首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone marrow lesions (BMLs) are radiologic abnormalities in magnetic resonance images of subchondral bone that are correlated with osteoarthritis. Little is known about the physiologic processes within a BML, although BMLs are associated with mechanical stress, bone tissue microdamage and increased bone remodeling. Here we establish a rabbit model to study the pathophysiology of BMLs. We hypothesized that in vivo loads that generate microdamage in cancellous bone would also create BMLs and increase bone remodeling. In vivo cyclic loading (0.2–2.0 MPa in compression for 10,000 cycles at 2 Hz) was applied to epiphyseal cancellous bone in the distal femurs of New Zealand white rabbits (n = 3, right limb loaded, left limb controls experienced surgery but no loading). Magnetic resonance images were collected using short tau inversion recovery (STIR) and T1 weighted sequences at 1 and 2 weeks after surgery/loading and histological analysis of the BML was performed after euthanasia to examine tissue microdamage and remodeling. Loaded limbs displayed BMLs while control limbs showed only a small BML-like signal caused by surgery. Histological analysis of the BML at 2 weeks after loading showed increased tissue microdamage (p = 0.03) and bone resorption (p = 0.01) as compared to controls. The model described here displays the hallmarks of load-induced BMLs, supporting the use of the model to examine changes in bone during the development, progression and treatment of BMLs.  相似文献   

2.
Two-dimensional simulation of trabecular surface remodeling was conducted for a human proximal femur to investigate the structural change of cancellous bone toward a uniform stress state. Considering that a local mechanical stimulus plays an important role in cellular activities in bone remodeling, local stress nonuniformity was assumed to drive trabecular structural change to seek a uniform stress state. A large-scale pixel-based finite element model was used to simulate structural changes of individual trabeculae over the entire bone. As a result, the initial structure of trabeculae changed from isotropic to anisotropic due to trabecular microstructural changes caused by surface remodeling according to the mechanical environment in the proximal femur. Under a single-loading condition, it was shown that the apparent structural property evaluated by fabric ellipses corresponded to the apparent stress state in cancellous bone. As is observed in the actual bone, a distributed trabecular structure was obtained under a multiple-loading condition. Through these studies, it was concluded that trabecular surface remodeling toward a local uniform stress state at the trabecular level could naturally bring about functional adaptation phenomenon at the apparent tissue level. The proposed simulation model would be capable of providing insight into the hierarchical mechanism of trabecular surface remodeling at the microstructural level up to the apparent tissue level.  相似文献   

3.
Intramedullary pressure (ImP) and low-level bone strain induced by oscillatory muscle stimulation (MS) has the potential to mitigate bone loss induced by disuse osteopenia, i.e., hindlimb suspension (HLS). To test this hypothesis, we evaluated (a) MS-induced ImP and bone strain as function of stimulation frequency and (b) the adaptive responses to functional disuse, and disuse plus 1 and 20 Hz stimulation in vivo. Femoral ImP and bone strain generated by MS were measured in the frequencies of 1–100 Hz in four rats. Forty retired breeder rats were used for the in vivo HLS study. The quadriceps muscle was stimulated at frequencies of 1 and 20 Hz, 10 min/d for four weeks. The metaphyseal trabecular bone quantity and microstructure at the distal femur were evaluated using μCT, while bone formation indices were analyzed using histomorphometric technique. Oscillatory MS generated a maximum ImP of 45±9 mmHg at 20 Hz and produced a maximum matrix strain of 128±19 με at 10 Hz. Our analyses from the in vivo study showed that MS at 20 Hz was able to attenuate trabecular bone loss and partially maintain the microstructure induced by HLS. Conversely, there was no evidence of an adaptive effect of stimulation at 1 Hz on disused skeleton. The results suggested that oscillatory MS regulates fluid dynamics and mechanical strain in bone, which serves as a critical mediator of adaptation. These results clearly demonstrated the ability of MS in attenuating bone loss from the disuse osteopenia, which may hold potential in mitigating skeletal degradation imposed by conditions of disuse, and may serve as a biomechanical intervention in clinic application.  相似文献   

4.
Post-operative changes in trabecular bone morphology at the cement-bone interface can vary depending on time in service. This study aims to investigate how micromotion and bone strains change at the tibial bone-cement interface before and after cementation. This work discusses whether the morphology of the post-mortem interface can be explained by studying changes in these mechanical quantities. Three post-mortem cement-bone interface specimens showing varying levels of bone resorption (minimal, extensive and intermediate) were selected for this study Using image segmentation techniques, masks of the post-mortem bone were dilated to fill up the mould spaces in the cement to obtain the immediately post-operative situation. Finite element (FE) models of the post-mortem and post-operative situation were created from these segmentation masks. Subsequent removal of the cement layer resulted in the pre-operative situation. FE micromotion and bone strains were analyzed for the interdigitated trabecular bone. For all specimens micromotion increased from the post-operative to the post-mortem models (distally, in specimen 1: 0.1 to 0.5 µm; specimen 2: 0.2 to 0.8 µm; specimen 3: 0.27 to 1.62 µm). Similarly bone strains were shown to increase from post-operative to post-mortem (distally, in specimen 1: −185 to −389 µε; specimen 2: −170 to −824 µε; specimen 3: −216 to −1024 µε). Post-mortem interdigitated bone was found to be strain shielded in comparison with supporting bone indicating that failure of bone would occur distal to the interface. These results indicate that stress shielding of interdigitated trabeculae is a plausible explanation for resorption patterns observed in post-mortem specimens.  相似文献   

5.
Metatarsal stress fracture is a common injury observed in athletes and military personnel. Mechanical fatigue is believed to play an important role in the etiology of stress fracture, which is highly dependent on the resulting bone strain from the applied load. The purpose of this study was to validate a subject-specific finite element (FE) modeling routine for bone strain prediction in the human metatarsal. Strain gauge measurements were performed on 33 metatarsals from seven human cadaveric feet subject to cantilever bending, and subject-specific FE models were generated from computed tomography images. Material properties for the FE models were assigned using a published density-modulus relationship as well as density-modulus relationships developed from optimization techniques. The optimized relationships were developed with a ‘training set’ of metatarsals (n = 17) and cross-validated with a ‘test set’ (n = 16). The published and optimized density elasticity equations provided FE-predicted strains that were highly correlated with experimental measurements for both the training (r2  0.95) and test (r2  0.94) sets; however, the optimized equations reduced the maximum error by 10% to 20% relative to the published equation, and resulted in an X = Y type of relationship between experimental measurements and FE predictions. Using a separate optimized density-modulus equation for trabecular and cortical bone did not improve strain predictions when compared to a single equation that spanned the entire bone density range. We believe that the FE models with optimized material property assignment have a level of accuracy necessary to investigate potential interventions to minimize metatarsal strain in an effort to prevent the occurrence of stress fracture.  相似文献   

6.
Fabric and compliance tensors of a cube of cancellous bone with a complicated three-dimensional trabecular structure were obtained for trabecular surface remodeling by using a digital image-based model combined with a large-scale finite element method. Using mean intercept length and a homogenization method, the fabric and compliance tensors were determined for the trabecular structure obtained in the computer remodeling simulation. The tensorial quantities obtained indicated that anisotropic structural changes occur in cancellous bone adapting to the compressive loading condition. There were good correlations between the fabric tensor, bone volume fraction, and compliance tensor in the remodeling process. The result demonstrates that changes in the structural and mechanical properties of cancellous bone are essentially anisotropic and should be expressed by tensorial quantities.  相似文献   

7.
Fabric and compliance tensors of a cube of cancellous bone with a complicated three-dimensional trabecular structure were obtained for trabecular surface remodeling by using a digital image-based model combined with a large-scale finite element method. Using mean intercept length and a homogenization method, the fabric and compliance tensors were determined for the trabecular structure obtained in the computer remodeling simulation. The tensorial quantities obtained indicated that anisotropic structural changes occur in cancellous bone adapting to the compressive loading condition. There were good correlations between the fabric tensor, bone volume fraction, and compliance tensor in the remodeling process. The result demonstrates that changes in the structural and mechanical properties of cancellous bone are essentially anisotropic and should be expressed by tensorial quantities.  相似文献   

8.
Stress shielding-related bone loss occurs after total hip arthroplasty because the stiffness of metallic implants differs from that of the host femur. Although reducing stem stiffness can ameliorate the bone resorption, it increases stress at the bone–implant interface and can inhibit fixation. To overcome this complication, a novel cementless stem with a gradient in Young’s modulus was developed using Ti-33.6Nb-4Sn (TNS) alloy. Local heat treatment applied at the neck region for increasing its strength resulted in a gradual decrease in Young’s modulus from the proximal to the distal end, from 82.1 to 51.0 GPa as calculated by a heat transfer simulation. The Young’s modulus gradient did not induce the excessive interface stress which may cause the surface debonding. The main purpose of this study was to evaluate bone remodeling with the TNS stem using a strain-adaptive bone remodeling simulation based on finite element analysis. Our predictions showed that, for the TNS stem, bone reduction in the calcar region (Gruen zone 7) would be 13.6% at 2 years, 29.0% at 5 years, and 45.8% at 10 years postoperatively. At 10 years, the bone mineral density for the TNS stem would be 42.6% higher than that for the similar Ti-6Al-4V alloy stem. The stress–strength ratio would be lower for the TNS stem than for the Ti-6Al-4V stem. These results suggest that although proximal bone loss cannot be eliminated completely, the TNS stem with a Young’s modulus gradient may have bone-preserving effects and sufficient stem strength, without the excessive interface stress.  相似文献   

9.
PurposeTo evaluate the feasibility of using non-radioactive barium as a bone tracer for detection with synchrotron spectral K-edge subtraction (SKES) technique.MethodsMale rats of 1-month old (i.e., developing skeleton) and 8-month old (i.e., skeletally mature) were orally dosed with low dose of barium chloride (33 mg/kg/day Ba2+) for 4 weeks. The fore and hind limbs were dissected for imaging in projection and computed tomography modes at 100 μm and 52 μm pixel sizes. The SKES method utilizes a single bent Laue monochromator to prepare a 550 eV energy spectrum to encompass the K-edge of barium (37.441 keV), for collecting both ‘above’ and ‘below’ the K-edge data sets in a single scan.ResultsThe SKES has a very good focal size, thus limits the ‘crossover’ and motion artifacts. In juvenile rats, barium was mostly incorporated in the areas of high bone turnover such as at the growth plate and the trabecular surfaces, but also in the cortical bone as the animals were growing at the time of tracer administration. However, the adults incorporated approximately half the concentration and mainly in the areas where bone remodeling was predominant and occasionally in the periosteal and endosteal layers of the diaphyseal cortical bone.ConclusionsThe presented methodology is simple to implement and provides both structural and functional information, after labeling with barium, on bone micro-architecture and thus has great potential for in vivo imaging of pre-clinical animal models of musculoskeletal diseases to better understand their mechanisms and to evaluate the efficacy of pharmaceuticals.  相似文献   

10.
Quantification of the mechanical properties of liposomes is critical in helping to predict their behavior during various applications such as targeted drug delivery, response to mechanical characterization or their interactions with isolated cytoskeletal elements. A numerical implementation of the Evans aspiration technique, and an image processing algorithm for measuring deformation of spherical DOPC:DOPS liposomes is presented. Liposomes were aspirated to pressures of ?10 mmHg (~?1300 Pa). The area expansion and Young's moduli of the liposomes were found to be 0.067 N m?1 (67 ± 4 dyn/cm) and 15 ± 1 MPa.  相似文献   

11.
The coupling of the intervertebral disc (IVD) and vertebra as a biomechanical unit suggests that changes in the distribution of pressure within the IVD (intradiscal pressure, IDP) as a result of disc degeneration can influence the distribution of bone density within the vertebra, and vice versa. The goal of this study was to assess the correspondence between IDP and bone density in the adjacent vertebrae, with emphasis on how this correspondence differs between healthy and degenerated IVDs. Bone density of the endplates and subchondral bone in regions adjacent to the anterior and posterior annulus fibrosus (aAF and pAF, respectively) and nucleus pulposus (NP) was measured via quantitative computed tomography (QCT) in 61 spine segments (T7-9, T9-11, T10-12; 71 ± 14 years). IDP was measured in the aAF, NP, and pAF regions in 26 of the spine segments (68 ± 16 years) while they were tested in flexed (5°) or erect postures. Disc degeneration was assessed by multiple grading schemes. No correlation was found between bone density and IDP in either posture (p > 0.104). Regional variations in IDP and, to a greater extent bone density, were found to change with advancing degeneration: both IDP (p = 0.045) and bone density (p = 0.024) decreased in the NP region relative to the aAF region. The finding of only a modest correspondence between degeneration-associated changes in IDP and bone density may arise from complexity in how IDP relates to mechanical force transmission through the endplate and from limitations of the available IVD grading schemes in estimating the mechanical behavior of the IVD.  相似文献   

12.
Human bone marrow-derived mesenchymal stem cell (hMSCs) function depends on chemical factors and also on the physical cues of the microenvironmental niche. Here, this physical microenvironment is recapitulated with controlled modes of mechanical strain applied to substrata containing three-dimensional features in order to analyze the effects on cell morphology, focal adhesion distribution, and gene expression. Ten percentage of strain at 1 Hz is delivered for 48 h to hMSCs cultured on flat surfaces, or on substrata with 15 μm-high microtopographic posts spaced 75 μm apart. Adding strain to microtopography produced stable semicircular focal adhesions, and actin spanning from post to post. Strain dominated over microtopography for expression of genes for the cytoskeleton (caldesmon-1 and calponin 3), cell adhesion (integrin-α2, vinculin, and paxillin), and extracellular matrix remodeling (MMP13) (p < 0.05). Overall, attention to external mechanical stimuli is necessary for optimizing the stem cell niche for regenerative medicine.  相似文献   

13.
The objective of our study was to evaluate the impact of the tibial keel & stem length in surface cementation, of a full cemented keel and of an additional tibial stem on the primary stability of a posterior stabilised tibial plateau (VEGA® System Aesculap Tuttlingen, Germany) under dynamic compression-shear loading conditions in human tibiae.We performed the cemented tibial plateau implantations on 24 fresh-frozen human tibiae of a mean donor age of 70.7 years (range 47–97). The tibiae were divided into four groups of matched pairs based on comparable trabecular bone mineral density. To assess the primary stability under dynamic compression shear conditions, a 3D migration analysis of the tibial component relative to the bone based on displacements and deformations and an evaluation of the cement layer including penetration was performed by CT-based 3D segmentation.Within the tested implant fixation principles the mean load to failure of a 28 mm keel and a 12 mm stem (40 mm) was 4700 ± 1149 N and of a 28 mm keel length was 4560 ± 1429 N (p = 0.996), whereas the mean load to failure was 4920 ± 691 N in full cementation (p = 0.986) and 5580 ± 502 N with additional stem (p = 0.537), with no significant differences regarding the dynamic primary stability under dynamic compression-shear test conditions.From our observations, we conclude that there is no significant difference between a 40 mm and a 28 mm tibial keel & stem length and also between a surface and a full cementation in the effect on the primary stability of a posterior stabilised tibial plateau, in terms of failure load, migration characteristics and cement layer thickness including the penetration into the trabecular bone.  相似文献   

14.
This study reports the first case of ectopic parathyroid adenoma, diagnosed in the Department of Nuclear Medicine in Antananarivo. This clinical vignette illustrates the interest of the MIBI-Tc-99 m scan in locating this adenoma and its diagnostic confirmation after six years of erratic diagnosis. A whole body bone scintigraphy has also allowed to assess the state of bone metabolism and study outbreaks of fracture. The parathyroid scintigraphy was carried out after intra-venous administration of 666 MBq of MIBI-Tc99m. Dynamic images, static early and late static were acquired with a gamma camera E-Cam Siemens. The whole body bone scan was carried out after administration of 555 MBq of MDP-Tc-99 m. The results evidenced the presence of an para-aortic increased uptake area pointing to a left parathyroid adenoma. The persistence of a late left submaxillary increased uptake area raises, however, a reservation about the existence of a second adenoma. The bone scan displayed global skeletal remodeling, non suggestive of metastases, as it was mentioned with the CT-scan. In a diagnostic tools limited environment, skeletal pain refractory to painkillers, a chronic hypercalcemia associated with an increased parathyroid hormone level, should trigger the scintigarphic exploration in order to avoid bone and renal complications.  相似文献   

15.
Phospholipase C-γ (PLC-γ) has been identified as a possible biological target for anticancer drug therapy but suitable inhibitors are lacking. Therefore, in order to identify active compounds (hits) virtual high throughput screening was performed. The crystal structure of the PLC-δ isoform was used as a model docking scaffold since no crystallographic data are available on its γ counterpart. A pilot screen was performed using ~9.2 × 104 compounds, where the robustness of the methodology was tested. This was followed by the main screening effort where ~4.4 × 105 compounds were used. In both cases, plausible compounds were identified (virtual hits) and a selection of these was experimentally tested. The most potent compounds were in the single digit micro-molar range as determined from the biochemical (Flashplate) assay. This translated into ~15 μM in a functional assay in cells. About 30% of the virtual hits showed activity against PLC-γ (IC50 < 50 μM).  相似文献   

16.
Bone marrow mesenchymal stem cells (MSCs) have multi-differentiation capability. Their endothelial cell (EC) oriented differentiation is the key to vasculogenesis, in which both mechanical and chemical stimulations play important roles. Most previous studies reported individual effects of VEGF or fluid shear stress (SS), when MSCs were subjected to shear stress of 10–15 dyn/cm2 over 24 hr. In this paper, we investigated responses of MSCs from young Sprague Dawley rats to shear stress, VEGF and the combination of the two stimuli. Our study showed that the combined stimulation of shear stress and VEGF resulted in more profound EC oriented differentiation of MSCs in comparison to any individual stimulation. Furthermore, we subjected MSCs to prolonged period of fluid shear stimulation, i.e. 48 hr rather than 24 hr, and increased the magnitude of the shear stress from 10 dyn/cm2 to 15, 20 and 25 dyn/cm2. We found that without VEGF, the endothelium oriented differentiation of MSCs that was seen following 24 hr of shear stimulation was largely abolished if we extended the shear stimulation to 48 hr. A similar sharp decrease in MSC differentiation was also observed when the magnitude of the shear stress was increased from 10–15 dyn/cm2 to 20–25 dyn/cm2 in 24 hr shear stimulation studies. However, with combined VEGF and fluid shear stimulation, most of the endothelial differentiation was retained following an extended period, i.e. at 48 hr, of shear stimulation. Our study demonstrates that chemical and mechanical stimulations work together in determining MSC differentiation dynamics.  相似文献   

17.
The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.  相似文献   

18.
Following the acute phase of a myocardial infarction, a set of structural and functional changes evolves in the myocardium, collectively referred to as cardiac remodeling. This complex set of processes, including interstitial fibrosis, inflammation, myocyte hypertrophy and apoptosis may progress to heart failure. Analogs of the incretin hormone glucagon-like peptide 1 (GLP-1) have shown some promise as cardioprotective agents. We hypothesized that a long-acting GLP-1 analog liraglutide would ameliorate cardiac remodeling over the course of 4 weeks in a rat model of non-reperfused myocardial infarction. In 134 male Sprague Dawley rats myocardial infarctions were induced by ligation of the left anterior descending coronary artery. Rats were randomized to either subcutaneous injection of placebo or 0.3 mg liraglutide once daily. Cardiac magnetic resonance imaging was performed after 4 weeks. Histology of the infarcted and remote non-infarcted myocardium, selected molecular remodeling markers and mitochondrial respiration in fibers of remote non-infarcted myocardium were analyzed. Left ventricular end diastolic volume increased in the infarcted hearts by 62% (from 0.58 ± 0.03 mL to 0.95 ± 0.07 mL, P < 0.05) compared to sham operated hearts and left ventricle ejection fraction decreased by 37% (63 ± 1%–40 ± 3%, P < 0.05). Increased interstitial fibrosis and phosphorylation of p38 Mitogen Activated Protein Kinase were observed in the non-infarct regions. Mitochondrial fatty acid oxidation was impaired. Liraglutide did not affect any of these alterations. Four-week treatment with liraglutide did not affect cardiac remodeling following a non-reperfused myocardial infarction, as assessed by cardiac magnetic resonance imaging, histological and molecular analysis and measurements of mitochondrial respiration.  相似文献   

19.
The aim of this work was to estimate the body mass index (BMI) at which risk of hypertension is lowest in men and women, while concurrently considering the protective role of adipose tissue in osteoporosis. Healthy, occupationally active inhabitants of the city of Wroc?aw, Poland, 1218 women and 434 men were studied. BMI, systolic and diastolic blood pressures, bone mineral density (BMD) of the trabecular compartment and distal radius of the non-dominant hand were recorded. Overweight in young women (≤45 years) was associated with increased risk of hypertension, whereas the risk of low bone mineral was decreased for the same BMI. In older women (>45 years), a BMI > 27 was the threshold for increased risk of hypertension. In this age group, extremely slim women (BMI < 21) had the highest risk of low bone mineral density. In younger males (≤45 years), risk of hypertension was lowest among the thinnest subjects (BMI < 21). Increase in BMI over 21 kg/m2 increased the risk of hypertension. The probability of low bone mineral density was the same in all BMI categories of men. In older men (>45 years), the thinnest (BMI < 21) had higher risk of hypertension. To begin from BMI = 25 kg/m2, there was a monotonous increase in risk of hypertension in men. Higher risk for low bone mineral density was observed in older men with the BMI < 23.Among younger adults, risk of hypertension and low bone mineral density increase at BMI  21 kg/m2 in men and BMI  23 kg/m2 in women. Among older men and women, the BMI threshold was 27 kg/m2.  相似文献   

20.
Trabecular bone is viscoelastic under dynamic loading. However, it is unclear how tissue viscoelasticity controls viscoelasticity at the apparent-level. In this study, viscoelasticity of cylindrical human trabecular bone samples (n = 11, male, age 18–78 years) from 11 proximal femurs were characterized using dynamic and stress-relaxation testing at the apparent-level and with creep nanoindentation at the tissue-level. In addition, bone tissue elasticity was determined using scanning acoustic microscope (SAM). Tissue composition and collagen crosslinks were assessed using Raman micro-spectroscopy and high performance liquid chromatography (HPLC), respectively. Values of material parameters were obtained from finite element (FE) models by optimizing tissue-level creep and apparent-level stress-relaxation to experimental nanoindentation and unconfined compression testing values, respectively, utilizing the second order Prony series to depict viscoelasticity. FE simulations showed that tissue-level equilibrium elastic modulus (Eeq) increased with increasing crystallinity (r = 0.730, p = .011) while at the apparent-level it increased with increasing hydroxylysyl pyridinoline content (r = 0.718, p = .019). In addition, the normalized shear modulus g1 (r = −0.780, p = .005) decreased with increasing collagen ratio (amide III/CH2) at the tissue-level, but increased (r = 0.696, p = .025) with increasing collagen ratio at the apparent-level. No significant relations were found between the measured or simulated viscoelastic parameters at the tissue- and apparent-levels nor were the parameters related to tissue elasticity determined with SAM. However, only Eeq, g2 and relaxation time τ1 from simulated viscoelastic values were statistically different between tissue- and apparent-levels (p < .01). These findings indicate that bone tissue viscoelasticity is affected by tissue composition but may not fully predict the macroscale viscoelasticity in human trabecular bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号