amongst other scenarios, involves predators (and other ‘enemies’) as the predominant agents of natural selection. The rapid increase in diversity and abundance of biomineralised shells during the early Cambrian is often attributed to escalation: enemies placed selective pressure on prey, forcing phenotypic responses in prey and, by extension, in predator groups over time. Unfortunately, few case studies illustrate long‐term patterns in shelly fossil morphologies that may reflect the influence of predation throughout the Cambrian. More studies on phenotypic change in hard‐shelled lineages are needed to convincingly illustrate escalation and the responses of prey during the Cambrian.  相似文献   

9.
Various causes, such as increased predation pressure, the lack of planktotrophic larvae, a 'resetting' of diversity, increased competition from benthic molluscs and the decline of the Palaeozoic fauna, have been suggested to explain the failure of the brachiopods to reradiate following the Permo-Triassic mass extinction. Increased predation pressure has hitherto appeared improbable, because typical predators of brachiopods, such as teleostean fish, brachyuran crabs and predatory gastropods, did not undergo major radiation until the late Mesozoic and early Cenozoic. However, new evidence strongly suggests that one important group of predators of shelly benthic organisms, the asteroids, underwent a major radiation at the beginning of the Mesozoic. Although asteroids appeared in the early Ordovician, they remained a minor element of the marine benthos during the Palaeozoic acme of the brachiopods. However, these early asteroids lacked four important requirements for active predation on a bivalved epifauna: muscular arms (evolved in the early Carboniferous); suckered tube feet, a flexible mouth frame and an eversible stomach (all evolved in the early Triassic). Thus radiation of the Subclass Neoasteroidea coincided with both their improved feeding capability and the decline of the articulates. The asteroids were the only group of predators of brachiopods that underwent a major adaptive radiation in the earliest Mesozoic. The asteroids may therefore have contributed to inhibiting a Mesozoic reradiation of the brachiopods. Epifaunal species lacking a muscular pedicle may have been particularly vulnerable. Unlike bivalve molluscs, modern brachiopods show only a limited range of adaptations to discourage asteroid predation. □ Asteroidea, Brachiopoda, evolution, predation, functional morphology.  相似文献   

10.
Schimmel, M., Kowalewski, M. & Coffey, BP. 2011: Traces of predation/parasitism recorded in Eocene brachiopods from the Castle Hayne Limestone, North Carolina, USA. Lethaia, Vol. 45, pp. 274–289. The Castle Hayne Limestone (Middle Eocene, North Carolina), noted for its diverse macro‐invertebrate fossils, was sampled to assess if Early Cenozoic brachiopods from eastern North America record any traces of biotic interactions. Systematic surveys of two North Carolina quarries yielded 494 brachiopods dominated by one species: Plicatoria wilmingtonensis (Lyell and Sowerby, 1845). Despite subtle variations in taphonomy, taxonomy and drilling patterns, the two sampled quarries are remarkably similar in terms of quantitative and qualitative palaeoecological and taphonomic patterns. In both quarries, brachiopods contain frequent drillholes (24.5% specimens drilled). The majority of drillholes were singular, perpendicular to shell surface and drilled from the outside. Ventral valves were drilled slightly more frequently than dorsal ones, but site‐selectivity in drilhole location was not evident. Larger brachiopods were drilled significantly more frequently than smaller ones. However, drillhole diameter did not correlate with brachiopod size. The drillholes are interpreted as records of ‘live‐live’ biotic interactions, representing either predatory attacks or parasitic infestations or a combination of those two types of interactions. A notable fraction of specimens bear multiple drillholes, which is consistent with either parasitic nature of interactions or frequent failed predatory events. The high drilling frequency reported here reinforces other reports (from other continents and other epochs of the Cenozoic), which suggest that brachiopods may be an important prey or host of drilling organisms in some settings. The number of case studies reporting high frequencies of drilling in brachiopods is still limited and thus insufficient to draw reliable generalizations regarding the causes and consequences of these occasionally intense ecological interactions. □Brachiopods, drilling parasitism, drilling predation, Eocene, North Carolina, taphonomy.  相似文献   

11.
Drill holes made by predators in prey shells are widely considered to be the most unambiguous bodies of evidence of predator-prey interactions in the fossil record. However, recognition of traces of predatory origin from those formed by abiotic factors still waits for a rigorous evaluation as a prerequisite to ascertain predation intensity through geologic time and to test macroevolutionary patterns. New experimental data from tumbling various extant shells demonstrate that abrasion may leave holes strongly resembling the traces produced by drilling predators. They typically represent singular, circular to oval penetrations perpendicular to the shell surface. These data provide an alternative explanation to the drilling predation hypothesis for the origin of holes recorded in fossil shells. Although various non-morphological criteria (evaluation of holes for non-random distribution) and morphometric studies (quantification of the drill hole shape) have been employed to separate biological from abiotic traces, these are probably insufficient to exclude abrasion artifacts, consequently leading to overestimate predation intensity. As a result, from now on, we must adopt more rigorous criteria to appropriately distinguish abrasion artifacts from drill holes, such as microstructural identification of micro-rasping traces.  相似文献   

12.
The holes drilled by Octopus vulgaris are compared with structures concerned with drilling– the radula, the muscular salivary papilla, and the terminal process of the posterior salivary gland duct, and with the teeth which they all bear. Comparison of the shell surface after drilling and after fracture has shown that some chemical dissolucion of the shell occurs during drilling. "Rasp marks" found on the surface of drill holes have been shown to be due to the structural formation of the gastropod shell.  相似文献   

13.
Traces of drilling predation by naticid gastropods were observed on 51 valves of the free-lying, semi-infaunal oyster Pycnodonte dissimilaris (Gryphaeidae) from the Paleocene Hornerstown Formation, in New Jersey. Stereotypic behavior of the predator is indicated by the highly constrained placement of drill holes, 94% of which are centrally located on the oyster shells. Predator—prey mismatches in size, involving small predators that drilled through the upper valves of relatively large oysters, are documented by comparison of outer borehole diameter, as an index of predator size, with the sizes of the oyster shells. Results of this analysis suggest that at least some prey were drilled epifaunally, as they were too large to be manipulated and buried by the predator. This indicates, together with reports of epifaunal drilling by living naticids, that such behavior is geographically and stratigraphically more widespread in the Naticidae than has previously been acknowledged. This in turn suggests that epifaunal drilling of prey is a plesiomorphic, opportunistic mode of behavior, conserved in the evolution of the Naticidae, that has permitted subsequent escalation or expansion in range of naticid foraging from a more narrowly defined infaunal paradigm into exposed intertidal refugia.  相似文献   

14.
Drilling predation represents one of the most widely studied biotic interactions preserved in the fossil record, and complete and incomplete drill holes have been commonly used to explore spatial and temporal patterns of this phenomenon. While such patterns are generally viewed solely in terms of the interactions between predator and prey, they might also be affected by extrinsic ecological factors. Recent experiments have demonstrated that in the presence of a secondary predator (crab), the incomplete drilling frequency increases indicating increasing abandonment of the prey, and drilling frequency decreases implying a decrease in successful attacks. Here, we tested whether the effect of secondary predators on drilling frequencies can be detected in the fossil record. Using fossil molluscs from six Plio-Pleistocene localities, we found that repair scar frequencies, a proxy for activity of durophagous predators, correlate directly with incomplete drill hole frequencies and inversely with complete drill hole frequencies. These results suggest that the activity and success of drilling predators is influenced not just by the prey, but also by secondary predators.  相似文献   

15.
Total number of bacteria, viable counts of aerobic and anaerobic heterotrophic bacteria and 16S rRNA gene diversity were investigated during drilling of three boreholes in the walls of the Äspö hard rock laboratory tunnel, at depths ranging from 380 to 446 m below sea level. Water samples were taken from the drill water source, the drilling equipment and from the drilled boreholes. The drill water was kept under nitrogen atmosphere and all equipment was steam cleaned before the start of a new drilling. Total and viable counts of bacteria in the drilled boreholes were several orders of magnitude lower than in the samples from the drilling equipment, except for sulphate reducing bacteria. A total of 158 16S rRNA genes that were cloned from the drill water source, the drilling equipment and the drilled boreholes were partially sequenced. The drilled boreholes generally had a 16S rRNA diversity that differed from what was found in samples from the drilling equipment. Several of the sequences obtained could be identified on genus level as one of the genera Acinetobacter, Methylophilus, Pseudomonas and Shewanella. In conclusion, the tubing used for drill water supply constituted a source of bacterial contamination to the rest of the drilling equipment and the boreholes. The results show, using molecular and culturing methods, that although large numbers of contaminating bacteria were introduced to the boreholes during drilling, they did not establish in the borehole groundwater at detectable levels.  相似文献   

16.
Using the drilling muricid, Nucella lamellosa (Gmelin 1791) and its prey, the mussel Mytilus trossulus (Gould 1850), the impact of a secondary predator, the crab Cancer gracilis, on drilling was investigated experimentally. The frequency of incomplete holes was compared under two conditions: (1) when the gastropod's natural predator, C. gracilis, was present and (2) when it was absent. The results indicate that the presence of a secondary predator can affect drilling activity, leading to a significant increase in the frequency of incomplete drill holes. The introduction of a secondary predator can also decrease the overall drilling frequency. The size distributions of completely and incompletely drilled mussels suggest that in the presence of the secondary predator the decision by the gastropod to either abandon or continue drilling its prey might be influenced by how much time it has already invested into drilling or the size of the prey item. These results are important for the ecological and evolutionary implications of incomplete drill holes frequencies, especially with regard for their use as proxies for evolutionary prey improvement.  相似文献   

17.
Specimens of inarticulate brachiopods (family Acrotrctidae) with boreholes were found in Upper Cambrian carbonates in the southern Great Basin of the United States. Some morphologic features and preferred orientation of the borings are similar to those made by predators and previously reported in the fossil and Holocene record. Such predatory activity on brachiopods is previously unknown in Cambrian rocks. Taxa associated with these specimens are not known to have been predators and identity of the predatory organism is unknown. Cambrian brachiopods, predation, paleoecology.  相似文献   

18.
We report quantitative analyses of drilling predation on the free-living, tube-dwelling serpulid polychaete Ditrupa arietina from the Cope Cabo marine succession (Pliocene, Spain). Tubes of D. arietina are abundant in the sampled units: 9 bulk samples from 5 horizons yielded ~5925 specimens of D. arietina. Except for fragmentation, tubes were well preserved. Complete specimens ranged from 3.1 to 13.4 mm in length and displayed allometric growth patterns, with larger specimens being relatively slimmer. Drilled Ditrupa tubes were observed in all samples. Drillholes, identified as Oichnus paraboloides, were characterized by circular to elliptical outline (drillhole eccentricity increased with its diameter), parabolic vertical profile, outer diameter larger than inner diameter, penetration of one tube wall only, narrow range of drill-hole sizes, and non-random (anterior) distribution of drillholes. A total of 233 drilled specimens were identified, with drilling frequencies varying across horizons from 2.7% to 21% (3.9% for pooled data). Many tube fragments were broken across a drillhole suggesting that the reported frequencies are conservative and that biologically-facilitated (drill-hole induced) fragmentation hampers fossil preservation of complete serpulid tubes. No failed or repaired holes were observed. Multiple complete drillholes were present (3.9%). Drilled specimens were significantly smaller than undrilled specimens and tube length and drill-hole diameter were weakly correlated. The results suggest that drillholes were produced by a size-selective, site-stereotypic predatory organism of unknown affinity. The qualitative and quantitative patterns reported here are mostly consistent with previous reports on recent and fossil Ditrupa and reveal parallels with drilling patterns documented for scaphopod mollusks, a group that is ecologically and morphologically similar to Ditrupa. Consistent with previous studies, the results suggest that free-dwelling serpulid polychaetes are preyed upon by drilling predators and may provide a viable source of data on biotic interactions in the fossil record.  相似文献   

19.
Defensive delicacies: Sea urchins and their predators in the Mediterranean Sea Despite their various defense mechanisms, sea urchins always attract predators that are able to counter these mechanisms. In the Mediterranean Sea, these predators are often invertebrates, such as gastropods, decapods, and seastars, but also fish, including sea breams. Cassid gastropods use mucus to agglutinate the defensive spines and pedicellaria, and drill the calcareous tests with the aid of sulfuric acid. Large crustaceans, such as spiny lobsters and spider crabs, crush the tests of sea urchins with their armored claws and walking legs. Starfish ingest small sea urchins completely, or evert their stomachs to digest the urchins extra‐intestinally. Fish, especially sea breams, first bite off the spines and then crush the urchins test with their specialized teeth. In some cases, recognizable traces, like drill holes, scratch marks, indentations, or breakage patterns remain on the urchins hard parts allowing these events to be reconstructed in the fossil record.  相似文献   

20.
We tested the hypothesis that drillholes made by different species of predatory naticid gastropods can be differentiated by variability in the inner (IBD) and outer borehole diameters (OBD) of the holes they drill. We compared two samples of Mya arenaria that were drilled by different predators, Euspira heros and Neverita duplicata, under experimental conditions. Mean IBD:OBD ratio was significantly greater for holes drilled by Euspira compared to Neverita, indicating that Euspira drills a steeper drillhole than Neverita. We also found consistent differences between the two naticids for slopes of regression lines of IBD on OBD after standardization for predator size and prey size and thickness, with slopes for Euspira being steeper, but results were not statistically significant. However, the range of IBD:OBD ratios was wide and overlapped considerably for each species, which decreases confidence in assignment of individual drillholes to a particular predator species. At least in the case of these two naticid species, interspecific differences in variation of the inner and outer diameters of the holes they drill have limited utility in identifying the maker of individual boring traces in the fossil record.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号