首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
WR211 is a transconjugant resulting from transfer of the 117-kilobase (kb) TOL degradative plasmid pWW0 into Pseudomonas sp. strain B13. The plasmid of this strain, pWW01211, is 78 kb long, having suffered a deletion of 39 kb. We show that WR211 contains the 39 kb that is missing from its plasmid, together with at least an additional 17 kb of pWW0 DNA integrated in another part of the genome, probably the chromosome. The ability of WR211 to grow on the TOL-specific substrate m-toluate is the result of expression of the TOL genes in this alternative location, whereas its inability to grow on m-xylene is caused by insertional mutagenesis by 3 kb of DNA of unknown origin in the xylR gene of this DNA. The resident plasmid pWW01211 plays no part in the degradative phenotype of WR211 since it can be expelled by mating in incompatible IncP9 resistance plasmid R2 or pMG18 without loss of the phenotype. This alternatively located DNA can be rescued back into the R2 and pMG18 plasmids as R2::TOL and pMG18::TOL recombinants by mating out into plasmid-free recipients and selecting for Mtol+ transconjugants. In all cases examined, these plasmids contained the entire R plasmid into which is inserted 59 kb of DNA, made up of 56 kb of pWW0 DNA and the 3-kb xylR insertion. Selection for faster growth on benzoate can lead to precise excision of the 39 kb from the TOL region of an R2::TOL recombinant, leaving a residual and apparently cryptic 17-kb segment of pWW0 DNA in the R plasmid.  相似文献   

2.
An R' plasmid, R'PA1, carrying a 3- to 4-min segment of the Pseudomonas aeruginosa chromosome has been derived from the incP-1 plasmid R68.45. The chromosomal segment includes the markers argA, argB, argH, and lys-12. The plasmid retains all the properties of R68.45, including chromosome mobilization ability and wide bacterial host range. R'PA1 reverts to R68.45 in rec+ strains of P. aeruginosa, but it can be maintained in a recA strain.  相似文献   

3.
Some plasmid-free Tol- strains derived from Pseudomonas putida PAW1 (which carries the TOL plasmid pWW0) have a segment of TOL DNA located chromosomally. Of three independently isolated strains, PAW86 had an integrated TOL segment of 16 kilobases and PAW85 had two copies of this segment in different chromosomal locations, whereas the chromosomal DNA of PAW82 showed no homology with the TOL plasmid. In cultures of the parental strain, it appears that a 56-kilobase TOL DNA segment is located chromosomally in some cells.  相似文献   

4.
In this article, we illustrate the challenges and bottlenecks in the metabolic engineering of bacteria destined for environmental bioremediation, by reporting current efforts to construct Pseudomonas strains genetically designed for degradation of the recalcitrant compound 2-chlorotoluene. The assembled pathway includes one catabolic segment encoding the toluene dioxygenase of the TOD system of Pseudomonas putida F1 (todC1C2BA), which affords the bioconversion of 2-chlorotoluene into 2-chlorobenzaldehyde by virtue of its residual methyl-monooxygenase activity on o-substituted substrates. A second catabolic segment encoded the entire upper TOL pathway from pWW0 plasmid of P. putida mt-2. The enzymes, benzyl alcohol dehydrogenase (encoded by xylB) and benzaldehyde dehydrogenase (xylC) of this segment accept o-chloro-substituted substrates all the way down to 2-chlorobenzoate. These TOL and TOD segments were assembled in separate mini-Tn5 transposon vectors, such that expression of the encoded genes was dependent on the toluene-responsive Pu promoter of the TOL plasmid and the cognate XylR regulator. Such gene cassettes (mini-Tn5 [UPP2] and mini-Tn5 [TOD2]) were inserted in the chromosome of the 2-chlorobenzoate degraders Pseudomonas aeruginosa PA142 and P. aeruginosa JB2. GC-MS analysis of the metabolic intermediates present in the culture media of the resulting strains verified that these possessed, not only the genetic information, but also the functional ability to mineralise 2-chlorotoluene. However, although these strains did convert the substrate into 2-chlorobenzoate, they failed to grow on 2-chlorotoluene as the only carbon source. These results pinpoint the rate of the metabolic fluxes, the non-productive spill of side-metabolites and the physiological control of degradative pathways as the real bottlenecks for degradation of certain pollutants, rather than the theoretical enzymatic and genetic fitness of the recombinant bacteria to the process. Choices to address this general problem are discussed.  相似文献   

5.
The catabolic pathway for the degradation of aromatic hydrocarbons encoded by Pseudomonas putida TMB differs from the TOL plasmid-encoded pathway as far as regulation of the upper pathway is concerned. We found, by analyzing Tn5-induced mutants and by Southern blot hybridization with appropriate probes derived from the TOL plasmid pWW0, that the catabolic genes of strain TMB were located on the bacterial chromosome and not on the 84-kb plasmid harbored by this strain. The catabolic genes of TMB and pWW0 had sequence homology, as shown by Southern blot hybridization, but differed significantly in their restriction patterns. The analysis of the mutants suggests that a regulatory mechanism similar to that present in pWW0 coexists in TMB with a second mode of regulation which is epistatic on the former and that the chromosomal region carrying the catabolic genes is prone to rearrangements and deletions.  相似文献   

6.
The TOL catabolic plasmid was shown to be compatible with the R91 drug resistance plasmid. However, the TOL plasmid was extremely unstable in mutant PA03 of P. aeruginosa. By selecting for stabilization of the TOL plasmid in PA03 harbouring R91, it was possible to isolate a strain in which markers from both R91 and TOL appeared to exist in a single recombinant plasmid. This plasmid, pND3, encoded resistance to carbenicillin, was able to transfer at the same frequency as the R91 plasmid and encoded the ability to grow on m-toluate, p-toluate, m-xylene, p-xylene and toluene. In addition, it was shown to be incompatible with the NAH catabolic plasmid and it could be transferred by transduction. The TOL plasmid could stabilize in PA03 harbouring R91 without fusion with R91, and could stabilize in PA03 in the absence of R91. PA03 harbouring either the recombinant plasmid or the stable TOL plasmid in the absence of R91 could promote bacterial chromosome transfer between mutant derivatives of P. aeruginosa strain PA0.  相似文献   

7.
To construct a bacterial catalyst for bioconversion of toluene and several alkyl and chloro- and nitro-substituted derivatives into the corresponding benzoates, the upper TOL operon of plasmid pWW0 of Pseudomonas putida was fully reassembled as a single gene cassette along with its cognate regulatory gene, xylR. The corresponding DNA segment was then targeted to the chromosome of a P. putida strain by using a genetic technique that allows deletion of all recombinant tags inherited from previous cloning steps and leaves the otherwise natural strain bearing exclusively the DNA segment encoding the phenotype of interest. The resulting strains grew on toluene as the only carbon source through a two-step process: conversion of toluene into benzoate, mediated by the upper TOL enzymes, and further metabolism of benzoate through the housekeeping ortho-ring cleavage pathway of the catechol intermediate.  相似文献   

8.
A A Miaé  A L Khe?naru 《Genetika》1991,27(3):389-398
Camphor degradative plasmids (CAM, pRK1) are preferentially situated on chromosomes of Pseudomonas putida strains PaW. After having been transferred into Cam+ strains, the TOL plasmid pWWO dissociates into the cryptic plasmid pWWO-8 and chromosome-borne transposon Tn4651. The opposite situation, i.e. reconstruction of the TOL plasmid pWWO from the cryptic plasmid pWWO-8 and chromosome-borne catabolic operons of the pWWO plasmid has been described. Cam- derivatives of the CAM plasmid were obtained in vivo which contain the TOL plasmid transposons Tn4651 or Tn4652 as obligatory structural elements. These plasmids as well as pWWO-8 determine conjugational mobilization of chromosome-located cam operons followed by their integration into the chromosome of recipient.  相似文献   

9.
Structural genes for catechol 2,3-oxygenase (C23O) were cloned from the TOL plasmids pWW5, pWW14, pWW74, pWW84, and pWW88 isolated from Pseudomonas strains of diverse geographical origins. Each pKT230-based C23O+ recombinant plasmid carried a 2.05-kilobase XhoI insert which showed strong homology in Southern hybridizations with the xylE gene from the archetype TOL plasmid pWW0. Fragments were mapped for restriction endonuclease sites and were classified into two closely related groups on the basis of restriction maps. C23O structural genes were located on cloned fragments by a combination of subcloning and site-specific mutagenesis. All five TOL plasmids examined yielded clones whose maps differed from that of xylE of pWW0 by only a single XbaI site, but in addition plasmids pWW5, pWW74, and pWW88 carried a second, homologous C23O gene with seven further restriction site differences. The remaining plasmids, pWW14 and pWW84, carried a second nonhomologous C23O gene related to the second C23O gene (C23OII) of TOL plasmid pWW15 described previously (H. Keil, M. R. Lebens, and P. A. Williams, J. Bacteriol. 163:248-255, 1985). Thus, each naturally occurring TOL plasmid in this study appears to carry genes for two meta cleavage dioxygenases.  相似文献   

10.
Strains with greater ability to dissimilate m-toluate were obtained from the wild-type Pseudomonas putida (arvilla) mt-2 that harbors the TOL plasmid. Increased growth of a mutant strain on aromatic substrates was coupled with simultaneous increase in the activity of metapyrocatechase, an enzyme coded by the TOL plasmid, without changing its catalytic properties. In the mutant and the wild-type strains, the inducer specificity and the induction kinetics of metapyrocatechase synthesis were the same, and a half-maximal effect of m-toluate on the enzyme synthesis was observed at 0.25 mM. Thus, the increased utilizability seen in a mutant strain appeared to be due to an increased quantity of the enzymes coded by the TOL plasmid. The properties of the mutant strain were dependent upon the mutation on the TOL plasmid but not on the chromosome mutation. Transfer experiments with a strain carrying the mutant TOL (TOL-H) or the wild-type TOL plasmid revealed that the TOL-H transfer was 1,000 times greater than that of the wild type.  相似文献   

11.
Retrotransfer of DNA refers to the phenomenon by which a plasmid travels from a host strain to a recipient one and returns to the original host, bringing with it DNA from the recipient. The resultant host strain with DNA from the recipient is called a retrotransconjugant. The retrotransfer phenomenon mediated by the TOL plasmid pWW0 and other plasmids has been documented on plates under optimal laboratory culture conditions, but never under natural conditions. In this work, we show that retrotransfer mediated by the IncP9 TOL pWW0 plasmid occurs in the rhizosphere, a niche in which the continuous supply of nutrients via root exudates allows cells to reach a high density. This suggests that this unusual sexual fertilization may be of great importance in lateral gene transfer. We also show that retrotransfer of DNA seems to require co-integration of the plasmid and the host chromosome and subsequent resolution, because a TOL plasmid with a mutation in the tnpR gene, encoding the resolvase of the Tn 4653 of the TOL plasmid, was self-transferred between Pseudomonas strains, but unable to mobilize chromosome.  相似文献   

12.
The octane plasmid (OCT) in Pseudomonas putida strains has been shown to be transferred at low frequency. However, bacteria which had newly received this plasmid showed a transient increase in donor ability. Using Octane+ P. putida as the donor, the transfer of most chromosomal markers was shown to be independent of OCT transfer, whereas the mobilization of the octanoate catabolism genes (octanoic and acetate) was dependent on OCT plasmid transfer. The presence of a fertility factor termed FPo has been postulated to explain these results. Strains carrying only this fertility factor have been obtained from strains carrying both OCT and FPo plasmids. Strains in which the OCT plasmid was transferred at high frequencies have also been isolated, and chromosome mobilization by OCT and FPo has been compared. A different gradient of transmission by OCT and FPo has been observed. It has also been shown that chromosome transfer by OCT was dependent on the bacterial recombination system, whereas the chromosome transfer by FPo was unaffected by the presence of a rec mutation in the donor strain.  相似文献   

13.
Mutants of Pseudomonas putida mt-2 that are unable to convert benzoate to catechol were isolated and grouped into two classes: those that did not initiate attack on benzoate and those that accumulated 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid (benzoate diol). The latter mutants, represents by strain PP0201, were shown to lack benzoate diol dehydrogenase (benD) activity. Mutants from the former class were presumed either to carry lesions in one or more subunit structural genes of benzoate dioxygenase (benABC) or the regulatory gene (benR) or to contain multiple mutations. Previous work in this laboratory suggested that benR can substitute for the TOL plasmid-encoded xylS regulatory gene, which promotes gene expression from the OP2 region of the lower or meta pathway operon. Accordingly, structural and regulatory gene mutations were distinguished by the ability of benzoate-grown mutant strains to induce expression from OP2 without xylS by using the TOL plasmid xylE gene (encoding catechol 2,3-dioxygenase) as a reporter. A cloned 12-kb BamHI chromosomal DNA fragment from the P. aeruginosa PAO1 chromosome complemented all of the mutations, as shown by restoration of growth on benzoate minimal medium. Subcloning and deletion analyses allowed identification of DNA fragments carrying benD, benABC, and the region possessing xylS substitution activity, benR. Expression of these genes was examined in a strain devoid of benzoate-utilizing ability, Pseudomonas fluorescens PFO15. The disappearance of benzoate and the production of catechol were determined by chromatographic analysis of supernatants from cultures grown with casamino acids. When P. fluorescens PFO15 was transformed with plasmids containing only benABCD, no loss of benzoate was observed. When either benR or xylS was cloned into plasmids compatible with those plasmids containing only the benABCD regions, benzoate was removed from the medium and catechol was produced. Regulation of expression of the chromosomal structural genes by benR and xylS was quantified by benzoate diol dehydrogenase enzyme assays. The results obtained when xylS was substituted for benR strongly suggest an isofunctional regulatory mechanism between the TOL plasmid lower-pathway genes (via the OP2 promoter) and chromosomal benABC. Southern hybridizations demonstrated that DNA encoding the benzoate dioxygenase structural genes showed homology to DNA encoding toluate dioxygenase from the TOL plasmid pWW0, but benR did not show homology to xylS. Evolutionary relationships between the regulatory systems of chromosomal and plasmid-encoded genes for the catabolism of benzoate and related compounds are suggested.  相似文献   

14.
The Pseudomonas putida TOL plasmid pWW0 is able to mediate chromosomal mobilization in the canonical unidirectional way, i.e., from donor to recipient cells, and bidirectionally, i.e., donor-->recipient-->donor (retrotransfer). Transconjugants are recipient cells that have received DNA from donor cells, whereas retrotransconjugants are donor bacteria that have received DNA from a recipient. The TOL plasmid pWW0 is able to directly mobilize and retromobilize a kanamycin resistance marker integrated into the chromosome of other P. putida strains, a process that appears to involve a single conjugational event. The rate of retrotransfer (as well as of direct transfer) of the chromosomal marker is influenced by the location of the kanamycin marker on the chromosome and ranges from 10(-3) to less than 10(-8) retrotransconjugants per donor (transconjugants per recipient). The mobilized DNA is incorporated into the chromosome of the retrotransconjugants (transconjugants) in a process that seems to occur through recombination of highly homologous flanking regions. No interspecific mobilization of the chromosomal marker in matings involving P. putida and the closely related Pseudomonas fluorescens, which belongs to rRNA group I, was observed.  相似文献   

15.
The stability of Pseudomonas putida F1, a strain harbouring the genes responsible for toluene degradation in the chromosome was evaluated in a bioscrubber under high toluene loadings and nitrogen limiting conditions at two dilution rates (0.11 and 0.27 h−1). Each experiment was run for 30 days, period long enough for microbial instability to occur considering previously reported studies carried out with bacterial strains encoding the catabolic genes in the TOL plasmid. At all tested conditions, P. putida F1 exhibited stable performance as shown by the constant values of the specific toluene degradation yield, CO2 produced versus toluene degraded yield, and biomass concentration within each steady state. Benzyl alcohol, a curing agent causing TOL plasmid deletion in Pseudomonas strains, was present in the cultivation medium as a result of the monooxygenation of toluene by the diooxygenase system of P. putida F1. However, no mutant population growing at the expense of the extracellular excreted carbon or lysis products was established in the chemostat as confirmed by the constant dissolved total organic carbon (TOC) concentration and fraction of toluene degrading cells (approx. 100%). In addition, batch experiments conducted with both lysis substrate and toluene simultaneously confirmed that P. putida F1 preferentially consumed toluene rather than extracellular excreted carbon.  相似文献   

16.
M Tsuda  T Oguchi    T Iino 《Journal of bacteriology》1981,147(3):1008-1014
Over 300 flagellar mutants were isolated in Pseudomonas aeruginosa PAO. R-prime plasmids carrying segments of bacterial chromosome which can complement the mutant phenotypes were isolated by means of plasmid R68.45. Among the R-prime plasmids, pMT6 complemented 167 out of 307 mutants examined, and pMT19 complemented the remaining 140 mutants. We found no mutant which was complemented by both of these plasmids. Hence, the flagellar genes were divided into two clusters by these two plasmids, namely, region I on pMT19 and region II on pMT6. By FP5- and R68.45-mediated conjugation, these two regions were located on the P. aeruginosa PAO chromosome with an order of puuF--region I--region II--oru-325.  相似文献   

17.
WR211 and WR216 are derivatives of halobenzoate-degrading Pseudomonas sp. strain B13 into which the 117-kilobase TOL degradative plasmid pWW0 has been transferred from Pseudomonas putida mt-2. WR211 has lost the ability to grow on the TOL-specific substrate m-xylene but retains the ability to grow on its metabolite, m-toluate. An analysis of the induction of enzymes was consistent with WR211 carrying a nonfunctional regulatory gene, xy1R, WR216 is a spontaneous derivative of WR211 which grows on one of the TOL substrates and yet expresses the nonspecific toluate oxidase, which enables it to grow on the novel substrate 4-chlorobenzoate. In addition to the xy1R lesion inherited from WR211, WR216 appears to carry a mutation in the structural gene for catechol 2,3-oxygenase, xy1E. The plasmids in both strains were analyzed by restriction endonuclease digestion. pWW0-1211 in WR211 has a large deletion (39 kilobases) compared with pWW0 and appears to be identical to a previously described plasmid (pWW0-8) which encodes none of the TOL degradative functions. pWW0-1216 in WR216 has undergone a major structural reorganization relative to its parent, pWW0-1211. This plasmid has a smaller deletion (19 kilobases), which is staggered relative to the deletion in pWW0-1211, and in addition it has two 3-kilobase insertions of unknown origin, one of which appears to cause the xylE mutation.  相似文献   

18.
The activities of the TOL plasmid-coded xylene oxygenase, benzylalcohol dehydrogenase, benzaldehyde dehydrogenase of Pseudomonas putida strain PaW1 were tested with substituted toluenes, benzylalcohols and benzaldehydes, respectively, as substrates. Several chlorinated toluenes were shown to induce enzymes of the xylene degradation sequence. Conjugative transfer of the TOL plasmid from Pseudomonas putida strain PaW1 to Pseudomonas sp. strain B13 and Pseudomonas cepacia strain JH230 allowed the isolation of hybrid strains capable of growing in the presence of 3-chloro-, 4-chloro- and 3,5-dichlorotoluene. Hybrid strains revealed new ways to prevent the dead-end meta-pathway for cholorocatechols.  相似文献   

19.
Microscopic methods were developed that enable the sensitive quantification of different cell types that are generated by plasmid instability processes when Pseudomonas putida PaW164 (X+), which carries a TOL plasmid (pWW0-164), is grown in chemostat culture. Cells that have lost the structural TOL genes (X-) or the entire TOL plasmid (X0) can be quantified in a background of 6000 X+ cells using catechol agarose miniplates. X0 cells can be quantified in a background of 3500 X+ or X- cells using carbenicillin agarose miniplates. These methods represent significant improvements in sensitivity over conventional plating methods.  相似文献   

20.
Derivatives of Pseudomonas sp. B13 which had acquired the capability to utilize 4-chloro- and 3,5-dichlorobenzoate as a consequence of the introduction of genes of the TOL plasmid of Pseudomonas putida mt-2 were studied. The utilization of these substrates, a property not shared by the parent strains, was shown to depend upon the combined activities of enzymes from the donor and from the recipient. During growth on 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate, predominantly the toluate 1,2-deoxygenase and both dihydrodihydroxybenzoate dehydrogenases of the parent strains were induced. On the other hand, no catechol 2,3-dioxygenase from P. putida mt-2 was detectable, so that degradation of chlorocatechols by the nonproductive meta-cleavage pathway was avoided. Instead of that, chlorocatechols were subject to ortho cleavage and totally degraded by the preexisting enzymes of Pseudomonas sp. B13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号