首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 692 毫秒
1.
2.
Bone materials are characterized by an astonishing variability and diversity. Still, because of 'architectural constraints' due to once chosen material constituents and their physical interaction, the fundamental hierarchical organization or basic building plans of bone materials remain largely unchanged during biological evolution. Such universal patterns of microstructural organization govern the mechanical interaction of the elementary components of bone (hydroxyapatite, collagen, water; with directly measurable tissue-independent elastic properties), which are here quantified through a multiscale homogenization scheme delivering effective elastic properties of bone materials: at a scale of 10nm, long cylindrical collagen molecules, attached to each other at their ends by approximately 1.5nm long crosslinks and hosting intermolecular water inbetween, form a contiguous matrix called wet collagen. At a scale of several hundred nanometers, wet collagen and mineral crystal agglomerations interpenetrate each other, forming the mineralized fibril. At a scale of 5-10microm, the extracellular solid bone matrix is represented as collagen fibril inclusions embedded in a foam of largely disordered (extrafibrillar) mineral crystals. At a scale above the ultrastructure, where lacunae are embedded in extracellular bone matrix, the extravascular bone material is observed. Model estimates predicted from tissue-specific composition data gained from a multitude of chemical and physical tests agree remarkably well with corresponding acoustic stiffness experiments across a variety of cortical and trabecular, extracellular and extravascular materials. Besides from reconciling the well-documented, seemingly opposed concepts of 'mineral-reinforced collagen matrix' and 'collagen-reinforced mineral matrix' for bone ultrastructure, this approach opens new possibilities in the exploitation of computer tomographic data for nano-to-macro mechanics of bone organs.  相似文献   

3.
Reliability of multiscale models of bone is related to the accuracy of the experimental information available on bone microstructure. X-ray-based imaging techniques allow to inspect bone structure and mineralization in vitro at the micrometre scale. However, spatial resolution achievable in vivo is much coarser and can produce blurry, uncertain information on bone microstructure. Working with uncertain data calls for new modelling paradigms able to propagate uncertainty through the scales. In this paper we investigate the effects of uncertain bone mineralization on the elastic coefficients of the bone matrix. To this aim, some stochastic concepts were developed and compared with one another in order to identify the best way to account for uncertain input data. These concepts step from a deterministic micromechanical model of bone matrix which was extended in order to account for uncertain bone composition. Uncertainty was introduced by assuming to know only mean value and dispersion of the parameters describing bone composition. Thus, these parameters were modelled as random variables and their distribution functions were obtained using the maximum entropy principle. Either the tissue mineral density (TMD) or the ensuing volume fractions of collagen and mineral were used to describe uncertain bone composition. Moreover, mean value and dispersion were estimated at the scales of either 10 or a few 100 \(\upmu \)m, representative of standard in vitro and in vivo spatial resolutions, respectively. Analysis of these modelling concepts suggests that TMD measured at the sub-millimetre scale can be used to obtain reliable statistical information about the elastic coefficients of bone matrix.  相似文献   

4.
A porous composite model is developed to analyze the tensile mechanical properties of cortical bone. The effects of microporosity (volksman's canals, osteocyte lacunae) on the mechanical properties of bone tissue are taken into account. A simple shear lag theory, wherein tensile loads are transferred between overlapped mineral platelets by shearing of the organic matrix, is used to model the reinforcement provided by mineral platelets. It is assumed that the organic matrix is elastic in tension and elastic-perfectly plastic in shear until it fails. When organic matrix shear stresses at the ends of mineral platelets reach their yield values, the stress-strain curve of bone tissue starts to deviate from linear behavior. This is referred as the microscopic yield point. At the point where the stress-strain behavior of bone shows a sharp curvature, the organic phase reaches its shear yield stress value over the entire platelet. This is referred as the macroscopic yield point. It is assumed that after macroscopic yield, mineral platelets cannot contribute to the load bearing capacity of bone and that the mechanical behavior of cortical bone tissue is determined by the organic phase only. Bone fails when the principal stress of the organic matrix is reached. By assuming that mechanical properties of the organic matrix are dependent on bone mineral content below the macroscopic yield point, the model is used to predict the entire tensile mechanical behavior of cortical bone for different mineral contents. It is found that decreased shear yield stresses and organic matrix elastic moduli are required to explain the mechanical behavior of bones with lowered mineral contents. Under these conditions, the predicted values (elastic modulus, 0.002 yield stress and strain, and ultimate stress and strain) are within 15% of experimental data.  相似文献   

5.
There is an ongoing discussion on how bone strength could be explained from its internal structure and composition. Reviewing recent experimental and molecular dynamics studies, we here propose a new vision on bone material failure: mutual ductile sliding of hydroxyapatite mineral crystals along layered water films is followed by rupture of collagen crosslinks. In order to cast this vision into a mathematical form, a multiscale continuum micromechanics theory for upscaling of elastoplastic properties is developed, based on the concept of concentration and influence tensors for eigenstressed microheterogeneous materials. The model reflects bone's hierarchical organization, in terms of representative volume elements for cortical bone, for extravascular and extracellular bone material, for mineralized fibrils and the extrafibrillar space, and for wet collagen. In order to get access to the stress states at the interfaces between crystals, the extrafibrillar mineral is resolved into an infinite amount of cylindrical material phases oriented in all directions in space. The multiscale micromechanics model is shown to be able to satisfactorily predict the strength characteristics of different bones from different species, on the basis of their mineral/collagen content, their intercrystalline, intermolecular, lacunar, and vascular porosities, and the elastic and strength properties of hydroxyapatite and (molecular) collagen.  相似文献   

6.
We propose a multiscale mechanobiological model of bone remodelling to investigate the site-specific evolution of bone volume fraction across the midshaft of a femur. The model includes hormonal regulation and biochemical coupling of bone cell populations, the influence of the microstructure on bone turnover rate, and mechanical adaptation of the tissue. Both microscopic and tissue-scale stress/strain states of the tissue are calculated from macroscopic loads by a combination of beam theory and micromechanical homogenisation. This model is applied to simulate the spatio-temporal evolution of a human midshaft femur scan subjected to two deregulating circumstances: (i) osteoporosis and (ii) mechanical disuse. Both simulated deregulations led to endocortical bone loss, cortical wall thinning and expansion of the medullary cavity, in accordance with experimental findings. Our model suggests that these observations are attributable to a large extent to the influence of the microstructure on bone turnover rate. Mechanical adaptation is found to help preserve intracortical bone matrix near the periosteum. Moreover, it leads to non-uniform cortical wall thickness due to the asymmetry of macroscopic loads introduced by the bending moment. The effect of mechanical adaptation near the endosteum can be greatly affected by whether the mechanical stimulus includes stress concentration effects or not.  相似文献   

7.
We compare theoretical predictions of the effective elastic moduli of cortical bone at both the meso- and macroscales. We consider the efficacy of three alternative approaches: the method of asymptotic homogenization, the Mori-Tanaka scheme and the Hashin-Rosen bounds. The methods concur for specific engineering moduli such as the axial Young's modulus but can vary for others. In a past study, the effect of porosity alone on mesoscopic properties of cortical bone was considered, taking the matrix to be isotropic. Here, we consider the additional influence of the transverse isotropy of the matrix. We make the point that micromechanical approaches can be used in two alternative ways to predict either the macroscopic (size of cortical bone sample) or mesoscopic (in between micro- and macroscales) effective moduli, depending upon the choice of representative volume element size. It is widely accepted that the mesoscale behaviour is an important aspect of the mechanical behaviour of bone but models incorporating its effect have started to appear only relatively recently. Before this only macroscopic behaviour was addressed. Comparisons are drawn with experimental data and simulations from the literature for macroscale predictions with particularly good agreement in the case of dry bone. Finally, we show how predictions of the effective mesoscopic elastic moduli can be made which retain dependence on the well-known porosity gradient across the thickness of cortical bone.  相似文献   

8.
Cortical bone is a heterogeneous material with a complex hierarchical microstructure. In this work, unit cell finite element models were developed to investigate the effect of microstructural morphology on the macroscopic properties of cortical bone. The effect of lacunar and vascular porosities, percentage of osteonal bone and orientation of the Haversian system on the macroscopic elastic moduli and Poisson's ratios was investigated. The results presented provide relationships for applying more locally accurate material properties to larger scale and whole bone models of varying porosity. Analysis of the effect of the orientation of the Haversian system showed that its effects should not be neglected in larger scale models. This study also provides insight into how microstructural features effect local distributions and cause a strain magnification effect. Limitations in applying the unit cell methodology approach to bone are also discussed.  相似文献   

9.
This paper presents a theoretical investigation of the multiphysical phenomena that govern cortical bone behaviour. Taking into account the piezoelectricity of the collagen–apatite matrix and the electrokinetics governing the interstitial fluid movement, we adopt a multiscale approach to derive a coupled poroelastic model of cortical tissue. Following how the phenomena propagate from the microscale to the tissue scale, we are able to determine the nature of macroscopically observed electric phenomena in bone.  相似文献   

10.
A new three-dimensional (3D) multiscale micromechanical model has been suggested as adept at predicting the overall linear anisotropic mechanical properties of a vertebral trabecular bone (VTB) highly porous microstructure. A nested 3D modeling analysis framework spanning the multiscale nature of the VTB is presented herein. This hierarchical analysis framework employs the following micromechanical methods: the 3D parametric high-fidelity generalized method of cells (HFGMC) as well as the 3D sublaminate model. At the nanoscale level, the 3D HFGMC method is applied to obtain the effective elastic properties of a representative unit cell (RUC) representing the mineral collagen fibrils composite. Next at the submicron scale level, the 3D sublaminate model is used to generate the effective elastic properties of a repeated stack of multilayered lamellae demonstrating the nature of the trabeculae (bone-wall). Thirdly, at the micron scale level, the 3D HFGMC method is used again on a RUC of the highly porous VTB microstructure. The VTB-RUC geometries are taken from microcomputed tomography scans of VTB samples harvested from different vertebrae of human cadavers \((n=10)\). The predicted anisotropic overall elastic properties for native VTBs are, then, examined as a function of age and sex. The predicted results of the VTBs longitudinal Young’s modulus are compared to reported values found in the literature. The proposed 3D nested modeling analysis framework provides a good agreement with reported values of Young’s modulus of single trabeculae as well as for VTB-RUC in the literature.  相似文献   

11.
Multiscale models of cortical bone elasticity require a large number of parameters to describe the organization and composition of the tissue. We hypothesize that the macro-scale anisotropic elastic properties of different bones can be modeled retaining only two variable parameters, and setting the others to universal values identical for all bones. Cortical bone is regarded as a two-phase composite material: a dense mineralized matrix (ultrastructure) and a soft phase (pores). The ultrastructure is assumed to be a homogeneous and transversely isotropic tissue whose elastic properties in different directions are mutually dependent and can be scaled with a single parameter driving the overall rigidity. This parameter is taken to be the volume fraction of mineral f(ha). The pore network is modeled as an ensemble of water-filled cylinders and described only by the porosity p. The effective macroscopic elasticity tensor C(ij)(f(ha),p) is calculated with a multiscale micromechanics approach starting from existing models. The modeled stiffness coefficients compare favorably to four literature datasets which were chosen because they provide the full stiffness tensors of groups of human samples. Since the physical counterparts of f(ha) and p were unknown for the datasets, their values which allow the best fit of experimental tensors by the modeled ones were determined by optimization. Optimum values of f(ha) and p are found to be unique and realistic. These results suggest that a two-parameter model may be sufficient to model the elasticity of different samples of human femora and tibiae. Such a model would in particular be useful in large-scale parametric studies of bone mechanical response.  相似文献   

12.
The effect of mineral volume fraction on the tensile mechanical properties of cortical bone tissue is investigated by theoretical and experimental means. The mineral content of plexiform, bovine bone was lowered by 18% and 29% by immersion in fluoride solutions for 3 days and 12 days, respectively. The elastic modulus, yield strength and ultimate strength of bone tissue decreased, while the ultimate strain increased with a decrease in mineral content. The mechanical behavior of bone tissue was modeled by using a micromechanical shear lag theory consisting of overlapped mineral platelets reinforcing the organic matrix. The decrease in yield stress, by the 0.002 offset method, of the fluoride treated bones were matched in the theoretical curves by lowering the shear yield stress of the organic matrix. The failure criterion used was based on failure stresses determined from a failure envelope (Mohr's circle), which was constructed using experimental data. It was found that the model predictions of elastic modulus got worse with a decrease in mineral content (being 7.9%, 17.2% and 33.0% higher for the control, 3-day and 12-day fluoride-treated bones). As a result, the developed theory could not fully predict the yield strain of bones with lowered mineral content, being 12.9% and 21.7% lower than the experimental values. The predicted ultimate stresses of the bone tissues with lower mineral contents were within +/- 10% of the experimental values while the ultimate strains were 12.7% and 26.3% lower than the experimental values. Although the model developed in this study did not take into account the presence of hierarchical structures, voids, orientation of collagen molecules and micro cracks, it still indicated that the mechanical properties of the organic matrix depend on bone mineral content.  相似文献   

13.
In this paper, a novel multiscale hierarchical model based on finite element analysis and neural network computation was developed to link mesoscopic and macroscopic scales to simulate the bone remodeling process. The finite element calculation is performed at the macroscopic level, and trained neural networks are employed as numerical devices for substituting the finite element computation needed for the mesoscale prediction. Based on a set of mesoscale simulations of representative volume elements of bones taken from different bone sites, a neural network is trained to approximate the responses at the meso level and transferred at the macro level.  相似文献   

14.
Multi-scale experimental work was carried out to characterize cortical bone as a heterogeneous material with hierarchical structure, which spans from nanoscale (mineralized collagen fibril), sub-microscale (single lamella), microscale (lamellar structures), to mesoscale (cortical bone) levels. Sections from femoral cortical bone from 6, 12, and 42 months old swine were studied to quantify the age-related changes in bone structure, chemical composition, and mechanical properties. The structural changes with age from sub-microscale to mesoscale levels were investigated with scanning electron microscopy and micro-computed tomography. The chemical compositions at mesoscale were studied by ash content method and dual energy X-ray absorptiometry, and at microscale by Fourier transform infrared microspectroscopy. The mechanical properties at mesoscale were measured by tensile testing, and elastic modulus and hardness at sub-microscale were obtained using nanoindentation. The experimental results showed age-related changes in the structure and chemical composition of cortical bone. Lamellar bone was a prevalent structure in 6 months and 12 months old animals, resorption sites were most pronounced in 6 months old animals, while secondary osteons were the dominant features in 42 months old animals. Mineral content and mineral-to-organic ratio increased with age. The structural and chemical changes with age corresponded to an increase in local elastic modulus, and overall elastic modulus and ultimate tensile strength as bone matured.  相似文献   

15.
At its highest level of microstructural organization—the mesoscale or millimeter scale—cortical bone exhibits a heterogeneous distribution of pores (Haversian canals, resorption cavities). Multi-scale mechanical models rely on the definition of a representative volume element (RVE). Analytical homogenization techniques are usually based on an idealized RVE microstructure, while finite element homogenization using high-resolution images is based on a realistic RVE of finite size. The objective of this paper was to quantify the size and content of possible cortical bone mesoscale RVEs. RVE size was defined as the minimum size: (1) for which the apparent (homogenized) stiffness tensor becomes independent of the applied boundary conditions or (2) for which the variance of elastic properties for a set of microstructure realizations is sufficiently small. The field of elastic coefficients and microstructure in RVEs was derived from one acoustic microscopy image of a human femur cortical bone sample with an overall porosity of 8.5%. The homogenized properties of RVEs were computed with a finite element technique. It was found that the size of the RVE representative of the overall tissue is about 1.5 mm. Smaller RVEs (~0.5 mm) can also be considered to estimate local mesoscopic properties that strongly depend on the local pores volume fraction. This result provides a sound basis for the application of homogenization techniques to model the heterogeneity of cortical microstructures. An application of the findings to estimate elastic properties in the case of a porosity gradient is briefly presented.  相似文献   

16.
The aim of this paper is to develop a multiscale hierarchical hybrid model based on finite element analysis and neural network computation to link mesoscopic scale (trabecular network level) and macroscopic (whole bone level) to simulate the process of bone remodelling. As whole bone simulation, including the 3D reconstruction of trabecular level bone, is time consuming, finite element calculation is only performed at the macroscopic level, whilst trained neural networks are employed as numerical substitutes for the finite element code needed for the mesoscale prediction. The bone mechanical properties are updated at the macroscopic scale depending on the morphological and mechanical adaptation at the mesoscopic scale computed by the trained neural network. The digital image-based modelling technique using μ-CT and voxel finite element analysis is used to capture volume elements representativeof 2 mm3 at the mesoscale level of the femoral head. The input data for the artificial neural network are a set of bone material parameters, boundary conditions and the applied stress. The output data are the updated bone properties and some trabecular bone factors. The current approach is the first model, to our knowledge, that incorporates both finite element analysis and neural network computation to rapidly simulate multilevel bone adaptation.  相似文献   

17.
The increased risk for fracture with age is associated not only with reduced bone mass but also with impaired bone quality. At the microscale, bone quality is related to porosity, microstructural organization, accumulated microdamage and intrinsic material properties. However, the link between these characteristics and fracture behavior is still missing. Bone tissue has a complex structure and as age-related compositional and structural changes occur at all hierarchical length scales it is difficult to experimentally identify and discriminate the effect of each mechanism. The aim of this study was therefore to use computational models to analyze how microscale characteristics in terms of porosity, intrinsic toughness properties and microstructural organization affect the mechanical behavior of cortical bone. Tensile tests were simulated using realistic microstructural geometries based on microscopy images of human cortical bone. Crack propagation was modelled using the extended finite element method where cement lines surrounding osteons were modelled with an interface damage law to capture crack deflections along osteon boundaries. Both increased porosity and impaired material integrity resulted in straighter crack paths with cracks penetrating osteons, similar to what is seen experimentally for old cortical bone. However, only the latter predicted a more brittle failure behavior. Furthermore, the local porosity influenced the crack path more than the macroscopic porosity. In conclusion, age-related changes in cortical bone affect the crack path and the mechanical response. However, increased porosity alone was not driving damage in old bone, but instead impaired tissue integrity was required to capture brittle failure in aging bone.  相似文献   

18.
The anisotropic elastic constants of human cortical bone were predicted using a specimen-specific micromechanical model that accounted for structural parameters across multiple length scales. At the nano-scale, the elastic constants of the mineralized collagen fibril were estimated from measured volume fractions of the constituent phases, namely apatite crystals and Type I collagen. The elastic constants of the extracellular matrix (ECM) were predicted using the measured orientation distribution function (ODF) for the apatite crystals to average the contribution of misoriented mineralized collagen fibrils. Finally, the elastic constants of cortical bone tissue were determined by accounting for the measured volume fraction of Haversian porosity within the ECM. Model predictions using the measured apatite crystal ODF were not statistically different from experimental measurements for both the magnitude and anisotropy of elastic constants. In contrast, model predictions using common idealized assumptions of perfectly aligned or randomly oriented apatite crystals were significantly different from the experimental measurements. A sensitivity analysis indicated that the apatite crystal volume fraction and ODF were the most influential structural parameters affecting model predictions of the magnitude and anisotropy, respectively, of elastic constants.  相似文献   

19.
This work consists of the validation of a novel approach to estimate the local anisotropic elastic constants of the bone extracellular matrix using nanoindentation. For this purpose, nanoindentation on two planes of material symmetry were analyzed and the resulting longitudinal elastic moduli compared to the moduli measured with a macroscopic tensile test. A combined lathe and tensile system was designed that allows machining and testing of cylindrical microspecimens of approximately 4mm in length and 300 microm in diameter. Three bovine specimens were tested in tension and their outer geometry and porosity assessed by synchrotron radiation microtomography. Based on the results of the traction test and the precise outer geometry, an apparent longitudinal Young's modulus was calculated. Results between 20.3 and 27.6 GPa were found that match with previously reported values for bovine compact bone. The same specimens were then characterized by nanoindentation on a transverse and longitudinal plane. A longitudinal Young's modulus for the bone matrix was then derived using the numerical scheme proposed by Swadener and Pharr and the fabric-elasticity relationship by Zysset and Curnier. Based on the matrix modulus and a power law effective volume fraction, an apparent longitudinal Young's modulus was predicted for each microspecimen. This alternative approach provided values between 19.9 and 30.0 GPa, demonstrating differences between 2% and 13% to the values provided by the initial tensile test. This study therefore raises confidence in our nanoindentation protocol of the bone extracellular matrix and supports the underlying hypotheses used to extract the anisotropic elastic constants.  相似文献   

20.
Understanding the mechanical features of cortical bone and their changes with growth and adaptation to function plays an important role in our ability to interpret the morphology and evolution of craniofacial skeletons. We assessed the elastic properties of cortical bone of juvenile and adult baboon mandibles using ultrasonic techniques. Results showed that, overall, cortical bone from baboon mandibles could be modeled as an orthotropic elastic solid. There were significant differences in the directions of maximum stiffness, thickness, density, and elastic stiffness among different functional areas, indicating regional adaptations. After maturity, the cortical bone becomes thicker, denser, and stiffer, but less anisotropic. There were differences in elastic properties of the corpus and ramus between male and female mandibles which are not observed in human mandibles. There were correlations between cortical thicknesses and densities, between bone elastic properties and microstructural configuration, and between the directions of maximum stiffness and bone anatomical axes in some areas. The relationships between bone extrinsic and intrinsic properties bring us insights into the integration of form and function in craniofacial skeletons and suggest that we need to consider both macroscopic form, microstructural variation, and the material properties of bone matrix when studying the functional properties and adaptive nature of the craniofacial skeleton in primates. The differences between baboon and human mandibles is at variance to the pattern of differences in crania, suggesting differences in bone adaption to varying skeletal geometries and loading regimes at both phylogenetic and ontogenetic levels. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号