首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 569 毫秒
1.
Daily variations in behaviour and physiology are controlled by a circadian timing system consisting of a network of oscillatory structures. In mammals, a master clock, located in the suprachiasmatic nuclei (SCN) of the hypothalamus, adjusts timing of other self-sustained oscillators in the brain and peripheral organs. Synchronisation to external cues is mainly achieved by ambient light, which resets the SCN clock. Other environmental factors, in particular food availability and time of feeding, also influence internal timing. Timed feeding can reset the phase of the peripheral oscillators whilst having almost no effect in shifting the phase of the SCN clockwork when animals are exposed (synchronised) to a light–dark cycle. Food deprivation and calorie restriction lead not only to loss of body mass (>15%) and increased motor activity, but also affect the timing of daily activity, nocturnal animals becoming partially diurnal (i.e. they are active during their usual sleep period). This change in behavioural timing is due in part to the fact that metabolic cues associated with calorie restriction affect the SCN clock and its synchronisation to light.  相似文献   

2.
The circadian clock in the suprachiasmatic nucleus (SCN) maintains phase synchrony among circadian oscillators throughout the organism. Environmental light signals entrain the SCN, but timed, limited meal access acts as an overriding time cue for several peripheral tissues. We present data from a peripheral oscillator, the submaxillary salivary gland, in which temporal restriction of meals fails to entrain gene expression. In day-fed rats, submaxillary gland rhythms in expression of the clock gene Period1 (Per1) stay entrained to the light cycle (peaking at night) or become arrhythmic. This result suggests that feeding cues compete weakly with light cycle cues to set the phase of clock genes in this tissue. Since the submaxillary glands receive sympathetic innervation originating in the SCN, which relays light cycle cues to other oscillators, we attempted to assess the role of this neural input in phase control of submaxillary Per1 expression. We sympathetically denervated the submaxillary glands before subjecting rats to daytime-restricted feeding. After denervation, Per1 rhythms in all submaxillary glands shifted phase 180 degrees and entrained to daytime feeding. These results support the hypothesis that peripheral oscillators may receive multiple signals contributing to their phase of entrainment. Sympathetic efferents from the SCN can relay light cycle information, while other external cues may reach tissues through other efferents or nonneural pathways. In an abnormal, disruptive regimen such as daytime-restricted feeding, these different signals compete. Arrhythmicity may result if one signal is not clearly dominant. Elimination of the dominant signal (e.g., surgical sympathectomy) may allow a secondary signal to control phase.  相似文献   

3.
The circadian system controls the timing of behavioral and physiological functions in most organisms studied. The review addresses the question of when and how the molecular clockwork underlying circadian oscillations within the central circadian clock in the suprachiasmatic nuclei of the hypothalamus (SCN) and the peripheral circadian clocks develops during ontogenesis. The current model of the molecular clockwork is summarized. The central SCN clock is viewed as a complex structure composed of a web of mutually synchronized individual oscillators. The importance of development of both the intracellular molecular clockwork as well as intercellular coupling for development of the formal properties of the circadian SCN clock is also highlighted. Recently, data has accumulated to demonstrate that synchronized molecular oscillations in the central and peripheral clocks develop gradually during ontogenesis and development extends into postnatal period. Synchronized molecular oscillations develop earlier in the SCN than in the peripheral clocks. A hypothesis is suggested that the immature clocks might be first driven by external entraining cues, and therefore, serve as "slave" oscillators. During ontogenesis, the clocks may gradually develop a complete set of molecular interlocked oscillations, i.e., the molecular clockwork, and become self-sustained clocks.  相似文献   

4.
5.
The mammalian circadian system is composed of multiple peripheral clocks that are synchronized by a central pacemaker in the suprachiasmatic nuclei of the hypothalamus. This system keeps track of the external world rhythms through entrainment by various time cues, such as the light-dark cycle and the feeding schedule. Alterations of photoperiod and meal time modulate the phase coupling between central and peripheral oscillators. In this study, we used real-time quantitative PCR to assess circadian clock gene expression in the liver and pituitary gland from mice raised under various photoperiods, or under a temporal restricted feeding protocol. Our results revealed unexpected differences between both organs. Whereas the liver oscillator always tracked meal time, the pituitary circadian clockwork showed an intermediate response, in between entrainment by the light regimen and the feeding-fasting rhythm. The same composite response was also observed in the pituitary gland from adrenalectomized mice under daytime restricted feeding, suggesting that circulating glucocorticoids do not inhibit full entrainment of the pituitary clockwork by meal time. Altogether our results reveal further aspects in the complexity of phase entrainment in the circadian system, and suggest that the pituitary may host oscillators able to integrate multiple time cues.  相似文献   

6.
7.
The neuropeptide vasoactive intestinal polypeptide (VIP) has emerged as a key candidate molecule mediating the synchronization of rhythms in clock gene expression within the suprachiasmatic nucleus (SCN). In addition, neurons expressing VIP are anatomically well positioned to mediate communication between the SCN and peripheral oscillators. In this study, we examined the temporal expression profile of 3 key circadian genes: Per1, Per2 , and Bmal1 in the SCN, the adrenal glands and the liver of mice deficient for the Vip gene (VIP KO), and their wild-type counterparts. We performed these measurements in mice held in a light/dark cycle as well as in constant darkness and found that rhythms in gene expression were greatly attenuated in the VIP-deficient SCN. In the periphery, the impact of the loss of VIP varied with the tissue and gene measured. In the adrenals, rhythms in Per1 were lost in VIP-deficient mice, while in the liver, the most dramatic impact was on the phase of the diurnal expression rhythms. Finally, we examined the effects of the loss of VIP on ex vivo explants of the same central and peripheral oscillators using the PER2::LUC reporter system. The VIP-deficient mice exhibited low amplitude rhythms in the SCN as well as altered phase relationships between the SCN and the peripheral oscillators. Together, these data suggest that VIP is critical for robust rhythms in clock gene expression in the SCN and some peripheral organs and that the absence of this peptide alters both the amplitude of circadian rhythms as well as the phase relationships between the rhythms in the SCN and periphery.  相似文献   

8.
Peripheral cells from mammalian tissues, while perfectly capable of circadian rhythm generation, are not light sensitive and thus have to be entrained by nonphotic cues. Feeding time is the dominant zeitgeber for peripheral mammalian clocks: Daytime feeding of nocturnal laboratory rodents completely inverts the phase of circadian gene expression in many tissues, including liver, heart, kidney, and pancreas, but it has no effect on the SCN pacemaker. It is thus plausible that in intact animals, the SCN synchronizes peripheral docks primarily through temporal feeding patterns that are imposed through behavioral rest-activity cycles. In addition, body temperature rhythms, which are themselves dependent on both feeding patterns and rest-activity cycles, can sustain circadian, clock gene activity in vivo and in vitro. The SCN may also influence the phase of rhythmic gene expression in peripheral tissues through direct chemical pathways. In fact, many chemical signals induce circadian gene expression in tissue culture cells. Some of these have been shown to elicit phase shifts when injected into intact animals and are thus candidates for physiologically relevant timing cues. While the response of the SCN to light is strictly gated to respond only during the night, peripheral oscillators can be chemically phase shifted throughout the day. For example, injection of dexamethasone, a glucocorticoid receptor agonist, resets the phase of circadian liver gene expression during the entire 24-h day. Given the bewildering array of agents capable of influencing peripheral clocks, the identification of physiologically relevant agents used by the SCN to synchronize peripheral clocks will clearly be an arduous undertaking. Nevertheless, we feel that experimental systems by which this enticing problem can be tackled are now at hand.  相似文献   

9.
The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice with conditional cell-specific clock gene deletions. This prompted us to analyze the molecular clockwork of the mouse neocortex and cerebellum in detail. Here, by use of in situ hybridization and quantitative RT-PCR, we show that clock genes are expressed in all six layers of the neocortex and the Purkinje and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes are similar in the neocortex and cerebellum, but they are delayed by 5 h as compared to the SCN, suggestively reflecting a master–slave relationship between the SCN and extra-hypothalamic oscillators. Furthermore, ARNTL protein products are detectable in neurons of the mouse neocortex and cerebellum, as revealed by immunohistochemistry. These findings give reason to further pursue the physiological significance of circadian oscillators in the mouse neocortex and cerebellum.  相似文献   

10.
In mammals, the circadian oscillator within the suprachiasmatic nuclei (SCN) entrains circadian clocks in numerous peripheral tissues. Central and peripheral clocks share a molecular core clock mechanism governing daily time measurement. In the rat SCN, the molecular clockwork develops gradually during postnatal ontogenesis. The aim of the present work was to elucidate when during ontogenesis the expression of clock genes in the rat liver starts to be rhythmic. Daily profiles of mRNA expression of clock genes Per1, Per2, Cry1, Clock, Rev-Erbalpha, and Bmal1 were analyzed in the liver of fetuses at embryonic day 20 (E20) or pups at postnatal age 2 (P2), P10, P20, P30, and in adults by real-time RT-PCR. At E20, only a high-amplitude rhythm in Rev-Erbalpha and a low-amplitude variation in Cry1 but no clear circadian rhythms in expression of other clock genes were detectable. At P2, a high-amplitude rhythm in Rev-Erbalpha and a low-amplitude variation in Bmal1 but no rhythms in expression of other genes were detected. At P10, significant rhythms only in Per1 and Rev-Erbalpha expression were present. At P20, clear circadian rhythms in the expression of Per1, Per2, Rev-Erbalpha, and Bmal1, but not yet of Cry1 and Clock, were detected. At P30, all clock genes were expressed rhythmically. The phase of the rhythms shifted between all studied developmental periods until the adult stage was achieved. The data indicate that the development of the molecular clockwork in the rat liver proceeds gradually and is roughly completed by 30 days after birth.  相似文献   

11.
"Feeding time" for the brain: a matter of clocks.   总被引:1,自引:0,他引:1  
Circadian clocks are autonomous time-keeping mechanisms that allow living organisms to predict and adapt to environmental rhythms of light, temperature and food availability. At the molecular level, circadian clocks use clock and clock-controlled genes to generate rhythmicity and distribute temporal signals. In mammals, synchronization of the master circadian clock located in the suprachiasmatic nuclei of the hypothalamus is accomplished mainly by light stimuli. Meal time, that can be experimentally modulated by temporal restricted feeding, is a potent synchronizer for peripheral oscillators with no clear synchronizing influence on the suprachiasmatic clock. Furthermore, food-restricted animals are able to predict meal time, as revealed by anticipatory bouts of locomotor activity, body temperature and plasma corticosterone. These food anticipatory rhythms have long been thought to be under the control of a food-entrainable clock (FEC). Analysis of clock mutant mice has highlighted the relevance of some, but not all of the clock genes for food-entrainable clockwork. Mutations of Clock or Per1 do not impair expression of food anticipatory components, suggesting that these clock genes are not essential for food-entrainable oscillations. By contrast, mice mutant for Npas2 or deficient for Cry1 and Cry2 show more or less altered responses to restricted feeding conditions. Moreover, a lack of food anticipation is specifically associated with a mutation of Per2, demonstrating the critical involvement of this gene in the anticipation of meal time. The actual location of the FEC is not yet clearly defined. Nevertheless, current knowledge of the putative brain regions involved in food-entrainable oscillations is discussed. We also describe several neurochemical pathways, including orexinergic and noradrenergic, likely to participate in conveying inputs to and outputs from the FEC to control anticipatory processes.  相似文献   

12.
Restricted feeding during the resting period causes pronounced shifts in a number of peripheral clocks, but not the central clock in the suprachiasmatic nucleus (SCN). By contrast, daily caloric restriction impacts also the light-entrained SCN clock, as indicated by shifted oscillations of clock (PER1) and clock-controlled (vasopressin) proteins. To determine if these SCN changes are due to the metabolic or timing cues of the restricted feeding, mice were challenged with an ultradian 6-meals schedule (1 food access every 4 h) to abolish the daily periodicity of feeding. Mice fed with ultradian feeding that lost <10% body mass (i.e. isocaloric) displayed 1.5-h phase-advance of body temperature rhythm, but remained mostly nocturnal, together with up-regulated vasopressin and down-regulated PER1 and PER2 levels in the SCN. Hepatic expression of clock genes (Per2, Rev-erbα, and Clock) and Fgf21 was, respectively, phase-advanced and up-regulated by ultradian feeding. Mice fed with ultradian feeding that lost >10% body mass (i.e. hypocaloric) became more diurnal, hypothermic in late night, and displayed larger (3.5 h) advance of body temperature rhythm, more reduced PER1 expression in the SCN, and further modified gene expression in the liver (e.g. larger phase-advance of Per2 and up-regulated levels of Pgc-1α). While glucose rhythmicity was lost under ultradian feeding, the phase of daily rhythms in liver glycogen and plasma corticosterone (albeit increased in amplitude) remained unchanged. In conclusion, the additional impact of hypocaloric conditions on the SCN are mainly due to the metabolic and not the timing effects of restricted daytime feeding.  相似文献   

13.
14.
The molecular clockwork underlying the generation of circadian rhythmicity within the suprachiasmatic nucleus (SCN) develops gradually during ontogenesis. The authors' previous work has shown that rhythms in clock gene expression in the rat SCN are not detectable at embryonic day (E) 19, start to form at E20 and develop further via increasing amplitude until postnatal day (P) 10. The aim of the present work was to elucidate whether and how swiftly the immature fetal and neonatal molecular SCN clocks can be reset by maternal cues. Pregnant rats maintained under a light-dark (LD) regimen with 12 h of light and 12 h of darkness were exposed to a 6-h delay of the dark period and released into constant darkness at different stages of the fetal SCN development. Adult rats maintained under the same LD regimen were exposed to an identical shifting procedure. Daily rhythms in spontaneous c-fos, Avp, Per1, and Per2 expression were examined within the adult and newborn SCN by in situ hybridization. Exposure of adult rats to the shifting procedure induced a significant phase delay of locomotor activity within 3 days after the phase shift as well as a delay in the rhythms of c-fos and Avp expression within 3 days and Per1 and Per2 expression within 5 days. Exposure of pregnant rats to the shifting procedure at E18, but not at E20, delayed the rhythm in c-fos and Avp expression in the SCN of newborn pups at P0-1. The shifting procedure at E20 did, however, induce a phase delay of Per1 and Per2 expression rhythms at P3 and P6. Hence, 5 days were necessary for phase-shifting the pups' SCN clock by maternal cues, be it the interval between E18 and P0-1 or the interval between E20 and P3, while only 3 days were necessary for phase-shifting the maternal SCN by photic cues. These results demonstrate that the SCN clock is capable of significant phase shifts at fetal developmental stages when no or very faint molecular oscillations can be detected.  相似文献   

15.
Circadian oscillations in biological variables in mammals are controlled by a central pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus which coordinates circadian oscillators in peripheral tissues. The molecular clockwork responsible for this rhythmicity consists of several clock genes and their corresponding proteins that compose interactive feedback loops. In the SCN, two of the genes, Per1 and Per2, show circadian rhythmicity in their expression and protein production. This SCN rhythmicity is modified by the length of daylight, i.e. the photoperiod. The aim of the present study was to find out whether profiles of PER1 and PER2 proteins in peripheral organs are also affected by the photoperiod. Rats were maintained under a long photoperiod with 16 h of light and 8 h of darkness per day (LD 16:8) and under a short, LD 8:16, photoperiod. The PER1 and PER2 daily profiles were measured in peripheral organs by Western blotting. The photoperiod affected significantly the PER1 profile in livers and the PER2 profile in lungs and hearts. In lungs, PER2 in the cytoplasmic, but not in the nuclear fraction, was affected significantly. The effect of the photoperiod on PER1 profiles in peripheral organs appears to differ from that in the SCN.  相似文献   

16.
Circadian clocks are autonomous time-keeping mechanisms that allow living organisms to predict and adapt to environmental rhythms of light, temperature and food availability. At the molecular level, circadian clocks use clock and clock-controlled genes to generate rhythmicity and distribute temporal signals. In mammals, synchronization of the master circadian clock located in the suprachiasmatic nuclei of the hypothalamus is accomplished mainly by light stimuli. Meal time, that can be experimentally modulated by temporal restricted feeding, is a potent synchronizer for peripheral oscillators with no clear synchronizing influence on the suprachiasmatic clock. Furthermore, food-restricted animals are able to predict meal time, as revealed by anticipatory bouts of locomotor activity, body temperature and plasma corticosterone. These food anticipatory rhythms have long been thought to be under the control of a food-entrainable clock (FEC). Analysis of clock mutant mice has highlighted the relevance of some, but not all of the clock genes for food-entrainable clockwork. Mutations of Clock or Per1 do not impair expression of food anticipatory components, suggesting that these clock genes are not essential for food-entrainable oscillations. By contrast, mice mutant for Npas2 or deficient for Cry1 and Cry2 show more or less altered responses to restricted feeding conditions. Moreover, a lack of food anticipation is specifically associated with a mutation of Per2, demonstrating the critical involvement of this gene in the anticipation of meal time. The actual location of the FEC is not yet clearly defined. Nevertheless, current knowledge of the putative brain regions involved in food-entrainable oscillations is discussed. We also describe several neurochemical pathways, including orexinergic and noradrenergic, likely to participate in conveying inputs to and outputs from the FEC to control anticipatory processes.  相似文献   

17.
Retinas of all classes of vertebrates contain endogenous circadian clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis, and cellular events such as rod disk shedding, intracellular signaling pathways, and gene expression. The vertebrate retina is an example of a "peripheral" oscillator that is particularly amenable to study because this tissue is well characterized, the relationships between the various cell types are extensively studied, and many local clock-controlled rhythms are known. Although the existence of a photoreceptor clock is well established in several species, emerging data are consistent with multiple or dual oscillators within the retina that interact to control local physiology. A prominent example is the antiphasic regulation of melaton in and dopamine in photoreceptors and inner retina, respectively. This review focuses on the similarities and differences in the molecular mechanisms of the retinal versus the SCN oscillators, as well as on the expression of core components of the circadian clockwork in retina. Finally, the interactions between the retinal clock(s) and the master clock in the SCN are examined.  相似文献   

18.
Resetting mechanism of central and peripheral circadian clocks in mammals   总被引:15,自引:0,他引:15  
  相似文献   

19.
The circadian timing system in mammals is composed of a master pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus and slave clocks in most peripheral cell types. The phase of peripheral clocks can be completely uncoupled from the SCN pacemaker by restricted feeding. Thus, feeding time, while not affecting the phase of the SCN pacemaker, is a dominant Zeitgeber for peripheral circadian oscillators. Here we show that the phase resetting in peripheral clocks of nocturnal mice is slow when feeding time is changed from night to day and rapid when switched back from day to night. Unexpectedly, the inertia in daytime feeding-induced phase resetting of circadian gene expression in liver and kidney is not an intrinsic property of peripheral oscillators, but is caused by glucocorticoid signaling. Thus, glucocorticoid hormones inhibit the uncoupling of peripheral and central circadian oscillators by altered feeding time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号