共查询到20条相似文献,搜索用时 15 毫秒
1.
Darby J Hodson-Tole EF Costen N Loram ID 《Journal of applied physiology (Bethesda, Md. : 1985)》2012,112(2):313-327
To understand the functional significance of skeletal muscle anatomy, a method of quantifying local shape changes in different tissue structures during dynamic tasks is required. Taking advantage of the good spatial and temporal resolution of B-mode ultrasound imaging, we describe a method of automatically segmenting images into fascicle and aponeurosis regions and tracking movement of features, independently, in localized portions of each tissue. Ultrasound images (25 Hz) of the medial gastrocnemius muscle were collected from eight participants during ankle joint rotation (2° and 20°), isometric contractions (1, 5, and 50 Nm), and deep knee bends. A Kanade-Lucas-Tomasi feature tracker was used to identify and track any distinctive and persistent features within the image sequences. A velocity field representation of local movement was then found and subdivided between fascicle and aponeurosis regions using segmentations from a multiresolution active shape model (ASM). Movement in each region was quantified by interpolating the effect of the fields on a set of probes. ASM segmentation results were compared with hand-labeled data, while aponeurosis and fascicle movement were compared with results from a previously documented cross-correlation approach. ASM provided good image segmentations (<1 mm average error), with fully automatic initialization possible in sequences from seven participants. Feature tracking provided similar length change results to the cross-correlation approach for small movements, while outperforming it in larger movements. The proposed method provides the potential to distinguish between active and passive changes in muscle shape and model strain distributions during different movements/conditions and quantify nonhomogeneous strain along aponeuroses. 相似文献
2.
Muscle fascicles curve during contraction, and this has been seen using B-mode ultrasound. Curvature can vary along a fascicle, and amongst the fascicles within a muscle. The purpose of this study was to develop an automated method for quantifying curvature across the entirety of an imaged muscle, to test the accuracy of the method against synthetic images of known curvature and noise, and to test the sensitivity of the method to ultrasound probe placement. Both synthetic and ultrasound images were processed using multiscale vessel enhancement filtering to accentuate the muscle fascicles, wavelet-based methods were used to quantify fascicle orientations and curvature distribution grids were produced by quantifying local curvatures for each point within the image. Ultrasound images of ramped isometric contractions of the human medial gastrocnemius were acquired in a test–retest study.The methods enabled distinct curvatures to be determined in different regions of the muscle. The methods were sensitive to kernel sizes during image processing, noise within the image and the variability of probe placements during retesting. Across the physiological range of curvatures and noise, curvatures calculated from validation grids were quantified with a typical standard error of less than 0.026 m?1, and this is about 1% of the maximum curvatures observed in fascicles of contracting muscle. 相似文献
3.
A technique for studying the distribution and size of different fibre types in muscles is proposed for automated analysis of individual fibres in optical density images from ATPase-stained muscle sections. After delineation, fibres may be classified into different histological types (1, 2A, 2B and 2C) using the measurement of their mean optical density (mOD). The densitometric measurements were obtained from three serial histological slides stained under different conditions. The delineation procedure is performed on one of the images: the resulting mask is fitted to the other images using a linear coordinate transform. Along with densitometric measurements, the lesser diameter of the fibres is computed. Both in processing and in analysis, extensive use was made of mathematical morphology tools. All software was implemented on a VICOM digital image processor, extended with a VISIOMORPH morphoprocessor board. 相似文献
4.
Cronin NJ Carty CP Barrett RS Lichtwark G 《Journal of applied physiology (Bethesda, Md. : 1985)》2011,111(5):1491-1496
During human locomotion lower extremity muscle-tendon units undergo cyclic length changes that were previously assumed to be representative of muscle fascicle length changes. Measurements in cats and humans have since revealed that muscle fascicle length changes can be uncoupled from those of the muscle-tendon unit. Ultrasonography is frequently used to estimate fascicle length changes during human locomotion. Fascicle length analysis requires time consuming manual methods that are prone to human error and experimenter bias. To bypass these limitations, we have developed an automatic fascicle tracking method based on the Lucas-Kanade optical flow algorithm with an affine optic flow extension. The aims of this study were to compare gastrocnemius fascicle length changes during locomotion using the automated and manual approaches and to determine the repeatability of the automated approach. Ultrasound was used to examine gastrocnemius fascicle lengths in eight participants walking at 4, 5, 6, and 7 km/h and jogging at 7 km/h on a treadmill. Ground reaction forces and three dimensional kinematics were recorded simultaneously. The level of agreement between methods and the repeatability of the automated method were quantified using the coefficient of multiple correlation (CMC). Regardless of speed, the level of agreement between methods was high, with overall CMC values of 0.90 ± 0.09 (95% CI: 0.86-0.95). Repeatability of the algorithm was also high, with an overall CMC of 0.88 ± 0.08 (95% CI: 0.79-0.96). The automated fascicle tracking method presented here is a robust, reliable, and time-efficient alternative to the manual analysis of muscle fascicle length during gait. 相似文献
5.
Marc Klimstra Jim Dowling Jennifer L Durkin Maureen MacDonald 《Journal of electromyography and kinesiology》2007,17(4):504-514
The purpose of this paper was to examine how muscle architecture parameter (MAP) measurements made using brightness-mode ultrasonography (BMU) differ based on probe orientation. The human tibialis anterior muscle was imaged from nine different probe orientations during concentric contractions at four joint angles to determine the effect of probe orientation on the measurement of muscle architecture parameters. Ankle dorsi-flexion torque, tibialis anterior electromyography (EMG), and measures of MAP including fascicle length (FL), pennation angle (PA) and muscle thickness (MT) were collected. Statistically significant differences were found between joint angles for measures of FL and PA and between probe orientations for measures of FL and MT. A comparison of actual MAP values to a geometric model used by researchers to determine an ideal probe orientation show that the actual values vary to a greater extent and do not follow the trend predicted by the model. The results suggest that ultrasound probe orientation affects measures of MAP but the effect either cannot be predicted from a geometric model and/or the error in the measurement technique does not allow a comparison. 相似文献
6.
7.
M Spanjaard N D Reeves J H van Die?n V Baltzopoulos C N Maganaris 《Journal of applied physiology》2007,102(4):1618-1623
The aim of the present study was to establish the behavior of human medial gastrocnemius (GM) muscle fascicles during stair negotiation. Ten healthy male subjects performed normal stair ascent and descent at their own comfortable speed on a standard-dimension four-step staircase with embedded force platforms in each step. Kinematic, kinetic, and electromyographic data of the lower limbs were collected. Real-time ultrasound scanning was used to determine GM muscle fascicle length changes. Musculotendon complex (MTC) length changes were estimated from ankle and knee joint kinematics. The GM muscle was mainly active during the push-off phase in stair ascent, and the muscle fascicles contracted nearly isometrically. The GM muscle was mainly active during the touch-down phase of stair descent where the MTC was lengthened; however, the GM muscle fascicles shortened by approximately 7 mm. These findings show that the behavior and function of GM muscle fascicles in stair negotiation is different from that expected on the basis of length changes of the MTC as derived from joint kinematics. 相似文献
8.
Abe T Fukashiro S Harada Y Kawamoto K 《Journal of PHYSIOLOGICAL ANTHROPOLOGY and Applied Human Science》2001,20(2):141-147
The purpose of this study was to investigate the relationship between sprint performance and architectural characteristics of leg muscles in 26 female 100-m sprinters. Pennation angle and muscle thickness of the vastus lateralis (VL) and gastrocnemius medialis (GM) and lateralis (GL) muscles were measured by B-mode ultrasonography, and fascicle length was estimated. Sprinters had a significantly lower VL pennation angle, but GM and GL pennation angle was similar between sprinters and female control subjects (N = 22). There was no significant correlation between pennation angle and 100-m personal best performance. Sprinters had significantly greater absolute fascicle length in VL and GL than controls, which significantly correlated to 100-m best-record (r = -0.51 and r = -0.44, respectively). Relative fascicle length (VL and GL) were also significantly greater in sprinters than controls. However, there were no significant correlation between relative fascicle length and 100-m best-record (r = -0.36 and r = -0.29, respectively). No relationship was found between the sprint performance and fat-free mass (r = -0.26) or body mass index (r = -0.03). However, there was a significant correlation between percent (%) body fat and 100-m best-record (r = 0.62, p < 0.01). Adjusting the confounding effect of % fat, significant correlations were seen between relative fascicle length and 100-m best-record (VL; r = -0.39 and GL; r = -0.40). Absolute and relative fascicle length were similar in elite female sprinters compared with previous reported values for elite male sprinters (Kumagai et al., 2000). It was concluded that longer fascicle length is associated with greater sprinting performance in sprinters, but there is no gender differences in fascicle length for elite sprinters. 相似文献
9.
10.
11.
Adam M Corrigan Roshan L Shrestha Ihsan Zulkipli Noriko Hiroi Yingjun Liu Naoka Tamura Bing Yang Jessica Patel Akira Funahashi Athene Donald Viji M Draviam 《Cell cycle (Georgetown, Tex.)》2013,12(16):2643-2655
Spindle orientation defines the plane of cell division and, thereby, the spatial position of all daughter cells. Here, we develop a live cell microscopy-based methodology to extract spindle movements in human epithelial cell lines and study how spindles are brought to a pre-defined orientation. We show that spindles undergo two distinct regimes of movements. Spindles are first actively rotated toward the cells’ long-axis and then maintained along this pre-defined axis. By quantifying spindle movements in cells depleted of LGN, we show that the first regime of rotational movements requires LGN that recruits cortical dynein. In contrast, the second regime of movements that maintains spindle orientation does not require LGN, but is sensitive to 2ME2 that suppresses microtubule dynamics. Our study sheds first insight into spatially defined spindle movement regimes in human cells, and supports the presence of LGN and dynein independent cortical anchors for astral microtubules. 相似文献
12.
Noorkoiv M Stavnsbo A Aagaard P Blazevich AJ 《Journal of applied physiology (Bethesda, Md. : 1985)》2010,109(6):1974-1979
The present study examined the reliability and validity of in vivo vastus lateralis (VL) fascicle length (L(f)) assessment by extended field-of-view ultrasonography (EFOV US). Intraexperimenter and intersession reliability of EFOV US were tested. Further, L(f) measured from EFOV US images were compared to L(f) measured from static US images (6-cm FOV) where out-of-field fascicle portions were trigonometrically estimated (linear extrapolation). Finally, spatial accuracy of the EFOV technique was assessed by comparing L(f) measured on swine VL by EFOV US to actual measurements from digital photographs. The difference between repeated VL L(f) measurements by the same experimenter was 2.1 ± 1.7% with an intraclass correlation (ICC) of 0.99 [95% confidence interval (CI) = 0.95-1.00]. In terms of intersession reliability, no difference (P = 0.48) was observed between L(f) measured on two different occasions, with ICC = 0.95 (CI = 0.80-0.99). The average absolute difference between L(f) measured by EFOV US and using linear extrapolation was 12.6 ± 8.1% [ICC = 0.76 (CI = -0.20-0.94)]; EFOV L(f) was always longer than extrapolated L(f). The relative error of measurement between L(f) measured by EFOV US and by dissective assessment (digital photographs) in isolated swine VL was 0.84% ± 2.6% with an ICC of 0.99 (CI = 0.94-1.00). These results show that EFOV US is a reliable and valid method for the measurement of long muscle fascicle in vivo. Thus EFOV US analysis was proven more accurate for the assessment of skeletal muscle fascicle length than conventional extrapolation methods. 相似文献
13.
A system has been developed to perform automatic computerized recognition, tracking, and quantitative morphological analysis of viable cells in freezing solutions. Cryomicroscopical image sequences of freezing cells are digitized and analyzed by computer. Image-processing techniques are used which are insensitive to contrast fluctuations from image to image, and which perform well even in noisy, cluttered images. The generalized Hough transform is used for shape detection, and a heuristic graph-search boundary completion algorithm is applied for shape extraction. The extracted cell shape may be analyzed for changes in cross-sectional area, perimeter length, shape deformation, and other metrics of interest. Knowledge from the shapeextraction phase is used to form a prediction of what shape the cell will be in the next image frame, and thus what to look for in the next shape-detection phase. This combination of knowledge-feedback with a powerful shape-detection technique produces an automatic, dynamic shape-recognition scheme capable of accurate recognition and analysis of the cells regardless of how deformed they may become during the freezing sequence. Example performance of the system is illustrated for a series of micrographs of freezing granulocytes. 相似文献
14.
NG Clack DH O'Connor D Huber L Petreanu A Hires S Peron K Svoboda EW Myers 《PLoS computational biology》2012,8(7):e1002591
We have developed software for fully automated tracking of vibrissae (whiskers) in high-speed videos (>500 Hz) of head-fixed, behaving rodents trimmed to a single row of whiskers. Performance was assessed against a manually curated dataset consisting of 1.32 million video frames comprising 4.5 million whisker traces. The current implementation detects whiskers with a recall of 99.998% and identifies individual whiskers with 99.997% accuracy. The average processing rate for these images was 8 Mpx/s/cpu (2.6 GHz Intel Core2, 2 GB RAM). This translates to 35 processed frames per second for a 640 px×352 px video of 4 whiskers. The speed and accuracy achieved enables quantitative behavioral studies where the analysis of millions of video frames is required. We used the software to analyze the evolving whisking strategies as mice learned a whisker-based detection task over the course of 6 days (8148 trials, 25 million frames) and measure the forces at the sensory follicle that most underlie haptic perception. 相似文献
15.
16.
M. Spanjaard N.D. Reeves J.H. van Dieën V. Baltzopoulos C.N. Maganaris 《Journal of electromyography and kinesiology》2009,19(2):304-313
The gastrocnemius medialis (GM) muscle plays an important role in stair negotiation. The aim of the study was to investigate the influence of cadence on GM muscle fascicle behaviour during stair ascent and descent. Ten male subjects (young adults) walked up and down a four-step staircase (with forceplates embedded in the steps) at three velocities (63, 88 and 116 steps/min). GM muscle fascicle length was measured using ultrasonography. In addition, kinematic and kinetic data of the lower legs, and GM electromyography (EMG) were measured. For both ascent and descent, the amount of fascicular shortening, shortening velocity, knee moment, ground reaction force and EMG activity increased monotonically with gait velocity. The ankle moment increased up to 88 steps/min where it reached a plateau. The lack of increase in ankle moment coinciding with further shortening of the fascicles can be explained by an increased shortening of the GM musculotendon complex (MTC), as calculated from the knee and ankle angle changes, between 88 and 116 steps/min only. For descent, the relative instant of maximum shortening, which occurred during touch down, was delayed at higher gait velocities, even to the extent that this event shifted from the double support to the single support phase. 相似文献
17.
Automated detection of tunneling nanotubes in 3D images. 总被引:2,自引:0,他引:2
Erlend Hodneland Arvid Lundervold Steffen Gurke Xue-Cheng Tai Amin Rustom Hans-Hermann Gerdes 《Cytometry. Part A》2006,69(9):961-972
BACKGROUND: This paper presents an automated method for the identification of thin membrane tubes in 3D fluorescence images. These tubes, referred to as tunneling nanotubes (TNTs), are newly discovered intercellular structures that connect living cells through a membrane continuity. TNTs are 50-200 nm in diameter, crossing from one cell to another at their nearest distance. In microscopic images, they are seen as straight lines. It now emerges that the TNTs represent the underlying structure of a new type of cell-to-cell communication. METHODS: Our approach for the identification of TNTs is based on a combination of biological cell markers and known image processing techniques. Watershed segmentation and edge detectors are used to find cell borders, TNTs, and image artifacts. Mathematical morphology is employed at several stages of the processing chain. Two image channels are used for the calculations to improve classification of watershed regions into cells and background. One image channel displays cell borders and TNTs, the second is used for cell classification and displays the cytoplasmic compartments of the cells. The method for cell segmentation is 3D, and the TNT detection incorporates 3D information using various 2D projections. RESULTS: The TNT- and cell-detection were applied to numerous 3D stacks of images. A success rate of 67% was obtained compared with manual identification of the TNTs. The digitalized results were used to achieve statistical information of selected properties of TNTs. CONCLUSION: To further explore these structures, automated detection and quantification is desirable. Consequently, this automated recognition tool will be useful in biological studies on cell-to-cell communication where TNT quantification is essential. 相似文献
18.
Joseph S. Fotos Vivek P. Patel Norman J. Karin Murali K. Temburni John T. Koh Deni S. Galileo 《Cytotechnology》2006,51(1):7-19
We describe a novel fully automated high-throughput time-lapse microscopy system and evaluate its performance for precisely tracking the motility of several glioma and osteoblastic cell lines. Use of this system revealed cell motility behavior not discernable with conventional techniques by collecting data (1) from closely spaced time points (minutes), (2) over long periods (hours to days), (3) from multiple areas of interest, (4) in parallel under several different experimental conditions. Quantitation of true individual and average cell velocity and path length was obtained with high spatial and temporal resolution in “scratch” or “wound healing” assays. This revealed unique motility dynamics of drug-treated and adhesion molecule-transfected cells and, thus, this is a considerable improvement over current methods of measurement and analysis. Several fluorescent vital labeling methods commonly used for end-point analyses (GFP expression, DiO lipophilic dye, and Qtracker nanocrystals) were found to be useful for time-lapse studies under specific conditions that are described. To illustrate one application, fluorescently labeled tumor cells were seeded onto cell monolayers expressing ectopic adhesion molecules, and this resulted in consistently reduced tumor cell migration velocities. These highly quantitative time-lapse analysis methods will promote the creation of new cell motility assays and increase the resolution and accuracy of existing assays.Joseph S. Fotos and Vivek P. Patel contributed equally to this work 相似文献
19.
Wachtman GS Cohn JF VanSwearingen JM Manders EK 《Plastic and reconstructive surgery》2001,107(5):1124-1133
Facial neuromuscular dysfunction severely impacts adaptive and expressive behavior and emotional health. Appropriate treatment is aided by quantitative and efficient assessment of facial motion impairment. We validated a newly developed method of quantifying facial motion, automated face analysis (AFA), by comparing it with an established manual marking method, the Maximal Static Response Assay (MSRA). In the AFA, motion of facial features is tracked automatically by computer vision without the need for placement of physical markers or restrictions of rigid head motion. Nine patients (seven women and two men) with a mean age of 39.3 years and various facial nerve disorders (five with Bell's palsy, three with trauma, and one with tumor resection) participated. The patients were videotaped while performing voluntary facial action tasks (brow raise, eye closure, and smile). For comparison with MSRA, physical markers were placed on facial landmarks. Image sequences were digitized into 640 x 480 x 24-bit pixel arrays at 30 frames per second (1 pixel congruent with0.3 mm). As defined for the MSRA, the coordinates of the center of each marker were manually recorded in the initial and final digitized frames, which correspond to repose and maximal response. For the AFA, these points were tracked automatically in the image sequence. Pearson correlation coefficients were used to evaluate consistency of measurement between manual (the MSRA) and automated (the AFA) tracking methods, and paired t tests were used to assess the mean difference between methods for feature tracking. Feature measures were highly consistent between methods, Pearson's r = 0.96 or higher, p < 0.001 for each of the action tasks. The mean differences between the methods were small; the mean error between methods was comparable to the error within the manual method (less than 1 pixel). The AFA demonstrated strong concurrent validity with the MSRA for pixel-wise displacement. Tracking was fully automated and provided motion vectors, which may be useful in guiding surgical and rehabilitative approaches to restoring facial function in patients with facial neuromuscular disorders. 相似文献
20.
L. Lenaerts A.J. Wirth 《Computer methods in biomechanics and biomedical engineering》2013,16(13):1392-1399
No accepted methodology exists to assess trabecular bone orientation from clinical CT scans. The aim of this study was to test the hypothesis that the distribution of grey values in clinical CT images is related to the underlying trabecular architecture and that this distribution can be used to identify the principal directions and local anisotropy of trabecular bone. Fourteen trabecular bone samples were extracted from high-resolution (30 μm) micro-CT scans of seven human femoral heads. Trabecular orientations and local anisotropy were calculated using grey-level deviation (GLD), a novel method providing a measure of the three-dimensional distribution of image grey values. This was repeated for different image resolutions down to 300 μm and for volumes of interest (VOIs) ranging from 1 to 7 mm. Outcomes were compared with the principal mechanical directions and with mean intercept length (MIL) as calculated for the segmented 30-μm images. For the 30-μm images, GLD predicted the mechanical principal directions equally well as MIL. For the 300-μm images, which are resolutions that can be obtained in vivo using clinical CT, only a small increase (3°–6°) in the deviation from the mechanical orientations was found. VOIs of 5 mm resulted in a robust quantification of the orientation. We conclude that GLD can quantify structural bone parameters from low-resolution CT images. 相似文献