首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuritogenesis, the first step of neuronal differentiation, takes place as nascent neurites bud from the immediate postmitotic neuronal soma. Little is known about the mechanisms underlying the dramatic morphological changes that characterize this event. Here, we show that RhoA activity plays a decisive role during neuritogenesis of cultured hippocampal neurons by recruiting and activating its specific kinase ROCK, which, in turn, complexes with profilin IIa. We establish that this previously uncharacterized brain-specific actin-binding protein controls neurite sprouting by modifying actin stability, a function regulated by ROCK-mediated phosphorylation. Furthermore, we determine that this novel cascade is switched on or off by physiological stimuli. We propose that RhoA/ROCK/PIIa-mediated regulation of actin stability, shown to be essential for neuritogenesis, may constitute a central mechanism throughout neuronal differentiation.  相似文献   

2.
We have examined the expression of brain-specific tropomyosins during neuronal differentiation. Both TmBr-1 and TmBr-3 were shown to be neuron specific. TmBr-1 and TmBr-3 mRNA levels increased during the most active phase of neurite outgrowth in the developing rat cerebellum. In PC12 cells stimulated by nerve growth factor (NGF) to differentiate to the neuronal phenotype, TmBr-1 and TmBr-3 levels increased with an increasing degree of morphological differentiation. Induction of TmBr-1 and TmBr-3 expression only occurred under conditions where PC12 cells were permitted to extend neurites. NGF was unable to maintain levels of TmBr-1 and TmBr-3 with the loss of neuronal phenotype by resuspension of differentiated PC12 cells. The unique cellular expression and regulation in vivo and in vitro of TmBr- 1 and TmBr-3 strongly suggests a critical role of these tropomyosins in neuronal microfilament function. The findings reveal that the induction and maintenance of the neuronal tropomyosins is dependent on morphological differentiation and the maintenance of the neuronal phenotype.  相似文献   

3.
Precise regulation of neurite growth and differentiation determines accurate formation of synaptic connections, whose disruptions are frequently associated with neurological disorders. Dedicator of cytokinesis 4 (Dock4), an atypical guanine nucleotide exchange factor for Rac1, is found to be associated with neuropsychiatric diseases, including autism and schizophrenia. Nonetheless, the neuronal function of Dock4 is only beginning to be understood. Using mouse neuroblastoma (Neuro-2a) cells as a model, this study identifies that Dock4 is critical for neurite differentiation and extension. This regulation is through activation of Rac1 and modulation of the dynamics of actin-enriched protrusions on the neurites. In cultured hippocampal neurons, Dock4 regulates the establishment of the axon-dendrite polarity and the arborization of dendrites, two critical processes during neural differentiation. Importantly, a microdeletion Dock4 mutant linked to autism and dyslexia that lacks the GEF domain leads to defective neurite outgrowth and neuronal polarization. Further analysis reveals that the SH3 domain-mediated interaction of Dock4 is required for its activity toward neurite differentiation, whereas its proline-rich C terminus is not essential for this regulation. Together, our findings reveal an important role of Dock4 for neurite differentiation during early neuronal development.  相似文献   

4.
In collaboration with Marshall Nirenberg, we performed in vivo RNA interference (RNAi) genome-wide screening in Drosophila embryos. Pebble has been shown to be involved in Drosophila neuronal development. We have also reported that depletion of Ect2, a mammalian ortholog of Pebble, induces differentiation in NG108-15 neuronal cells. However, the precise role of Ect2 in neuronal development has yet to be studied. Here, we confirmed in PC12 pheochromocytoma cells that inhibition of Ect2 expression by RNAi stimulated neurite outgrowth, and in the mouse embryonic cortex that Ect2 was accumulated throughout the ventricular and subventricular zones with neuronal progenitor cells. Next, the effects of Ect2 depletion were studied in primary cultures of mouse embryonic cortical neurons: Loss of Ect2 did not affect the differentiation stages of neuritogenesis, the number of neurites, or axon length, while the numbers of growth cones and growth cone-like structures were increased. Taken together, our results suggest that Ect2 contributes to neuronal morphological differentiation through regulation of growth cone dynamics.  相似文献   

5.
During differentiation neurons increase phospholipid biosynthesis to provide new membrane for neurite growth. We studied the regulation of phosphatidylcholine (PC) biosynthesis during differentiation of two neuronal cell lines: PC12 cells and Neuro2a cells. We hypothesized that in PC12 cells nerve growth factor (NGF) would up-regulate the activity and expression of the rate-limiting enzyme in PC biosynthesis, CTP:phosphocholine cytidylyltransferase (CT). During neurite outgrowth, NGF doubled the amount of cellular PC and CT activity. CTbeta2 mRNA increased within 1 day of NGF application, prior to the formation of visible neurites, and continued to increase during neurite growth. When neurites retracted in response to NGF withdrawal, CTbeta2 mRNA, protein, and CT activity decreased. NGF specifically activated CTbeta2 by promoting its translocation from cytosol to membranes. In contrast, NGF did not alter CTalpha expression or translocation. The increase in both CTbeta2 mRNA and CT activity was inhibited by U0126, an inhibitor of mitogen-activated kinase/extracellular signal-regulated kinase kinase 1/2 (MEK1/2). In Neuro2a cells, retinoic acid significantly increased CT activity (by 54%) and increased CTbeta2 protein, coincident with neurite outgrowth but did not change CTalpha expression. Together, these data suggest that the CTbeta2 isoform of CT is specifically up-regulated and activated during neuronal differentiation to increase PC biosynthesis for growing neurites.  相似文献   

6.
Neuritogenesis is a critical event for neuronal differentiation and neuronal circuitry formation during neuronal development and regeneration. Our previous study revealed a critical role of a guidance receptor BOC in a neuronal differentiation and neurite outgrowth. However, regulatory mechanisms for BOC signaling pathway remain largely unexplored. In the current study, we have identified Small glutamine-rich tetratricopeptide repeat (TPR)-containing b (SGTb) as a BOC interacting protein through yeast two-hybrid screening. Like BOC, SGTb is highly expressed in brain and P19 embryonal carcinoma (EC) cells differentiated into neuronal cells. BOC and SGTb proteins co-precipitate in mouse brain and differentiated P19 EC cells. Furthermore, BOC and SGTb co-localize in neurites and especially are concentrated at the tip of neurites in various neuronal cells. SGTb depletion attenuates neuronal differentiation of P19 cells through reduction of the surface level of BOC. Additionally, SGTb depletion causes BOC localization at neurite tip, coinciding with decreased p-JNK levels critical for actin cytoskeleton remodeling. The overexpression of SGTb or BOC restores JNK activation in BOC or SGTb-depleted cells, respectively. Finally, SGTb elevates the level of surface-resident BOC in BOC-depleted cells, restoring JNK activation. Taken together, our data suggest that SGTb interacts with BOC and regulates its surface level and consequent JNK activation, thereby promoting neuronal differentiation and neurite outgrowth.  相似文献   

7.
Ca2+/calmodulin-regulatedprotein kinase II (CaMKII) mediates many cellular events. The fourCaMKII isoforms have numerous splice variants, three of which containnuclear localization signals. Little is known about the role of nuclearlocalized CaMKII in neuronal development. To study this process, PC12cells were transfected to produce CaMKII targeted to either thecytoplasm or the nucleus and then treated with nerve growth factor(NGF). NGF triggers a signaling cascade (MAPK) that results in thedifferentiation of PC12 cells into a neuronal phenotype, marked byneurite outgrowth. The present study found that cells expressingnuclear targeted CaMKII failed to grow neurites, whereas cellsexpressing cytoplasmic CaMKII readily produced neurites. Inhibition ofneuronal differentiation by nuclear CaMKII was independent of MAPKsignaling, as sustained Erk phosphorylation was not affected.Phosphorylation of CREB was also unaffected. Thus nuclear CaMKIImodifies neuronal differentiation by a mechanism independent of MAPKand CREB activation.

  相似文献   

8.
Nerve growth factor (NGF) produces both rapid and delayed cellular responses that are involved in neuronal differentiation. Neurite formation, a conspicuous delayed response, is accompanied by phosphorylation of β-tubulin in PC12 cells. The present work provides further characterization of the phospho form of β-tubulin in this neuronal model system with regard to isotype, cellular localization, and the circumstances that favor its formation. The results indicate that neuron-specific type III β-tubulin (βIII-tubulin) is selectively affected during neurite formation. This phosphorylation occurs relatively late in the NGF signal transduction cascade and increases progressively with increasing duration of NGF treatment concomitant with more extensive neurite growth. The subcellular distribution of βIII-tubulin is not markedly different from that of total tubulin, but the phosphorylated protein is uniquely associated with microtubules that are calcium and cold labile. Although NGF is capable of inducing phosphorylation of βIII-tubulin, it is not necessarily sufficient. Based on experiments that employ either nonpermissive substrate conditions or microtubule-depolymerizing drugs, this phosphorylation requires neurite outgrowth. Direct measurements of the phospho form in neurites versus cell bodies by means of a microculture system indicate that phosphorylated βIII-tubulin is enriched in neurites. The enrichment of phospho-βIII-tubulin in calcium- and cold-labile polymer within neurites and its near absence in nonneurite bearing, NGF-treated cells suggests a role for this posttranslationally modified protein in the regulation of dynamic microtubules involved in neurite formation. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Localization of pp60c-src in growth cone of PC12 cell   总被引:2,自引:0,他引:2  
By immunocytochemical and biochemical techniques, we observed the localization and expression of pp60c-src in nerve growth factor (NGF)-treated PC12 cells. Immunostaining of pp60c-src is detected in the neuronal soma and the tips of neurites (growth cones). Immunofluorescence in the neurites is less significant. High-resolution microscopy reveals that the location of pp60c-src in growth cone is in good agreement with the adhesive site of growth cone to the substratum. The pp60c-src kinase activity and the pp60c-src protein level increase 3.1- to 3.5-fold and 2.0-fold during differentiation of PC12 cells, respectively. The pp60c-src levels in the neurite fraction are also higher than those in the neuronal soma fraction. These results support the immunocytochemical finding that pp60c-src is localized in growth cones of differentiated PC12 cells. Furthermore, we discuss the possible role of pp60c-src in growth cone.  相似文献   

10.
Neurite extension and retraction are very important processes in the formation of neuronal networks. A strategy for fostering axonal regrowth/regeneration of injured adult neurons is attractive therapeutically for various diseases such as traumatic brain injury, stroke and Alzheimer's disease. The Rho family of small GTPases, including Rac and Cdc42 have been shown to be involved in promoting neurite outgrowth. On the other hand, activation of RhoA induces collapse of growth cone and retraction of neurites. Rho‐associated kinase (ROCK) an effector molecule of RhoA, is downstream of a number of axonal outgrowth and growth cone collapse inhibition mechanisms. In the present study, we sought to identify the role of ROCK in neurite outgrowth in PC12 cells. Y27632, a specific inhibitor of ROCK, induced a robust increase in neurite outgrowth in these cells within 24–48 h as visualized by phase contrast microscopy. Staining with FITC‐tubulin or phalloidin show extended neurites in PC12 cells treated with Y27632, comparable to that with 100 ng/mL of NGF. Assessment of other biochemical markers of neurite outgrowth such as GAP43, neurofilament and tyrosine hydroxylase phosphorylation further indicates that inhibition of ROCK in PC12 cells causes differentiation of these cells to a neuronal phenotype.  相似文献   

11.
Neuronal differentiation is under the tight control of both biochemical and physical information arising from neighboring cells and micro-environment. Here we wished to assay how external geometrical constraints applied to the cell body and/or the neurites of hippocampal neurons may modulate axonal polarization in vitro. Through the use of a panel of non-specific poly-L-lysine micropatterns, we manipulated the neuronal shape. By applying geometrical constraints on the cell body we provided evidence that centrosome location was not predictive of axonal polarization but rather follows axonal fate. When the geometrical constraints were applied to the neurites trajectories we demonstrated that axonal specification was inhibited by curved lines. Altogether these results indicated that intrinsic mechanical tensions occur during neuritic growth and that maximal tension was developed by the axon and expressed on straight trajectories. The strong inhibitory effect of curved lines on axon specification was further demonstrated by their ability to prevent formation of multiple axons normally induced by cytochalasin or taxol treatments. Finally we provided evidence that microtubules were involved in the tension-mediated axonal polarization, acting as curvature sensors during neuronal differentiation. Thus, biomechanics coupled to physical constraints might be the first level of regulation during neuronal development, primary to biochemical and guidance regulations.  相似文献   

12.
PC-12 cells are used as a model for neuronal differentiation because they assume a neuronal phenotype, including the extension of neurites, when exposed to nerve growth factor (NGF). The present results show that bradykinin (BK) also causes PC-12 cells to extend neurites. In addition, BK potentiates the neurite-extending effect of nerve growth factor (NGF), an action which is attenuated by a BK antagonist. The potentiation of neurite extension produced by the combination of BK and NGF may be mediated at the receptor level, as indicated by an NGF-induced alteration of BK binding.  相似文献   

13.
We show that a glycerophosphodiester phosphodiesterase homolog, GDE2, is widely expressed in brain tissues including primary neurons, and that the expression of GDE2 in neuroblastoma Neuro2A cells is significantly upregulated during neuronal differentiation by retinoic acid (RA) treatment. Stable expression of GDE2 resulted in neurite formation in the absence of RA, and GDE2 accumulated at the regions of perinuclear and growth cones in Neuro2A cells. Furthermore, a loss-of-function of GDE2 in Neuro2A cells by RNAi blocked RA-induced neurite formation. These results demonstrate that GDE2 expression during neuronal differentiation plays an important role for growing neurites.  相似文献   

14.
Modulation of cerebral Rho GTPases activity in mice brain by intracerebral administration of Cytotoxic Necrotizing Factor 1 (CNF1) leads to enhanced neurotransmission and synaptic plasticity and improves learning and memory. To gain more insight into the interactions between CNF1 and neuronal cells, we used primary neuronal and astrocytic cultures from rat embryonic brain to study CNF1 effects on neuronal differentiation, focusing on dendritic tree growth and synapse formation, which are strictly modulated by Rho GTPases. CNF1 profoundly remodeled the cytoskeleton of hippocampal and cortical neurons, which showed philopodia-like, actin-positive projections, thickened and poorly branched dendrites, and a decrease in synapse number. CNF1 removal, however, restored dendritic tree development and synapse formation, suggesting that the toxin can reversibly block neuronal differentiation. On differentiated neurons, CNF1 had a similar effacing effect on synapses. Therefore, a direct interaction with CNF1 is apparently deleterious for neurons. Since astrocytes play a pivotal role in neuronal differentiation and synaptic regulation, we wondered if the beneficial in vivo effect could be mediated by astrocytes. Primary astrocytes from embryonic cortex were treated with CNF1 for 48 hours and used as a substrate for growing hippocampal neurons. Such neurons showed an increased development of neurites, in respect to age-matched controls, with a wider dendritic tree and a richer content in synapses. In CNF1-exposed astrocytes, the production of interleukin 1β, known to reduce dendrite development and complexity in neuronal cultures, was decreased. These results demonstrate that astrocytes, under the influence of CNF1, increase their supporting activity on neuronal growth and differentiation, possibly related to the diminished levels of interleukin 1β. These observations suggest that the enhanced synaptic plasticity and improved learning and memory described in CNF1-injected mice are probably mediated by astrocytes.  相似文献   

15.
16.
The cytoskeleton is the major intracellular structure that determines the morphology of a neuron. Thus, mechanisms that ensure a precisely regulated assembly of cytoskeletal elements in time and space have an important role in the development from a morphologically simple neuronal precursor cell to a complex polarized neuron that can establish contacts to several hundreds of other cells. Here, cytoskeletal mechanisms that underlie the formation of neurites, directed elongation and stabilization of neuronal processes are summarized. It has become evident that different cytoskeletal elements are highly crosslinked with each other by several classes of specific linker proteins. Of these, microtubule-associated proteins (MAPs) appear to have an important role in connecting the microtubule skeleton to other cytoskeletal filaments and plasma membrane components during neuronal morphogenesis. Future experiments will have to elucidate the function and the regulation of the neuronal cytoskeleton in an authentic nervous system environment during development. Recent approaches are discussed at the end of this article.  相似文献   

17.
To elucidate the role of epigenetic reprogramming in cell- or tissue-specific differentiation, we explored the role of DNA methyltransferases (Dnmts) in the nerve growth factor (NGF)-induced differentiation of PC12 (pheochromocytoma) cells into neuronal cells. The mRNA and protein levels of de novo methyltransferase Dnmt3b increased, whereas those of Dnmt3a and Dnmt1 decreased, during NGF-induced neurite outgrowth. Dnmt3b localized in the nucleus, as well as in the growing neurites. When the expression of Dnmt3b was inhibited by antisense or small interfering RNA, PC12 cells continued to proliferate and failed to generate neurites. Cells depleted of Dnmt3b were unable to exit the cell cycle even after 6 days of NGF treatment. Furthermore, this failure in differentiation correlated with significant attenuation in tyrosine phosphorylation of TrkA (a marker for NGF-induced differentiation) and reduced the expression of neuronal markers, Hu antigen, and MAP2. The methyl-CpG content of the PC12 genome or the methylation status of repetitive elements was not significantly altered after differentiation and was not affected by Dnmt3b depletion. This was consistent with the ability of the catalytic-site mutant of Dnmt3b to induce differentiation in Dnmt3b-depleted cells after NGF treatment. The Dnmt3b-mediated differentiation was attributed to its N-terminal domain, which recruits histone deacetylase 2 (Hdac2), as demonstrated by (i) impeding of differentiation by the Hdac inhibitors, (ii) facilitation of the differentiation process by overexpression of the N-terminal domain of Dnmt3b, (iii) higher Hdac activity associated with Dnmt3b after NGF treatment, and (iv) coimmunoprecipitation and cosedimentation of Dnmt3b specifically with Hdac2 in a glycerol density gradient. These data indicate a novel role of Dnmt3b in neuronal differentiation.  相似文献   

18.
The embryonic mouse superior cervical ganglion (SCG) in culture was employed to define the role of ongoing metabolic processes in morphological and biochemical development. The 14 gestational day SCG does not require added nerve growth factor (NGF) for differentiation in vitro. Consequently, its use allows study of intraganglionic regulation of neuronal growth in the absence of complicating, exogenous growth factors. Ganglia were cultured without added NGF, in medium containing various metabolic inhibitors; neurite elaboration and development of tyrosine hydroxylase (T-OH) activity, a biochemical marker of adrenergic maturation, were evaluated. Neurite elaboration proceeded normally with inhibition of RNA synthesis by actinomycin D, or of protein synthesis by cycloheximide or puromycin. In contrast, inhibition of RNA or protein synthesis prevented normal development of T-OH activity. However, neurites and T-OH developed normally in the presence of DNA synthesis inhibition by cytosine arabinoside, which markedly reduced the nonneuronal cell population. These observations suggest that neurite elaboration and the ontogenetic increase in T-OH activity are regulated differently in ganglia cultured in the absence of exogenous NGF. Moreover, the initial outgrowth of neurites and increase in T-OH activity may occur independent of peripherally migrating support cells in this embryonic ganglion.  相似文献   

19.
Neurite outgrowth in PC12 cells deficient in GAP-43.   总被引:12,自引:0,他引:12  
E E Baetge  J P Hammang 《Neuron》1991,6(1):21-30
The neuronal cell line PC12 undergoes a well-documented morphological and biochemical differentiation when treated with NGF and other growth factors. A hallmark of this growth factor-mediated differentiation is the induction of the growth-associated protein, GAP-43. Here we show that a PC12 cell line which is capable of NGF-, bFGF-, and cAMP-mediated neurite outgrowth is deficient in GAP-43 protein and full-length mRNA, as measured by immunocytochemistry, Western blot, Northern blot, and PCR analyses, respectively. We propose that the GAP-43 protein may not be essential for the initial extension and maintenance of neurites induced by these neuritogenic factors; rather, its role may lie predominantly in growth cone function and in the operation of the presynaptic terminal.  相似文献   

20.
Epigenetic control of neural stem cell fate   总被引:18,自引:0,他引:18  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号