首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From culture broth of Microsporum audouini, 5′-adenylic acid-deaminating enzyme has been purified to about 600-fold. The pH optimum was found to be 5.0 in acetate, 5.5 in succinate, 5.7 in citrate buffer. Velocity constant was 1.83×10?1 per minute. The optimal temperature was 40°C and activation energy was 15,000 calories. Michaelis-Menten constant was 6×10?4 m. This enzyme preparation removes amino groups of 5′- AMP, ADP and ATP quickly, of adenosine, 3′-AMP, 5′-deoxyAMP and NAD slowly, but adenine, 2,6-diaminopurine, 2′-AMP and NADP were not deaminated. The enzyme activity was inhibited with F?, pCMB, Fe+ + +, Cu+ + and Zn+ +  相似文献   

2.
5′-AMP nucleotidase activity accumulates during the culmination stage of development in a thin layer of cells at the prestalk-prespore interface of Dictyostelium discoideum. In this report we characterize a highly purified preparation of this enzyme in an attempt to determine the physiological significance of the accumulation and localization of the activity during cellular differentiation. A pH optimum of 9.5 was determined using nine different buffer systems tested over a range of pH from 3 to 13.5. The Michaelis constants for p-nitrophenylphosphate (NPP) and 5′-AMP were 1.8 and 1.2 mm, respectively. Substrate concentrations of 5′-AMP in excess of 2.5 mm were found to inhibit the activity. Little or no effect on the activity of the enzyme was observed in the presence of EDTA, Mg2+, Mn2+, Ca2+, Fe2+, or Zn2+ ions. However, the enzyme appears to be a zinc metalloprotein as evidenced by its inhibition with 1,10-phenanthroline and recovery of activity in the presence of zinc. Other inhibitors of enzymatic activity include dithiothreitol and imidazole. The enzyme was bound by calcium phosphate, but could not be immobilized on matricies containing other substrate or product analogs, including 5′-AMP, cyclic AMP, ATP, phenylalanine, blue dextran, and Procion Red HE3B. The hydrophobicity of 5′-AMP nucleotidase was demonstrated by its strong affinity for immobilized alkyl and ω-amino alkyl ligands, as well as phenyl Sepharose. Isoelectric focusing of the enzyme in granulated gel required both the presence of detergent to prevent aggregate formation and precipitation of the enzyme, and the addition of zinc after focusing to reverse Ampholine inhibition. Apparently, Ampholine chelates zinc away from the enzyme much like 1,10-phenanthroline. Using this method, the isoelectric point of 5′-AMP nucleotidase was found to be 4.5–4.9, with a 30% recovery of the applied activity.  相似文献   

3.
Potato tuber phosphofructokinase was purified 19·.6-fold by a combination of ethanol fractionation and DEAE-cellulose column chromatography. The enzyme was very unstable; its pH optimum was 8·0. Km for fructose-6-phosphate, ATP and Mg2+ was 2·1 × 10?4 M, 4·5 × 10?5 M and 4·0 × 10?4 M respectively. ITP, GTP, UTP and CTP can act as phosphate donors, but are less active than ATP. Inhibition of enzyme activity by high levels of ATP was reversed by increasing the concentration of fructose-6-phosphate; the affinity of enzyme for fructose-6-phosphate decreased with increasing concentration of ATP. 5′-AMP, 3′,5′-AMP, 3′-AMP, deoxy AMP, UMP, IMP, CMP, GMP, ADP, CDP, GDP and UDP did not reverse the inhibition of enzyme by ATP. ADP, phosphoenolpyruvate and citrate inhibited phosphofructokinase activity but Pi did not affect it. Phosphofructokinase was not reactivated reversibly by mild change of pH and addition of effectors.  相似文献   

4.
An enzyme that catalyzed the deamination of adenosine 3′-phenylphosphonate was purified from squid liver to homogeneity as judged by SDS-PAGE. The molecular weight of the enzyme was estimated to be 60,000 by SDS-PAGE and 140,000 by Sephadex G-150 gel filtration. The enzyme deaminated adenosine, 2′-deoxyadenosine, 3′-AMP, and 2′,3′-cyclic AMP, but not adenine, 5′-AMP, 3′,5′-cyclic AMP, ADP, or ATP. The apparent Km and Vmax at pH 4.0 for these substrates were comparable (0.11-0.34mM and 179-295 μmol min?1 mg?1, respectively). The enzyme had maximum activity at pH 3.5-4.0 for adenosine 3′-phenylphosphonate, at pH 5.5 for adenosine and 2′-deoxyadenosine, and at pH 4.0 for 2′,3′-cyclic AMP and 3′-AMP when the compounds were at concentration of 0.1 mM. The Km at 4.0 and 5.5 for each substrate varied, but the Vmax were invariant. These results indicated that the squid enzyme was a novel adenosine (phosphate) deaminase with a unique substrate specificity.  相似文献   

5.
The effect of several inhibitors of the enzyme cyclic 3′,5′-AMP phosphodiesterase as chemoattractants in Physarum polycephalum was examined. Of the compounds tested, 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Roche 20-1724/001) and 1-ethyl-4-(isopropylidinehydrazino)-1H-pyrazolo-(3,4-b)-pyridine-5-carboxylic acid ethyl ester, hydrochloride (Squibb 20009) were the most potent attractants. 3-Isobutyl-1-methyl xanthine, theophylline, and morin (a flavanoid) were moderate attractants and sometimes gave negative chemotaxis at high concentrations. Cyclic 3′,5′-AMP was an effective, but not potent attractant. A repellent effect following the positive chemotactic action was sometimes observed with cyclic 3′,5′-AMP at concentrations as high as 1 · 10?2 M. Dibutyryl cyclic AMP appeared to be a somewhat more potent attractant than cyclic 3′,5′-AMP. The 8-thiomethyl and 8-bromoderivatives of cyclic AMP, which are poorly hydrolyzed by the phosphodiesterase, were not attractants in Physarum. Possible participation of cyclic 3′,5′-AMP in the directional movement in P. polycephalum is discussed.  相似文献   

6.
5′-Nucleotidase (EC 3. 1. 3. 5) from alkalophilic Bacillus no. C-3 was purified to homogeneity. The molecular weight of the enzyme was 80,000 by gel filtration. The optimum pH for the activity was 9.5, and the enzyme was stable at pH 9.5–10.5 in a buffer containing 10 mM 2-mercaptoethanol. Substrate specificity study revealed that the enzyme acted on 5′-AMP strongly, on several 5′-nucleotides and ADP to a certain extent, but not on 3′-nucleotides, 2′-nucleotides, p-nitrophenyl phosphate, or ATP. The Km value for 5′-AMP was 3.0 × 10−4 M. The enzyme required no divalent cation for its activity. The enzyme was inhibited by borate and arsenite ions but not by 1 mM EDTA.  相似文献   

7.
Enzymatic properties of a purified Penicillium nuclease (designated as nuclease P1) were investigated. The enzyme activities for RNA, heat-denatured DNA, native DNA, 3′-AMP and 2′-AMP showed a great degree of similarity with respect to the following properties: a) Range of stable pH (5~8), b) temperature optima (at around 70°C), c) thermostability (about 50% inactivation at 67°C, pH 6.0 for 15 min, d) effect of metal ions and SH inhibitors, e) requirement of Zn2+, f) protection from the heat-inactivation by albumin and Zn2+, g) inactivation on standing in the cold and reactivation on heating, h) sensitivity to protease, and i) competitive relationship between substrates in the enzyme reaction. Moreover, the ratio of enzyme activities in several mutants of Penicillium citrinum was constant. From these results, together with constant ratio of the specific activities throughout purification, it is concluded that a single enzyme might be responsible for both phosphodiesterase and phosphomonoesterase functions.  相似文献   

8.
Adenylyl (5′,2′)-adenosine 5′-phosphate ((2′-5′)pA-A) was detected in crude crystals of 5′-AMP prepared from Penicillium nuclease (nuclease P1) digest of a technical grade yeast RNA. While (3′–5′)A-A was split by nuclease P1, spleen phosphodiesterase, snake venom phosphodiesterase or alkali, (2′–5′)A-A was not split by a usual level of nuclease P1 or spleen phosphodiesterase. Nuclease P1 digests of 12 preparations of technical grade yeast RNA tested were confirmed to contain (2′–5′)pA-A. Its content was about 1 to 2% of the AMP component of each RNA preparation. As poly(A) was degraded completely by the Penicillium enzyme into 5′-AMP without formation of any appreciable amount of (2′–5′)pA-A, the technical grade RNA is supposed to contain 2–5′ phosphodiester linkages in addition to 3′–5′ major linkages.  相似文献   

9.
Two acid phosphomonoesterases, 5′(3′)-ribonucleotide phosphohydrolase and 3′-ribonucleotide phosphohydrolase, were isolated from Tradescantia albiflora leaf tissue and purified by ammonium sulphate precipitation, gel filtration on Sephadex G-200 and repeated chromatography on DEAE-cellulose. The enzymes differed in their sensitivity to dialysis against 1 mM EDTA; the activity of 5′(3′)-ribonucleotide phosphohydrolase was unaffected, while 3′-ribonucleotide phosphohydrolase showed an increase of 60–90%. Both enzymes were rapidly inactivated above 50°. Their ion sensitivity was identical: 1 m M Zn2+ and Fe2+ were inhibitors for both by 20–80%; while Mg2+, Ca2+, Co2+, K+, Na+ at 1–10 mM had no significant effect on the activity of either enzyme. Inorganic phosphate inhibited both enzymes almost completely. EDTA (1 mM) did not inhibit either enzyme; none of the divalent cations tested were enzyme activators. 3′-Ribonucleotide phosphohydrolase hydrolysed both 3′- and 5′-nucleoside monophosphates (3′-AMP, 3′-CMP, 3′-GMP, 3′-UMP, 5′-AMP, 5′-CMP, 5′-GMP, 5′-UMP). 5′(3′)-Ribonucleotide phosphohydrolase showed a preference for the 3′-nucleoside monophosphates. Adenosine 3′,5′-cyclic monophosphate, purine and pyrimidine 2′,3′-cyclic mononucleotides at 0.1–1.OmM did not inhibit the enzymes.  相似文献   

10.
The adenylate cyclase activity of human ejaculated spermatozoa in broken-cell preparations was investigated. In the presence of 5 mM metal cations and 0.1 mM ATP, the relative enzyme activity with Mn2+, Ca2+, Mg2+, Ba2+ was 1.00, 0.28, 0.22, and 0.03, respectively. Added Ca2+ appeared to activate the enzyme in the presence of Mn2+ or Mg2+. The human sperm adenylate cyclase was stimulated by ~ 2-fold by free Ca2+ (lmM) in the presence of Mg2+ (5 mM). If the GTP analogue, 5′-guanylyl imidophosphate (Gpp(NH)p) was added to the sperm homogenate in the presence of 200 μM ethylene-glycol-bis (β-aminoethylether) N,N′-tetraacetic acid (EGTA), the adenylate cyclase activity was increased by approximately 25%, but with the addition of 280 μM Ca2+ there was a decrease in enzyme activity. A similar response to low concentrations of Ca2+ was obtained after complementation of the sperm enzyme with the guanine nucleotide regulatory component from human erythrocytes, where the addition of 40 μM Gpp(NH)p, 200 μM EGTA, and Ca2+ (≤ 160 μM) stimulated the sperm enzyme ~ 3–4-fold, but the further addition of Ca2+ (280 μM, final) neutralized the stimulatory effect. The addition of adenosine, and the nucleotides 5′-AMP and 5′-ADP inhibited the enzyme, whereas guanine and 5′-GMP had no appreciable effect. Human follicular fluid and serum also had little direct effect on the sperm adenylate cyclase. These resuls suggest that Ca2+ might be an important physiological modulator of the human sperm adenylate cyclase.  相似文献   

11.
12.
L-929 cell surface membranes have been assayed in vitro and found to contain significant protein kinase activity. A steady-state kinetic analysis indicated that at least two distinct protein kinases were present. Plots of reaction velocity (v) against substrate (ATP) concentration were distinctly biphasic, as were Lineweaver-Burk plots of 1v versus 1ATP. Michaelis constants of the two enzymes were calculated to be 22 and 173 μm, respectively. Sodium dodecyl sulfate polyacrylamide gel analysis of the phosphorylated membrane proteins provided additional support for the existence of more than one protein kinase. Different endogenous proteins were phosphorylated at 1 μm ATP compared to 1 μm ATP. Further studies of the low Km (22 μm) enzyme suggested that it is a typical cyclic 3′,5′-AMP-independent protein kinase. Its activity was dependent on the presence of Mg2+, but it was not affected by cyclic 3′,5′-AMP, cyclic 3′,5′-GMP, or the heat-stable inhibitor of cyclic 3′,5′-AMP-dependent protein kinases. ATP and GTP, but not other nucleoside triphosphates, could serve as phosphoryl donor and maximum kinase activity was expressed at pH 7.0. Phosvitin and casein were superior to histones as exogenous substrates for the low Km enzyme.  相似文献   

13.
The inactive form of trehalase as well as its activating protein have been partially purified from resting cells of baker's yeast using (NH4)2SO4 fractionation and subsequent DEAE- and CM-cellulose column chromatography. For its activation by cyclic 3′,5′-AMP the system appeared to be dependent on the presence of ATP and a divalent cation such as Mg2+, Mn2+ or Co2+. No sensitivity towards the pH was observed in the range 6.0 – 7.5. The amount of active trehalase formed was determined by the preincubation time and the concentration of the proteins involved. The activating protein partly lost its dependence on cyclic 3′,5′-AMP during purification. The results presented suggest that this protein may be a protein kinase and that activation of trehalase is associated with phosphorylation of the enzyme protein.  相似文献   

14.
An enzyme, which hydrolyzes 3′,5′-cyclic AMP to 3′-AMP and 5′-AMP, has been isolated from dormant tubers of Jerusalem artichoke and purified 850 × with a recovery of 15% of total activity. The partially purified enzyme differs greatly from both animal and bacterial phosphodiesterases in terms of pH optimum, substrate specificity, cation dependence and sensitivity to methylxanthines. The plant hormones are without effect, whereas ATP, 5′-AMP, 3′-AMP, inorganic phosphate and pyrophophosphate are inhibitors. The enzyme seems to be greatly inhibited in vivo by inorganic phosphate during dormancy.  相似文献   

15.
Glutamine synthetase, the first enzyme of the ammonia assimilatory pathway, has been purified from Anabaena sp. CA by use of established procedures and by affinity chromatography as a final step. No adenylylation system controlling glutamine synthetase activity was found. The enzyme shows a marked specificity for Mg2+ in the biosynthetic assay and Mn2+ in the transferase assay. Under physiological conditions, Co2+ produces a large stimulatory effect on the Mg2+-dependent biosynthetic activity. The enzyme is inhibited by the feedback modifiers l-alanine, glycine, l-serine, l-aspartate, and 5′-AMP. Inhibition by l-serine and l-aspartate is linear, noncompetitive with respect to l-glutamate with apparent Ki values of 3 and 13 mm, respectively. Cumulative inhibition is seen with mixtures of l-serine, l-aspartate, and 5′-AMP. The results indicate that, in vivo, divalent cation availability and the presence of feedback inhibitors may play the dominant role in regulating glutamine synthetase activity and hence ammonia assimilation in nitrogen-fixing cyanobacteria.  相似文献   

16.
Biochemical and physiological properties of adenosine 5′-phosphosulfate sulfotransferase, a key enzyme of assimilatory sulfate reduction, from spruce trees growing under field conditions were studied. The apparent Km for adenosine 5′-phosphosulfate (APS) was 29 ± 5.5μM, its apparent Mr was 115,000. 5′-AMP inhibited the enzyme competitively with a Ki of 1 mM, but also stabilized it. MgS04 at 800 mM increased adenosine 5′-phosphosulfate sulfotransferase activity by a factor of 3, concentrations higher than lOOOmM were inhibitory. Treatment of isolated shoots with nutrient solution containing 1 or 2 mM sulfate, and 3 or 10 mM glutathione, respectively, induced a significant decrease in extractable adenosine 5′-phosphosulfate sulfotransferase activity over 24h, whereas GSH as well as S2- up to 5mM cysteine and up to 200 mM SO32- had no effect on the in vitro activity of the enzyme. As with other enzymes involved in assimilatory sulfate reduction, namely ATP sulfurylase (EC 2.7.7.4), sulfite reductase (EC 1.8.7.1) and O-acetyl-L.-serine sulfhydrylase (EC 4.2.99.8), adenosine 5′-phosphosulfate sulfotransferase was still detected at appreciable activities in 2- and 3-year-old needles. Adenosine 5′-phosphosulfate sulfotransferase activity was low in buds and increased during shoot development, parallel to the chlorophyll content. The enzyme activity was characterized by an annual cycle of seasonal changes with an increase during February and March.  相似文献   

17.
The effect of several inhibitors of the enzyme cyclic 3′,5′-AMP phosphodiesterase as chemoattractants in Physarum polycephalum was examined. Of the compounds tested, 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Roche 20-1724/001) and 1-ethyl-4-(isopropylidinehydrazino)-1H-pyrazolo-(3,4-b)-pyridine-5-carboxylic acid ethyl ester, hydrochloride (Squibb 20009) were the most potent attractants. 3-Isobutyl-1-methyl xanthine, theophylline, and morin (a flavanoid) were moderate attractants and sometimes gave negative chemotaxis at high concentrations. Cyclic 3′,5′-AMP was an effective, but not potent attractant. A repellent effect following the positive chemotactic action was sometimes observed with cyclic 3′,5′-AMP at concentrations as high as 1 · 10−2 M. Dibutyryl cyclic AMP appeared to be a somewhat more potent attractant than cyclic 3′,5′-AMP. The 8-thiomethyl and 8-bromoderivatives of cyclic AMP, which are poorly hydrolyzed by the phosphodiesterase, were not attractants in Physarum. Possible participation of cyclic 3′,5′-AMP in the directional movement in P. polycephalum is discussed.  相似文献   

18.
Pyridine nucleotide transhydrogenase from Pseudomonas aeruginosa was purified 150-fold by affinity chromatography on immobilized 2′-AMP. The binding of the enzyme is pH dependent. Elution was achieved with 2′-AMP, NADP+, or NADPH but not with 5′-AMP, NAD+, or NADH. The enzyme preparations appeared to be homogeneous in gel chromatography and ultracentrifugation, but only if these procedures were carried out in the presence of 2′-AMP or NADP+. With 2′-AMP a sedimentation coefficient of 34 S, a molecular weight of 1.6–1.7 million, and a Stokes' radius of 11.7 nm were determined. In the presence of NADP+ the sedimentation coefficient was 42 S and the molecular weight was 6.4 million. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed one kind of subunit with a molecular weight of 54,000. This was consistent with results from amino acid analyses and paper chromatography of peptides. Eight molar urea inactivated the enzyme but did not dissociate it into subunits. Full activity was restored after dialysis against urea-free buffer by mercaptoethanol and flavin-adenine dinucleotide.  相似文献   

19.
Abstract

A 3′, 5′-cyclic-AMP phosphodiesterase (PDE) was detected and measured in the lichen Evernia prunastri. The percentage of hydrolysis of tritiated 3′, 5′-cyclic-adenosine monophosphate ([3H]-cAMP) and 3′, 5′-cyclic-guanosine monophosphate ([3H]-cGMP) by the PDE enzyme into tritiated 5′-adenosine-monophospahte ([3H]-AMP) and tritiated 5′-guanosine-monophospahte ([3H]-GMP) was measured by treating the PDE products with a 5′-nucleotidase enzyme present in snake venom. The lysate fraction (L) (plasma membranes and cell walls) and the supernatant (S) (soluble fraction of the cells) were tested. In both fractions, competition of unlabelled cAMP, but not unlabelled cGMP, was revealed. Specific competitive PDE inhibitors such as IBMX inhibited enzymatic activity. Although it is thought that in this species cAMP is regulated by red/far red light through PDE activity, this is the first report that seems to suggest the presence of a PDE activity specific for cAMP in lichenized fungi. However, this work is at a preliminary stage and despite the high levels of enzymatic activity with cAMP found in both fractions, data are still insufficient to state the absolute specificity for this nucleotide.  相似文献   

20.
A phosphodiesterase I (EC 3.1.4.1; PDE-I) was purified from Walterinnesia aegyptia venom by preparative native polyacrylamide gel electrophoresis (PAGE). A single protein band was observed in analytical native PAGE and sodium dodecyl sulfate (SDS)-PAGE. PDE-I was a single-chain glycoprotein with an estimated molecular mass of 158 kD (SDS-PAGE). The enzyme was free of 5′-nucleotidase and alkaline phosphatase activities. The optimum pH and temperature were 9.0 and 60°C, respectively. The energy of activation (Ea) was 96.4, the Vmax and Km were 1.14 µM/min/mg and 1.9 × 10?3 M, respectively, and the Kcat and Ksp were 7 s?1 and 60 M ?1 min?1 respectively. Cysteine was a noncompetitive inhibitor, with Ki = 6.2 × 10?3 M and an IC50 of 2.6 mM, whereas adenosine diphosphate was a competitive inhibitor, with Ki = 0.8 × 10?3 M and an IC50 of 8.3 mM. Glutathione, o-phenanthroline, zinc, and ethylenediamine tetraacetic acid (EDTA) inhibited PDE-I activity whereas Mg2+ slightly potentiated the activity. PDE-I hydrolyzed thymidine-5′-monophosphate p-nitrophenyl ester most readily, whereas cyclic 3′-5′-AMP was least susceptible to hydrolysis. PDE-I was not lethal to mice at a dose of 4.0 mg/kg, ip, but had an anticoagulant effect on human plasma. These findings indicate that W. aegyptia PDE-I shares various characteristics with this enzyme from other snake venoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号