首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Prostaglandin D2 11-ketoreductase activity of bovine liver was purified 340-fold to apparent homogeneity. The purified enzyme was a monomeric protein with a molecular weight of about 36 kDa, and had a broad substrate specificity for porstaglandins D1, D2, D3, and H2, and various carbonyl compounds (e.g., phenanthrenequinone and nitrobenzaldehyde, etc.). Prostaglandin D2 was reduced to 9 alpha,11 beta-prostaglandin F2 and prostaglandin H2 to prostaglandin F2 alpha with NADPH as a cofactor. Phenanthrenequinone competitively inhibited the reduction of prostaglandin D2, while it did not inhibit that of prostaglandin H2. Moreover, chloride ion stimulated the reduction of prostaglandin D2 and carbonyl compounds, while it had no effect on that of prostaglandin H2. Besides, the enzyme was inhibited by flavonoids (e.g., quercetin) that inhibit carbonyl reductase, but was not inhibited by barbital and sorbinil, which are the inhibitors of aldehyde and aldose reductases, respectively. These results indicate that the bovine liver enzyme has two different active sites, i.e., one for prostaglandin D2 and carbonyl compounds and the other for prostaglandin H2, and appears to be a kind of carbonyl reductase like bovine lung prostaglandin F synthase (Watanabe, K., Yoshida, R., Shimizu, T., and Hayaishi, O., 1985, J. Biol. Chem. 260, 7035-7041). However, the bovine liver enzyme was different from prostaglandin F synthase of bovine lung with regard to the Km value for prostaglandin D2 (10 microM for the liver enzyme and 120 microM for the lung enzyme), the sensitivity to chloride ion (threefold greater activation for the liver enzyme) and the inhibition by CuSO4 and HgCl2 (two orders of magnitude more resistant in the case of the liver enzyme). These results suggest that the bovine liver enzyme is a subtype of bovine lung prostaglandin F synthase.  相似文献   

2.
Prostaglandin F synthetase from bovine lung was purified 540-fold to apparent homogeneity, as assessed by polyacrylamide gel electrophoreses and ultracentrifugation. The purified enzyme proved to be a monomeric protein with a molecular weight of about 30,500. The enzyme catalyzed not only the reduction of the 11-keto group of prostaglandin D2 but also the reduction of 9,11-endoperoxide of prostaglandin H2 and various carbonyl compounds (e.g. phenanthrenequinone). Experiments using column chromatography, polyacrylamide gel electrophoreses, immunotitration using antibody against the purified enzyme, and heat treatment indicated that three enzyme activities resided in a single protein. Although phenanthrenequinone and prostaglandin D2 competitively inhibited the prostaglandin D2 and phenanthrenequinone reductase activities, respectively, these two substrates were all but ineffective on the prostaglandin H2 (at the Km value) reductase activity up to 14-fold of those Km values. These results suggest that a single enzyme protein purified from the bovine lung catalyzes the reduction of prostaglandin D2, prostaglandin H2, and various carbonyl compounds and that prostaglandin D2 and prostaglandin H2 are metabolized at two different active sites, yielding prostaglandin F2 alpha as the reaction product.  相似文献   

3.
The full-length bovine lung prostaglandin(PG) F synthase cDNA was constructed from partial cDNA clones and ligated into bacterial expression vector pUC8 to develop expression plasmid pUCPF1. This plasmid permitted the synthesis of bovine lung PGF synthase in Escherichia coli. The recombinant bacteria overproduced a 36-KDa protein that was recognized by anti-PGF synthase antibody, and the expressed protein was purified to apparent homogeneity. The expressed protein reduced not only carbonyl compounds including PGD2 and phenanthrenequinone but also PGH2; and the Km values for phenanthrenequinone, PGD2, and PGH2 of the expressed protein were 0.1, 100, and 8 microM, respectively, which are the same as those of the bovine lung PGF synthase. The protein produced PGF2 alpha from PGH2, and 9 alpha, 11 beta-PGF2 from PGD2 at different active sites. Moreover, the structure of the purified protein from Escherichia coli was essentially identical to that of the native enzyme in terms of C-terminal sequence, sulfhydryl groups, and CD spectra except that the nine amino acids provided by the lac Z' gene of the vector were fused to the N-terminus. These results indicate that the expressed protein is essentially identical to bovine lung PGF synthase. We confirmed that PGF synthase is a dual function enzyme catalyzing the reduction of PGH2 and PGD2 on a single enzyme and that it has one binding site for NADPH.  相似文献   

4.
9 alpha,11 beta-prostaglandin F2 was formed from prostaglandin D2 by its 11-ketoreductases in 100,000 x g supernatants of various bovine tissues in the presence of an NADPH-generating system. The reductase activities were high in liver (51.09 nmol/h/mg of protein), lung (24.99), and spleen (14.20); moderate in heart and pancreas (3.09-3.61); weak in stomach, intestine, colon, kidney, uterus, adrenal gland, and thymus (0.11-2.63); and undetectable in brain, retina, carotid artery, and blood (less than 0.10). No formation of prostaglandin F2 alpha from prostaglandin D2 was detected in all tissues. In immunotitration analyses with a polyclonal antibody specific for prostaglandin F synthetase, the reductase activities in lung and spleen showed identical titration curves to that of the purified synthetase and decreased to less than 15% of the initial activity under the condition of antibody excess. Prostaglandin F synthetase-immunoreactive protein in these two tissues showed peptide fingerprints identical to that of the purified enzyme after partial digestion with Staphylococcus aureus V8 protease. The antibody was partially cross-reactive to the reductase in liver (about 20% of that to the synthetase) but not to the reductase(s) in other tissues. The Km value for prostaglandin D2 of the reductase activity was the same in lung and spleen as that of the purified prostaglandin F synthetase (120 microM) but differed in liver (6 microM), heart, and pancreas (15 microM). The predominant distribution of prostaglandin F synthetase in lung and spleen was confirmed by radioimmunoassay (2.8 and 1.0 micrograms/mg protein, respectively) and Northern blot analyses. In immunoperoxidase staining, this enzyme was localized in alveolar interstitial cells and nonciliated epithelial cells in lung, histiocytes and/or dendritic cells in spleen, and a few interstitial cells in kidney and adrenal cortex.  相似文献   

5.
6.
Microsomal prostaglandin synthase (EC 1.14.99.1) from rabbit kidney medulla was assayed with [5,6,8,9,11,12,14,15-3H]-and [1-14C]-arachidonic acid as the substrate. The ratios of prostaglandin F2 alpha to prostaglandin E2 and to prostaglandin D2 were determined by both 3H and 14C labelling. When 3H was used as a label the ratios were much higher than with 14C labelling indicating that the removal of hydrogen at C-9 or C-11 was the rate-limiting step in the biosynthesis of prostaglandin E2 or prostaglandin D2. This finding shows that the octatritiated arachidonic acid is not the appropriate substrate marker for studying the regulation of the synthesis of different prostaglandins by various agents. When the enzyme assay was carried out in the presence of SnCL2, which was capable of accumulating exclusively prostaglandin F2alpha at the expenses of prostaglandin E2 and prostaglandin D2, the addition of L-adrenaline to the microsomal fraction either alone or with reduced glutathione equally stimulated the formation of prostaglandin F2alpha, whereas the addition of reduced glutathione to the microsomal fraction either alone or with L-adrenaline produced no additional effect. These results suggest that endoperoxide is formed as the common intermediate for the biosynthesis of three different prostaglandins in rabbit kidney medulla, and that L-adrenaline stimulates the synthesis of endoperoxide, whereas reduced glutathione facilitates the formation of prostaglandins from endoperoxide.  相似文献   

7.
Prostaglandin endoperoxide synthase transforms arachidonic acid to prostaglandin H2 via prostaglandin G2. The enzyme purified from bovine vesicular gland was given to mice as antigen, and monoclonal antibodies were raised by the hybridoma technique. Two species of the monoclonal antibody recognizing different sites of the enzyme were utilized to establish a peroxidase-linked immunoassay of prostaglandin endoperoxide synthase. Fab' fragment of one of the antibodies was prepared and conjugated to horseradish peroxidase. The conjugate was then bound to prostaglandin endoperoxide synthase, and the labeled enzyme was precipitated by the addition of the other antibody. The peroxidase activity of the immunoprecipitate correlated linearly with the amount of prostaglandin endoperoxide synthase. This sensitive and convenient method to determine the enzyme amount rather than the enzyme activity was utilized to extensively screen the amount of prostaglandin endoperoxide synthase in various bovine tissues. In addition to vesicular gland, platelets and kidney medulla previously known as rich enzyme sources, the immunoenzymometric assay demonstrated a high content of the enzyme in various parts of alimentary tract and a low but significant amount of enzyme in some parts of brain.  相似文献   

8.
3α-Hydroxysteroid dehydrogenase and related enzymes play important roles in the metabolism of endogenous compounds including androgens, corticosteroid, prostaglandins and bile acids, as well as drugs and xenobiotics such as benzo(a)pyrene. Complementary DNA clones encoding 3α-hydroxysteroid dehydrogenase were isolated from a rat liver cDNA lambda gt11 expression library using monoclonal antibodies as probes. A full-length cDNA clone of 1286 base pairs contained an open reading frame encoding a protein of 322 amino acids with an estimated M(w) of 37 kD. When expressed in E. coli, the encoded protein migrated to the same position on SDS-polycrylamide gels as the enzyme in rat liver cytosols. The protein expressed in bacteria was highly active in androsterone oxidation in the presence of NAD as cofactor and this activity was inhibited by indomethacin, a potent inhibitor of 3α-hydroxysteroid dehydrogenase. The predicted amino acid sequence of 3α-hydroxysteroid d dehydrogenase was related to sequences of several other aldo-keto reductases such as bovine prostaglandin F synthase, human chlordecone reductase, human aldose reductase, human aldehyde reductase and frog lens epsilon-crystallin, suggesting that these proteins belong to the same gene family. Recently, we have found that monoclonal antibodies against 3α-hydroxysteroid dehydrogenase also recognized multiple antigenically related proteins in rat lung, kidney and testis. Further screening of liver, lung and kidney cDNA libraries using these monoclonal antibodies as probes resulted in the isolation of additional five different cDNAs encoding proteins with high degree of structural homology to rat liver 3α-hydroxysteroid dehydrogenase.  相似文献   

9.
It has been reported that mammalian serum, and to a lower extent mammalian liver, brain, pancreas, udder, and milk, contain glycosylphosphatidylinositolspecific phospholipase D activity. However, the sites of synthesis have not been determined. In order to study in which cells(s) of the organism synthesis of glycosylphosphatidylinositol-specific phospholipase D takes place, we undertook a systematic screening of 12 different bovine tissues. In situ hybridization experiments with a specific anti-sense RNA probe, derived from a bovine liver cDNA, revealed that glycosylphosphatidylinositol-specific phospholipase D mRNA is present in mast cells of the adrenal gland, lung, and liver. On the other hand, our specific probe detected no mRNA in bovine pancreas, brain, and udder, although enzyme activity has been reported in these tissues. Northern blot analysis of total bovine liver RNA demonstrated two distinct glycosylphosphatidylinositol-specific phospholipse D mRNAs of approximately 3.3 kb and 4 kb length suggesting that two forms of the enzyme may exist.  相似文献   

10.
11.
The murine gene for the glucuronyl C5-epimerase involved in heparan sulfate biosynthesis was cloned, using a previously isolated bovine lung cDNA fragment (Li, J.-P., Hagner-McWhirter, A., Kjellén, L., Palgi, J., Jalkanen, M., and Lindahl, U. (1997) J. Biol. Chem. 272, 28158-28163) as probe. The approximately 11-kilobase pair mouse gene contains 3 exons from the first ATG to stop codon and is localized to chromosome 9. Southern analysis of the genomic DNA and chromosome mapping suggested the occurrence of a single epimerase gene. Based on the genomic sequence, a mouse liver cDNA was isolated that encodes a 618-amino acid residue protein, thus extending by 174 N-terminal residues the sequence deduced from the (incomplete) bovine cDNA. Comparison of murine, bovine, and human epimerase cDNA structures indicated 96-99% identity at the amino acid level. A cDNA identical to the mouse liver species was demonstrated in mouse mast cells committed to heparin biosynthesis. These findings suggest that the iduronic acid residues in heparin and heparan sulfate, despite different structural contexts, are generated by the same C5-epimerase enzyme. The catalytic activity of the recombinant full-length mouse liver epimerase, expressed in insect cells, was found to be >2 orders of magnitude higher than that of the previously cloned, smaller bovine recombinant protein. The approximately 52-kDa, similarly highly active, enzyme originally purified from bovine liver (Campbell, P., Hannesson, H. H., Sandb?ck, D., Rodén, L., Lindahl, U., and Li, J.-P. (1994) J. Biol. Chem. 269, 26953-26958) was found to be associated with an approximately 22-kDa peptide generated by a single proteolytic cleavage of the full-sized protein.  相似文献   

12.
The amino acid sequence of all but a few N-terminal residues of the beta subunit of rat liver ATP synthase has been determined from cDNA clones. Rat liver F1-beta is shown to contain 17 amino acid differences from that reported for F1-beta of bovine heart, 2 differences of which involve differences in charge. This may account in part for the observation that bovine heart F1 binds nucleotides with much greater affinity than the rat liver enzyme. Rat liver F1-beta also contains homologous regions with another nucleotide binding protein, adenylate kinase, for which high-resolution structural studies are available. Adjacent to one of these homologous regions is an eight amino acid stretch which bears striking homology to the phosphorylation region of the (Na+,K+)-ATPase. The combination of these two homology regions may constitute at least part of a nucleotide binding domain in F1-beta. Significantly, both rat liver and bovine heart beta contain these regions of homology, whereas the 17 amino acid differences between the two enzymes lie outside this region. The possibility of a second nucleotide binding domain which differs between the two enzymes is discussed. A cDNA clone containing all the regions of homology as well as 11 of the 17 amino acid differences between the bovine heart and rat liver beta subunits has been ligated into the bacterial expression vector pKK223-3. After transformation of a protease-deficient strain of Escherichia coli, this cDNA clone is expressed as a 36-kilodalton protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
3-alpha-Hydroxysteroid dehydrogenase (3 alpha-HSD) (EC 1.1.1.50) is an important multifunctional oxidoreductase capable of metabolizing steroid hormones, polycyclic aromatic hydrocarbons, and prostaglandins. 3 alpha-HSD is also required for bile acid synthesis and has been suggested to play an important role in net bile acid transport across the hepatocyte (Stolz, A., Takikawa, H., Ookhtens, M., and Kaplowitz, N. (1989) Annu. Rev. Physiol. 51, 166-177). In order to characterize molecular forms and begin to determine its regulation, we now report the nucleotide sequence, tissue distribution, and homology to other members of the oxidoreductase superfamily. Rat hepatic 3 alpha-HSD cDNA encodes for a 322-amino acid protein with a predicted molecular weight of 37,022 expressed in a 2.4-kilobase (kb) message size. Northern blot analysis of total RNA revealed equivalent steady-state levels in liver and intestine in male rats with lower levels of expression in the colon and minimal expression in stomach, lung, and testis. Female liver contained approximately 2-3-fold greater steady-state levels of mRNA as compared to the male liver with equivalent intestinal expression. Two hybridizing bands, 2.4 and 1.4 kb, were identified in total RNA from the ovary. 3 alpha-HSD exhibits 75% amino acid sequence homology with bovine lung prostaglandin F synthetase and 50% homology with human aldose reductases. Amino acid sequence analysis with short chain alcohol dehydrogenases identified a possible NADP(H) cofactor-binding site at the amino terminus. The significant homology of 3 alpha-HSD with both prostaglandin F synthetase and aldose reductases suggest a subdivision of monomeric, NADPH reductases within the larger oxidoreductases superfamily.  相似文献   

14.
A simple radioactive-substrate assay for prostaglandin synthase (EC 1.14.99.1), which uses t.l.c. to measure simultaneously different prostaglandins synthesized from one precursor substrate, was developed. Rabbit kidney-medulla prostaglandin synthase catalyses the formation of prostaglandin E2, prostaglandin F2alpha and prostaglandin D2 from arachidonic acid. Fractionation of crude homogenates indicated that the microsomal fraction possessed the highest specific activity of prostaglandin synthase, whereas the soluble fraction exhibited little enzyme activity but rather contained a heat-labile inhibitory macromolecular factor(s), which might be attributed to the serum albumin present in this fraction. The microsomal fraction possessed low intrinsic enzyme activity, but the actvity could be fully stimulated by the presence of both GSH (reduced glutathione) and a phenolic cofactor. Only cysteine could partially replace GSH, whereas other thiols were inactive and some were even inhibitory. A variety of phenolic compounds, including catecholamines, dopamine (3,4-dihydroxyphenethylamine), 5-hydroxytryptamine and quinol, were active in stimulating prostaglandin synthase. In all cases, the stimulation was reflected in the synthesis of all three prostaglandins with ratios not significantly altered by different phenolic cofactors. The synthesis of each of the different prostaglandins appeared to have similar pH optima. The enzyme system was not inhibited by thiol-group inhibitors or a variety of metal chelators except for cyanide and 8-hydroxyquinoline. Characterization of the kidney-medulla prostaglandin synthase system indicated that it exhibited properties similar to those of the enzyme system present in seminal vesicles.  相似文献   

15.
cDNA clones encoding a precursor of the alpha-subunit of the mitochondrial ATP synthase complex have been isolated from a bovine liver cDNA library using the alpha-subunit gene from Saccharomyces cerevisiae as a probe. Analyses of the nucleotide sequence of these cDNA clones reveal that the bovine liver ATP synthase alpha-subunit is initially synthesized as a precursor with an aminoterminal extension 43 amino acids in length. This aminoterminal presequence contains seven basic residues, no acidic residues, and seven polar uncharged serine and threonine residues. A single mRNA species, approximately 1.85 kb in length, was detected for the ATP synthase alpha-subunit precursor in both bovine liver and heart.  相似文献   

16.
A full length cDNA clone encoding the precursor of the rat liver mitochondrial phosphate transporter (H+/Pi symporter) has been isolated from a cDNA library using a bovine heart partial length phosphate transporter clone as a hybridization probe. The entire clone is 1263 base pairs in length with 5'- and 3'-untranslated regions of 16 and 168 base pairs, respectively. The open reading frame encodes for the mature protein (312 amino acids) preceded by a presequence of 44 amino acids enriched in basic residues. The polypeptide sequence predicted from the DNA sequence was confirmed by analyzing the first 17 amino-terminal amino acids of the pure phosphate transporter protein. The rat liver phosphate transporter differs from the bovine heart transporter in 32 amino acids (i.e. approximately 10%). It contains a region from amino acid 139 to 159 which is 37% identical with the beta-subunit of the liver mitochondrial ATP synthase. Amino acid sequence comparisons of the Pi transporter with Pi binding proteins, other H+-linked symporters, and the human glucose transporter did not reveal significant sequence homology. Analysis of genomic DNA from both rat and S. cerevisiae by Southern blots using the rat liver mitochondrial Pi carrier cDNA as a probe revealed remarkably similar restriction patterns, a finding consistent with the presence in lower and higher eukaryotes of homologous Pi carrier proteins. This is the first report of the isolation, sequencing, and characterization of a full length cDNA coding for a protein involved in energy-coupled Pi transport.  相似文献   

17.
Rat liver 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD, EC 1.1.1.50) is an NAD(P)(+)-dependent oxidoreductase which will terminate androgen action by converting 5 alpha-dihydrotestosterone to 3 alpha-androstanediol. It is identical to dihydrodiol dehydrogenase and it can function as a 9-, 11-, and 15-hydroxyprostaglandin dehydrogenase. Its reactions are potently inhibited by the nonsteroidal anti-inflammatory drugs (NSAIDs). A cDNA (2.1 kilobases) for 3 alpha-HSD was cloned from a rat liver cDNA expression library in lambda gt11. Portions of the cDNA insert which contained an internal EcoRI site were subcloned into pGEM3, and dideoxysequencing revealed that the cDNA contains an open reading frame of 966 nucleotides which encode a protein of 322 amino acids with a monomer Mr of 37,029. The identity of this clone was confirmed by locating two tryptic peptides and two endoproteinase Lys-C peptides from purified 3 alpha-HSD within the nucleotide sequence. The amino acid sequence of rat liver 3 alpha-HSD bears no significant homology with 3 beta-, 17 beta- or 11 beta-hydroxysteroid dehydrogenases but has striking homology with bovine lung prostaglandin F synthase (69% homology at the amino acid level and 74% homology at the nucleotide level) which is a member of the aldehyde/aldose reductase family. This sequence homology supports previous correlates which suggest that in rat 3 alpha-HSD may represent an important target for NSAIDs. The nucleotide sequence also contains three peptides that have been identified by affinity labeling with either 3 alpha-bromoacetoxyandrosterone (substrate analog) or 11 alpha-bromoacetoxyprogesterone (glucocorticoid analog) to comprise the active site (see accompanying article (Penning, T. M., Abrams, W. R., and Pawlowski, J. E. (1991) J. Biol. Chem. 266, 8826-8834]. The sequence data presented suggests that 3 alpha-HSD, prostaglandin F synthase, and aldehyde/aldose reductases are members of a common gene family.  相似文献   

18.
Two cDNA clones, 2C19 and 4C1, were isolated from a lung cDNA library of 3-methylcholanthrene (MC)-treated hamster by using rat P-450c cDNA as a probe. The cDNA determined from 2C19 and 4C1 was 2,916 bp long and contained an entire coding region for 524 amino acids with a molecular weight of 59,408. The deduced amino acid sequence showed a 85% identity with that of rat P-450c indicating 2C19 and 4C1 encode the hamster P-450IA1 protein. Another cDNA clone, designated H28, was isolated from a MC-induced hamster liver cDNA library by using the hamster lung 2C19 or 4C1 cDNA clone as a probe. H28 was 1,876 bp long and encoded a polypeptide of 513 amino acids with a molecular weight of 58,079. The N-terminal 20 residues deduced from nucleotide sequence of H28 were identical to those determined by sequence analysis of purified hamster hepatic P-450MCI. The high similarity of the nucleotide and deduced amino acid sequences between H28 and P-450IA2 of other species indicated that H28 encoded a P-450 protein which belongs to the P-450IA2 family. Northern blot analysis revealed that the mRNAs for hamster P-450IA1 and IA2 were about 2.9 and 1.9 kb long, respectively. Hamster P-450IA1 mRNA was induced to the same level in lungs as in livers by MC treatment, whereas hamster P-450IA2 mRNA was induced and expressed only in hamster liver.  相似文献   

19.
L J Askonas  T M Penning 《Biochemistry》1991,30(49):11553-11560
Nonsteroidal anti-inflammatory drugs (NSAIDs) exert their effect by inhibiting the target enzyme cyclooxygenase (prostaglandin H2 synthase); however, little is known about the peptides comprising its NSAID binding site. Hydroxyprostaglandin dehydrogenases also bind NSAIDs, but their NSAID binding sites have not been well characterized. Using existing synthetic strategies, we have incorporated the bromoacetoxy affinity labeling moiety around the perimeter of two potent NSAIDs, indomethacin and mefenamate, a N-phenylanthranilate. The compounds synthesized were 1-(4-(bromoacetamido)benzyl)-5-methoxy-2-methylindole-3-acetic acid (1), 3-(2-(2-bromoacetoxy)ethyl)-1-(4-chlorobenzyl)-5-methoxy-2-methylindole (2), 4-(bromoacetamido)-N-(2,3-dimethylphenyl)anthranilic acid (3), N-(3-(bromoacetamido)phenyl)-anthranilic acid (4), and N-(4-(bromoacetamido)phenyl)anthranilic acid (5). To access whether these compounds have general utility in labeling NSAID binding sites, the compounds were evaluated as affinity labeling agents for 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) from rat liver cytosol. This enzyme displays 9-, 11-, and 15-hydroxyprostaglandin dehydrogenase activity, is inhibited potently by NSAIDs, and is homologous to bovine lung prostaglandin F synthase. Compounds 1-5 were shown to affinity label the NSAID binding site of 3 alpha-HSD. They inactivated 3 alpha-HSD through an E.I complex in a time- and concentration-dependent manner with t1/2 values ranging from seconds to hours. Ligands that compete for the active site of 3 alpha-HSD (NAD+ and indomethacin) afforded protection against inactivation, and the inactivators could demonstrate competitive kinetics against 3 alpha-hydroxysteroid substrates by forming an E.NAD+.I complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Lipopolysaccharide induces prostaglandin H synthase-2 in alveolar macrophages.   总被引:13,自引:0,他引:13  
Prostaglandin H synthase is a key enzyme in the formation of prostaglandins and thromboxane from arachidonic acid. The recent cloning of a second prostaglandin H synthase gene, prostaglandin H synthase-2, which is distinct from the classic prostaglandin H synthase-1 gene, may dramatically alter our concept of how cells regulate prostanoid formation. We have recently shown that the enhanced production of prostanoids by lipopolysaccharide-primed alveolar macrophages involves the induction of a novel prostaglandin H synthase (J. Biol. Chem., (1992), 267, 14547-14550). We report here that the novel PGH synthase induced by lipopolysaccharide in alveolar macrophages is prostaglandin H synthase-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号