首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Summary The genomic DNA of cloned recombinants containing the duck globin genes was compared to that of the analogous domains of the chicken. A 36 kb insert including the three alpha-type globin genes was isolated from a newly prepared duck genomic library in the cosmid PJB8; another recombinant contained a 45 kb insert with the four beta globin genes. In the alpha globin gene domain, the relative positions of genes, of repetitive sequences, and of the A+T-rich segments (AT-rich linkers, ATRLs) which frame the gene cluster (Moreau et al. 1982), were found to be closely maintained between duck and chicken. Although ATRLs and repetitive sequences also frame the gene cluster in the beta globin domains of duck and chicken, there is more genetic drift in their relative positions than in the alpha domain. It is of interest that several repetitive DNA segments were detected in the chicken beta globin domain which do not exist in corresponding positions in the duck. In view of the strict conservation in both species of genes and their relative positions in the cluster, this observation seems to exclude a simple function of repetitive sequences in the control of individual genes. The data are discussed with regard to the possible significance of repetitive and AT-rich DNA segments in genome organisation and function.  相似文献   

2.
The repetitive DNA segments were mapped within a 30 Kbp genomic domain including (in 5 to 3 order) the chicken embryonic pi and adult alpha D (minor) and alpha A (major) globin genes. Two repeats map 5 and 8 Kbp upstream from the embryonic pi gene and another 3 Kbp downstream of the adult alpha A gene. These repetitive DNA sequences are placed within, or immediately adjacent to the AT-rich DNA segments framing this domain. Similar correlations exist also within the chicken beta globin gene domain. The positions of these AT-rich and repetitive DNA segments framing the alpha globin gene domain also correlate with other already explored features of long range DNA organisation, as clusters of sites of DNAse I hypersensitivity and differential methylation, sites of Matrix-DNA attachment, and with the beginning and end of the transcribed domain.  相似文献   

3.
Highly repetitive DNA sequences constitute a significant portion of most eukaryotic genomes, raising questions about their evolutionary origins and amplification dynamics. In this study, a novel chicken repetitive DNA family, the HinfI repeat, was characterized. The basic repeating unit of this family displays a uniform length of 770 bp, which was defined by the recognition site of HinfI. The HinfI repeat was specifically localized in the pericentric region of chromosome 4 by fluorescence in situ hybridization and constitutes 0.51% of the chicken genome. Interestingly, a chicken repeat 1 (CR1) element has been identified within this basic repeating unit. Like other CR1 elements, this CR1 element also displays typical retrotransposition characteristics, including a highly conserved 3' region and a badly truncated 5' end. This direct evidence from sequence analysis, together with our Southern blot results, suggests that the HinfI repeat may originate from a unique region containing a retrotransposed CR1 element.  相似文献   

4.
5.
The distribution of specific DNA sequence elements in a 2.9 kb HindIII fragment of chicken DNA containing the replication origin and the upstream matrix attachment site of the alpha-globin gene domain has been studied. The fragment was shown to contain the CR1-type repetitive element and two stable bent DNA sequences.  相似文献   

6.
We have analyzed a repetitive DNA sequence found in the 3'-flanking region of the chicken vitellogenin gene. By its sequence, the repetitive DNA has been identified as a hitherto unreported member of the chicken CR1 family of repetitive elements. The CR1 sequence displays the structural characteristics of a long terminal repeat located at the 3' end of an avian retrovirus. The CR1 element lies 2.2 kb downstream of the vitellogenin gene and 'points' away from the gene rather than toward it. In this respect, this element differs from other CR1 repeats. The CR1 element is embedded in a region showing changes in chromatin structure implying a potential role for this sequence in determining the structural state of the local chromatin.  相似文献   

7.
An enhancer is located immediately 3' to the A gamma globin gene. We have used DNase I footprinting to map the sites of interaction of nuclear proteins with the DNA sequences of this enhancer. Eight footprints were discovered, distributed over 600 base pairs of DNA. Three of these contain a consensus binding site for the erythroid specific factor GATA-I. Each of these GATA-1 sites had an enhancer activity when inserted into a reporter plasmid and tested in human erythroleukemia cells. Other footprints within the enhancer contained consensus binding sequences for the ubiquitous, positive regulatory proteins AP2 and CBP-1. An Sp1-like recognition sequence was also identified. Synthetic oligonucleotides encompassing two of the footprints generated a slowly migrating complex in gel mobility shift assays. The same complex forms on a fragment of the human gamma globin gene promoter extending from -260 to -200. The DNaseI footprint of this protein complex with the enhancer overlapped a sequence, AGGAGGA, found within the binding site for a protein that interacts with the chicken beta globin promoter and enhancer, termed the stage selector element. We propose that this complex of proteins may be involved in the human gamma globin promoter-enhancer interaction.  相似文献   

8.
9.
ROR alpha 1 and ROR alpha 2 are two isoforms of a novel member of the steroid-thyroid-retinoid receptor superfamily and are considered orphan receptors since their cognate ligand has yet to be identified. These putative receptors have previously been shown to bind as monomers to a DNA recognition sequence composed of two distinct moieties, a 3' nuclear receptor core half-site AGGTCA preceded by a 5' AT-rich sequence. Recognition of this bipartite hormone response element (RORE) requires both the zinc-binding motifs and a group of amino acid residues located at the carboxy-terminal end of the DNA-binding domain (DBD) which is referred to here as the carboxy-terminal extension. In this report, we show that binding of ROR alpha 1 and ROR alpha 2 to the RORE induces a large DNA bend of approximately 130 degrees which may be important for receptor function. The overall direction of the DNA bend is towards the major groove at the center of the 3' AGGTCA half-site. The presence of the nonconserved hinge region which is located between the DBD and the putative ligand-binding domain (LBD) or ROR alpha is required for maximal DNA bending. Deletion of a large portion of the amino-terminal domain (NTD) of the ROR alpha protein does not alter the DNA bend angle but shifts the DNA bend center 5' relative to the bend induced by intact ROR alpha. Methylation interference studies using the NTD-deleted ROR alpha 1 mutant indicate that some DNA contacts in the 5' AT-rich half of the RORE are also shifted 5', while those in the 3' AGGTCA half-site are unaffected. These results are consistent with a model in which the ROR alpha NTD and the nonconserved hinge region orient the zinc-binding motifs and the carboxy-terminal extension of the ROR alpha DBD relative to each other to achieve proper interactions with the two halves of its recognition site. Transactivation studies suggest that both protein-induced DNA bending and protein-protein interactions are important for receptor function.  相似文献   

10.
Special AT-rich sequence binding protein 1 (SATB1) regulates gene expression essential in immune T-cell maturation and switching of fetal globin species, by binding to matrix attachment regions (MARs) of DNA and inducing a local chromatin remodeling. Previously we have revealed a five-helix structure of the N-terminal CUT domain, which is essentially the folded region in the MAR-binding domain, of human SATB1 by NMR. Here we determined crystal structure of the complex of the CUT domain and a MAR DNA, in which the third helix of the CUT domain deeply enters the major groove of DNA in the B-form. Bases of 5'-CTAATA-3' sequence are contacted by this helix, through direct and water-mediated hydrogen bonds and apolar and van der Waals contacts. Mutations at conserved base-contacting residues, Gln402 and Gly403, reduced the DNA-binding activity, which confirmed the importance of the observed interactions involving these residues. A significant number of equivalent contacts are observed also for typically four-helix POU-specific domains of POU-homologous proteins, indicating that these domains share a common framework of the DNA-binding mode, recognizing partially similar DNA sequences.  相似文献   

11.
M Sanzo  B Stevens  M J Tsai  B W O'Malley 《Biochemistry》1984,23(26):6491-6498
We have fractionated oviduct tissue extracts by using a combination of ion-exchange and DNA-Sephadex chromatography. By comparing the electrophoretic patterns of proteins eluted from competing specific and nonspecific DNA columns, we isolated a fraction which bound with specificity to columns containing the chicken middle repetitive sequence "CR1". This fraction showed a clear preference for binding to separate, cloned CR1 fragments derived from either the 5' or the 3' transition region of the ovalbumin gene domain when examined by using nitrocellulose filter binding assays. To localize the protein binding site, a CR1 clone was digested with various restriction enzymes, and the resulting fragments were examined for preferential protein binding. Results suggest that the binding site lies within a 39-nucleotide sequence which is highly conserved among different CR1 elements. This finding represents the first isolation of a protein which demonstrates a preference for binding to a middle repetitive sequence and suggests that this interaction may have a biological role. The DNA column competition adsorption method should have general application to the isolation of other gene-regulating proteins possessing DNA sequence preference.  相似文献   

12.
Summary The distribution of specific DNA sequence elements in a 2.9 kb HindIII fragment of chicken DNA containing the replication origin and the upstream matrix attachment site (MAR) of the -globin gene domain was investigated. The fragment was shown to contain a CR1-type repetitive element and two stably bent DNA sequences. One of them colocalizes with the previously described MAR element and with the recognition site for a proliferating-cell-specific, DNA-binding protein. The melting pattern of a set of subfragments of the region proved to be non random. No correlation between the distribution of readily melting sequences and bent DNA was found. The possible importance of curved, low-melting and repetitive DNA sequences for the organization of the upstream boundary of the -globin gene domain and the function of the replication origin is discussed.  相似文献   

13.
DNA sequence-specific binding proteins eluted from chicken erythrocyte and thymus nuclei, and fractionated as described by Emerson and Felsenfeld (19), have been investigated by filter binding and footprint analyses. The erythrocyte nuclear protein fraction specifically binds to at least two sites within the 5' flanking chromatin hypersensitive site of the chicken beta A-globin gene, and to a site 5' to the human beta-globin gene. The major chicken beta A globin gene binding site [G)18CGGGTGG) and the human beta-globin gene binding site [TA)6(T)8C(T)4) occur at or near sequences which are hypersensitive to S1 nuclease cleavage in supercoiled plasmids. Downstream, the second chicken beta A-globin gene binding site includes the beta-globin gene CACCC consensus sequence. Filter binding studies also show other sequence specific binding activities to human N-ras and human (but not chicken) c-myc gene sequences.  相似文献   

14.
15.
Matrix/scaffold attachment regions (MARs/SARs) partition chromatin into functional loop domains. Here we have identified a chicken protein that selectively binds to MARs from the chicken lysozyme locus and to MARs from Drosophila, mouse, and human genes. This protein, named ARBP (for attachment region binding protein), was purified to homogeneity and shown to bind to MARs in a cooperative fashion. ARBP is an abundant nuclear protein and a component of the internal nuclear network. Deletion mutants indicate that multiple AT-rich sequences, if contained in a minimal approximately 350 bp MAR fragment, can lead to efficient binding of ARBP. Furthermore, dimerization mutants show that, to bind ARBP efficiently, MAR sequences can act synergistically over large distances, apparently with the intervening DNA looping out. The binding characteristics of ARBP to MARs reproduce those of unfractionated matrix preparations, suggesting that ARBP is an important nuclear element for the generation of functional chromatin loops.  相似文献   

16.
identify the specific nuclear scaffold-bound DNA sequence in rRNA gene clusters of silkwormAttacus ricini, the detergent-like salt lithium 3′, 5′ diiodosalicylate (LIS) was used for the preparation of nuclear scaffold. Through Southern hybridization, using different DNA stretches of rRNA gene as the probe, a scaffold-associated region (SAR) in the 5-non transcribed spacer (NTS) of rRNA gene has been identified. Exonuclease III digestion was used to narrow down the sequence of matrix attachment fragment. It was defined as a specific attachment site within the SacII-EcoRI fragment. It is about 1 kb in length and AT-rich (> 70%). Computer analysis of the SAR sequencing data showed that there are topoisomerase II cleavage sites, ATATTT box, and yeast autonomously replication sequence (ARS). The d(AT)18 specific DNA sequence of the SAR, which was determined previously, was an S1 nuclease hypersensitive site. It might be a cis-element of DNA-signal characteristic for SAR.  相似文献   

17.
Instability of eukaryotic DNA in constructs propagated in prokaryotic hosts is a frequently observed phenomenon. With the exception of a very high A+T-content and the presence of multiple repetitions, no general rule at the basis of this phenomenon is actually known. The intergenic spacer located between the pi and alpha(D) chicken alpha-type globin genes is frequently deleted from recombinant phages and plasmids. Here we have cloned this DNA fragment using a specially designed bacterial strain (SURE competent cells, Stratogene). Comparative analysis of DNA of recombinant clones bearing deletions and clones containing the intact genomic DNA fragment has revealed two important DNA sequence motifs that contribute to the unclonability of eukaryotic DNA in prokaryotic cells. First, the similarity to bacterial transposons (i.e. the presence of repeats flanking a several kilobase DNA fragment) may cause the loss of the fragment during propagation of the recombinant DNA in E. coli. Second, a high content of rotationally correlated kinkable elements (TG*CA steps) may result in non-clonability of the DNA sequence. Interestingly, the latter type of "unclonable" DNA sequence motifs identified in the globin gene domain is unstable (frequently rearranged) also in the eukaryotic chromosome resulting in a local polymorphism. In the chicken domain of alpha globin genes this unstable DNA sequence seems to be partially protected by interaction with nuclear matrix proteins.  相似文献   

18.
19.
20.
Analysis of nuclease hypersensitivity of regions flanking the estrogen-dependent, chicken apoVLDLII gene has revealed an hepatic, DNaseI hypersensitive site whose sensitivity is influenced by both the developmental stage and sex of the bird. The site is located 3.0kb upstream from the gene, in a block of middle repetitive elements. Contact hybridization studies indicate that the block consists of contiguous copies of two elements with reiteration frequencies of 500-1000 and 10,000-30,000 copies per haploid genome. Sequencing of 1.8kb spanning the repeats has revealed that the higher frequency element is a member of the CR1 family. The adjacent lower frequency repeat can also be found next to another member of the CR1 family located in the 3' flanking region of the vitellogenin gene. The hypersensitive site has been mapped to one of the two most highly conserved regions of the CR1 element. This region displays homology with a silencer sequence recently identified in a CR1 element flanking the chicken lysozyme gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号