首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Genetic mapping with Tn5-derived auxotrophs of Caulobacter crescentus.   总被引:17,自引:13,他引:4       下载免费PDF全文
Chromosomal insertions of Tn5 in Caulobacter crescentus displayed complete stability upon transduction and proved useful in strain building on complex media. RP4-primes constructed in vitro containing C. crescentus genomic sequences in the HindIII site of the kanamycin resistance gene failed to show enhanced or directed chromosome mobilization abilities. One of these kanamycin-sensitive RP4 derivatives, pVS1, was used as a mobilization vector in conjugation experiments on complex media where chromosomal Tn5 transfer to the recipient was selected. pVS1-mediated transfer of Tn5-induced auxotrophic mutations occurred at frequencies of 10(-6) to 10(-8) per donor cell. During conjugation with Tn5-encoded kanamycin resistance as the selected marker, Tn5 remained in its donor-associated locus in 85 to 100% of the transconjugants. A collection of eight temperature-sensitive donor strains bearing Tn5 insertion mutations from various regions of the C. crescentus genetic map were used to provide a rapid means for the determination of the map location of a new mutation. Use of the techniques described in this paper allowed an expansion of the C. crescentus genetic map to include the relative locations of 32 genes.  相似文献   

2.
3.
We report here the construction of a plasmid cloning vector, pRTP1, designed to facilitate exchange of cloned and chromosomal alleles of the human bacterial pathogen Bordetella pertussis. pRTP1 provides the ability to successively select two homologous recombination events within the cloned sequences. The first is by selection for maintenance of the ampicillin-resistance gene on the plasmid which is unable to replicate autonomously after transfer via conjugation. The second selection, via streptomycin (Sm) selection, is against the maintenance of vector sequences which contain a gene encoding the Sm-sensitive allele of the gene for ribosomal protein S12 thus rendering an otherwise Sm-resistant strain Sm-sensitive. We demonstrate the use of this vector to introduce an unmarked mutation, constructed in vitro, into the chromosomal locus encoding pertussis toxin.  相似文献   

4.
Localized sets of random point mutations generated by PCR amplification can be transferred efficiently to the chromosome of Acinetobacter ADP1 (also known as strain BD413) by natural transformation. The technique does not require cloning of PCR fragments in plasmids: PCR-amplified DNA fragments are internalized by cells and directly incorporated into their genomes by homologous recombination. Previously such procedures for random mutagenesis could be applied only to Acinetobacter genes affording the selection of mutant phenotypes. Here we describe the construction of a vector and recipient that allow for mutagenesis, recovery, and expression of heterologous genes that may lack a positive selection. The plasmid carries an Acinetobacter chromosomal segment interrupted by a multiple cloning site next to a kanamycin resistance marker. The insertion of heterologous DNA into the multiple cloning site prepares the insert as a target for PCR mutagenesis. PCR amplifies the kanamycin resistance marker and a flanking region of Acinetobacter DNA along with the insert of heterologous DNA. Nucleotide sequence identity between the flanking regions and corresponding chromosomal segments in an engineered Acinetobacter recipient allows homologous recombination of the PCR-amplified DNA fragments into a specific chromosomal docking site from which they can be expressed. The recipient strain contains only a portion of the kanamycin resistance gene, so donor DNA containing both this gene and the mutagenized insert can be selected by demanding growth of recombinants in the presence of kanamycin. The effectiveness of the technique was demonstrated with the relatively GC-rich Pseudomonas putida xylE gene. After only one round of PCR amplification (35 cycles), donor DNA produced transformants of which up to 30% carried a defective xylE gene after growth at 37 degrees C. Of recombinant clones that failed to express xylE at 37 degrees C, about 10% expressed the gene when grown at 22 degrees C. The techniques described here could be adapted to prepare colonies with an altered function in any gene for which either a selection or a suitable phenotypic screen exists.  相似文献   

5.
Efficient targeted mutagenesis in Borrelia burgdorferi   总被引:15,自引:0,他引:15       下载免费PDF全文
Genetic studies in Borrelia burgdorferi have been hindered by the lack of a nonborrelial selectable marker. Currently, the only selectable marker is gyrB(r), a mutated form of the chromosomal gyrB gene that encodes the B subunit of DNA gyrase and confers resistance to the antibiotic coumermycin A(1). The utility of the coumermycin-resistant gyrB(r) gene for targeted gene disruption is limited by a high frequency of recombination with the endogenous gyrB gene. A kanamycin resistance gene (kan) was introduced into B. burgdorferi, and its use as a selectable marker was explored in an effort to improve the genetic manipulation of this pathogen. B. burgdorferi transformants with the kan gene expressed from its native promoter were susceptible to kanamycin. In striking contrast, transformants with the kan gene expressed from either the B. burgdorferi flaB or flgB promoter were resistant to high levels of kanamycin. The kanamycin resistance marker allows efficient direct selection of mutants in B. burgdorferi and hence is a significant improvement in the ability to construct isogenic mutant strains in this pathogen.  相似文献   

6.
Plasmid pJMC21 contains Escherichia coli chromosomal DNA encoding Lon protease, HU-beta (HU-1), and an unidentified 67,000-dalton protein. A kanamycin resistance cassette was used in the construction of insertion and deletion mutations in hupB, the gene encoding HU-beta on plasmid pJMC21. The reconstructed plasmids were linearized and used to introduce hupB chromosomal mutations into JC7623 (recBC sbcBC). These mutations, as expected, mapped in the 9.8-min region of the E. coli chromosome by P1 transduction (16% linkage to proC+). Southern blot hybridization of chromosomal fragments verified that hupB+ was replaced by the mutant allele, with no indication of gene duplication. All the mutant strains had growth rates identical to that of wild-type E. coli, were resistant to UV irradiation and nitrofurantoin, and supported the in vivo transposition-replication of bacteriophage Mu, Mu lysogenization, Tn10 transposition from lambda 1098, and lambda replication-lysogenization. The only observable phenotypic variation was a reduced Mu plaque size on the hupB mutant strains; however, the yield of bacteriophage Mu in liquid lysates prepared from the mutant strains was indistinguishable from the yield for the wild type.  相似文献   

7.
J L Ried  A Collmer 《Gene》1987,57(2-3):239-246
A technique for marker exchange-eviction mutagenesis that enables the construction of directed, unmarked mutations in Gram-negative bacteria was demonstrated in Erwinia chrysanthemi. The technique employs an nptI-sacB-sacR cartridge that is carried on a 3.8-kb BamHI fragment and confers kanamycin (Km) resistance and sucrose sensitivity (due to the production of levansucrase by sacB) in E. chrysanthemi. The cartridge was inserted into a Sau3A site in a cloned E. chrysanthemi pelC gene (encoding pectate lyase isozyme PLc) and then introduced into the Erwinia genome by gene exchange recombination. The resulting mutant was KmR, sucrose-sensitive, and PLc-deficient. The cartridge was then excised from the plasmid-borne pelC gene by PstI cleavage to leave a 28-bp frame-shifting insertion. The pelC allele containing the 28-bp insertion was exchanged for the chromosomal allele containing the nptI-sacB-sacR cartridge by selection for sucrose tolerance. The resulting E. chrysanthemi mutant was Kms and PLc-deficient. The technique permits the construction of complex strains with many directed mutations without the introduction of a corresponding number of antibiotic resistance markers and should prove useful, for example, in exploring the role of the multiple pel genes in E. chrysanthemi.  相似文献   

8.
Campylobacter jejuni and Campylobacter coli are important causes of human enteric infections. Several determinants of pathogenicity have been proposed based on the clinical features of diarrheal disease and on the phenotypic properties of Campylobacter strains. To facilitate an understanding of the genetic determinants of Campylobacter virulence, we have developed a method for constructing C. jejuni mutants by shuttle mutagenesis. In the example described here, a kanamycin resistance gene was inserted into Campylobacter DNA fragments encoding 16S rRNA cloned in Escherichia coli. These disrupted, modified sequences were returned to C. jejuni via conjugation. Through the apparent process of homologous recombination, the kanamycin resistance-encoding sequences were rescued by chromosomal integration, resulting in the simultaneous gene replacement of one of the 16S sequences of C. jejuni and the loss of the vector. We propose that Campylobacter isogenic mutants could be developed by using this system of shuttle mutagenesis.  相似文献   

9.
Conjugative transfer of 20-kb chromosomal fragment carrying genes encoding tetracycline (tet(r)) and lincomycin (lin(r)) resistance in the soil strain Bacillus subtilis 19 is described. Transfer was preceded by this fragment insertion into the large conjugative pl9cat plasmid producing a hybrid plasmid. Insertion frequency was 10(-4)-10(-5). Then genes tet(r) and lin(r) were transferred to the recipient strains. The transfer of chromosomal genes inserted into the plasmid and plasmid gene cat occurred sequentially and resembled sexduction, which represents chromosomal gene transfer by F'- and R' plasmids during conjugation in Escherichia coli and other gram negative bacteria.  相似文献   

10.
Localized sets of random point mutations generated by PCR amplification can be transferred efficiently to the chromosome of Acinetobacter ADP1 (also known as strain BD413) by natural transformation. The technique does not require cloning of PCR fragments in plasmids: PCR-amplified DNA fragments are internalized by cells and directly incorporated into their genomes by homologous recombination. Previously such procedures for random mutagenesis could be applied only to Acinetobacter genes affording the selection of mutant phenotypes. Here we describe the construction of a vector and recipient that allow for mutagenesis, recovery, and expression of heterologous genes that may lack a positive selection. The plasmid carries an Acinetobacter chromosomal segment interrupted by a multiple cloning site next to a kanamycin resistance marker. The insertion of heterologous DNA into the multiple cloning site prepares the insert as a target for PCR mutagenesis. PCR amplifies the kanamycin resistance marker and a flanking region of Acinetobacter DNA along with the insert of heterologous DNA. Nucleotide sequence identity between the flanking regions and corresponding chromosomal segments in an engineered Acinetobacter recipient allows homologous recombination of the PCR-amplified DNA fragments into a specific chromosomal docking site from which they can be expressed. The recipient strain contains only a portion of the kanamycin resistance gene, so donor DNA containing both this gene and the mutagenized insert can be selected by demanding growth of recombinants in the presence of kanamycin. The effectiveness of the technique was demonstrated with the relatively GC-rich Pseudomonas putida xylE gene. After only one round of PCR amplification (35 cycles), donor DNA produced transformants of which up to 30% carried a defective xylE gene after growth at 37°C. Of recombinant clones that failed to express xylE at 37°C, about 10% expressed the gene when grown at 22°C. The techniques described here could be adapted to prepare colonies with an altered function in any gene for which either a selection or a suitable phenotypic screen exists.  相似文献   

11.
12.
13.
The aacC4 gene from Escherichia coli can be expressed in mycobacteria and confers resistance to apramycin. However, the major limitation of the aacC4 gene as a genetic tool is that the gene also confers resistance to kanamycin and gentamicin, two antibiotics commonly used for selection in mycobacterial genetics, thus reducing the utility of the aacC4 gene in the mycobacterial field. To overcome this problem we constructed, by chemical mutagenesis, a mutant allele of the E. coli aacC4 gene that still confers resistance to apramycin but has a reduced ability to confer resistance to kanamycin and gentamicin. We then constructed a variety of E. coli-mycobacteria shuttle plasmids containing this mutant allele.  相似文献   

14.
Abstract Antibiotic drug-resistance cassettes (DRCs) were used to insertionally inactivate the wild-type Bordetella pertussis recA gene cloned into a suicide vector. The mutant allele was mobilized by conjugal gene transfer from Escherichia coli strain SM10 into different genetic backgrounds of B. pertussis . Southern hybridization studies of one of these mutants showed that it contained a DRC integrated within a recA gene situated within a Cla I genomic DNA fragment. Selected mutants were assayed to quantify recombinational and DNA repair deficiencies. These mutants were shown to be highly sensitive to both chemically and physically induced DNA damage. Gene transfer studies of another RecA mutant also indicated that it was defective in intergenic recombination. No difference in hemolytic activity or production of capsule was detected between the RecA mutants and their corresponding wild-type strains. The results of this investigation corroborate previous studies with the cloned B. pertussis recA gene, and demonstrate that the expression of the B. pertussis recA gene in the original host promotes both DNA repair and recombination.  相似文献   

15.
Conjugal transfer of chromosomal DNA in Mycobacterium smegmatis   总被引:5,自引:3,他引:2  
The genus Mycobacterium includes the major human pathogens Mycobacterium tuberculosis and Mycobacterium leprae . The development of rational drug treatments for the diseases caused by these and other mycobacteria requires the establishment of basic molecular techniques to determine the genetic basis of pathogenesis and drug resistance. To date, the ability to manipulate and move DNA between mycobacterial strains has relied on the processes of transformation and transduction. Here, we describe a naturally occurring conjugation system present in Mycobacterium smegmatis , which we anticipate will further facilitate the ability to manipulate the mycobacterial genome. Our data rule out transduction and transformation as possible mechanisms of gene transfer in this system and are most consistent with conjugal transfer. We show that recombinants are not the result of cell fusion and that transfer occurs from a distinct donor to a recipient. One of the donor strains is mc2155, a highly transformable derivative that is considered the prototype laboratory strain for mycobacterial genetics; the demonstration that it is conjugative should increase its genetic manipulability dramatically. During conjugation, extensive regions of chromosomal DNA are transferred into the recipient and then integrated into the recipient chromosome by multiple recombination events. We propose that DNA transfer is occurring by a mechanism similar to Hfr conjugation in Escherichia coli .  相似文献   

16.
17.
We have mapped a regulatory site mediating the hyperproduction of cholera toxin in mutants of Vibrio cholerae strain 569B. Mutations in this locus, called htx, result in the hypertoxinogenic phenotype, as measured by the ganglioside filter assay and immunoradial diffusion. Transposon-facilitated recombination was used to construct improved genetic donors in 569B parental and hypertoxinogenic mutant strains. Subsequent mapping by conjugation indicated that the htx locus was closely linked to the rif, str, and ilv loci of V. cholerae. Analysis of recombinants from these crosses suggested the following gene order: thy str htx rif ilv arg. The close genetic linkage of htx to rif (as high as 98%) resulted in a high comutation frequency of these two loci by nitrosoguanidine mutagenesis. Transfer of the htx mutant locus from a hypertoxinogenic donor to several unrelated Tox+ strains of V. cholerae caused a detectable elevation of toxin production in the recipients. These results suggest that toxin production in diverse strains of V. cholerae is controlled by a common regulatory mechanism in which the htx gene product plays a significant role.  相似文献   

18.
We describe the construction and immunobiological properties of a novel whooping cough vaccine candidate, in which the aroQ gene, encoding 3-dehydroquinase, was deleted by insertional inactivation using the kanamycin resistance gene cassette and allelic exchange using a Bordetella suicide vector. The aroQ B. pertussis mutant required supplementation of media to grow but failed to grow on an unsupplemented medium. The aroQ B. pertussis mutant was undetectable in the trachea and lungs of mice at days 6 and 12 post-infection, respectively. Antigen-specific antibody isotypes IgG1 and IgG2a, were produced, and cell-mediated immunity [CMI], using interleukin-2 and interferon-gamma as indirect indicators, was induced in mice vaccinated with the aroQ B. pertussis vaccine candidate, which were substantially enhanced upon second exposure to virulent B. pertussis. Interleukin- 12 was also produced in the aroQ B. pertussis-vaccinated mice. On the other hand, neither IgG2a nor CMI-indicator cytokines were produced in DTaP-vaccinated mice, although the CMI-indicator cytokines became detectable post-challenge with virulent B. pertussis. Intranasal immunization with one dose of the aroQ B. pertussis mutant protected vaccinated mice against an intranasal challenge infection, with no pathogen being detected in the lungs of immunized mice by day 7 post-challenge. B. pertussis aroQ thus constitutes a safe, non-reverting, metabolite-deficient vaccine candidate that induces both humoral and cellmediated immune responses with potential for use as a single-dose vaccine in adolescents and adults, in the first instance, with a view to disrupting the transmission cycle of whooping cough to infants and the community.  相似文献   

19.
Despite the fact that the mass immunization of the children population with the DPTs vaccine has been carried out in the Russian Federation since 1959, the pertussis infection persists to be one of the pressing problems for the children population. Although the vaccination coverage of the children population with pertussis vaccines is high in Russia, at present time the pertussis incidence rates are increasing among schoolchildren and remain high among infants younger than 12 months old. Many researchers believe that the variability of the genetic structure of the pertussis causative agent may be one of the causes of increasing pertussis incidence rates. This investigation provides the molecular genetic characteristics of 97 B. pertussis strains isolated in pertussis patients in Moscow in different periods of pertussis epidemic process since the 1950s up to present time. It shows the changes in the structures of genes, which are encoding the main protective antigens of the pertussis microbe that are the pertussis toxin (ptxS1) and the pertactin (pm). The structurre of the ptxS1 and pm gene of the B. pertussis vaccine strains was compared with the structures of these genes in the B. pertussis strains isolated from the pertussis patients at present time and also in past years. All B. pertussis strains isolated in the prevaccination period (1948-1959) and most strains (95%) isolated during the first twenty years of the mass immunization in Russia are characterized by the presence of the so called "vaccine" alleles of the pertussis toxin and pertactin genes that are ptxS1 B or ptxS1 D and pm 1 alleles that corresponds to the genetic structure of the vaccine producing strains. In the early 1970s the B. pertussis strains of another toxin and pertactin genetic structures with so-called "non-vaccinal" alleles ptxS1 A and pm 3 (pm 2 since 1980s) began to appear. The B. pertussis strains with "non-vaccinal" alleles have completely displaced the "old" strains. At present time in Moscow the pertussis disease is caused by the B. pertussis strains bearing ptxS1 A and pm 2 or pm 3 alleles of pertussis toxin and pertactin genes. There was no correlation between the genotype and serotype. Thus, the structure of the B. pertussis toxin and pertactin genes in strains which have been isolated since the 1980s up to now differs from the structure of these genes in strains which are used for producing DPTs vaccine. The data obtained in this investigation suggest that the genetic structure specificity of circulating B. pertussis strains that are producing the disease at present time should be used as one of the criteria for selecting vaccine producing strains.  相似文献   

20.
Conjugation is the primary mechanism of horizontal gene transfer that spreads antibiotic resistance among bacteria. Although conjugation normally occurs in surface-associated growth (e.g., biofilms), it has been traditionally studied in well-mixed liquid cultures lacking spatial structure, which is known to affect many evolutionary and ecological processes. Here we visualize spatial patterns of gene transfer mediated by F plasmid conjugation in a colony of Escherichia coli growing on solid agar, and we develop a quantitative understanding by spatial extension of traditional mass-action models. We found that spatial structure suppresses conjugation in surface-associated growth because strong genetic drift leads to spatial isolation of donor and recipient cells, restricting conjugation to rare boundaries between donor and recipient strains. These results suggest that ecological strategies, such as enforcement of spatial structure and enhancement of genetic drift, could complement molecular strategies in slowing the spread of antibiotic resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号